

Space in Enumeration

Yann Strozecki

WEPA 2022

The space question

Observation: Space use may be a bottleneck in practical enumeration algorithms.

The space question

Observation: Space use may be a bottleneck in practical enumeration algorithms.

How can we reduce space use in enumeration?

What to do?

Not in this talk:

- Design specific algorithms, typically going from supergraph method to reverse search.
- Find alternative to enumeration to not generate all solutions.

What to do?

Not in this talk:

- Design specific algorithms, typically going from supergraph method to reverse search.
- ▶ Find alternative to enumeration to not generate all solutions.

In this talk:

- How space change the complexity landscape.
- Dealing with duplicates with small space overhead.

Framework

An enumeration problem A is a function which associates to each input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x) one after the other without repetition.

Computation model: RAM with uniform cost measure and an OUPTPUT instruction. Support efficient data structures.

Complexity measures:

- total time
- incremental time
- delay

space

Parameters:

- input size
- output size
- single solution size

Two Classical Complexity Classes

Equivalent of NP for enumeration:

Definition

 ${\rm ENUMP}$ is the set of enumeration problems whose solutions are of polynomial size and can be checked in polynomial time.

ENUM·SAT is ENUMP-complete.

Two Classical Complexity Classes

Equivalent of NP for enumeration:

Definition

 ${\rm ENUMP}$ is the set of enumeration problems whose solutions are of polynomial size and can be checked in polynomial time.

ENUM·SAT is ENUMP-complete.

Equivalent of PSPACE for enumeration:

Definition

 Enum^{poly} is the set of all enumeration problems solvable using a polynomial space machine

ENUM·QSAT is ENUM^{poly}-complete.

Relevance of Polynomial Space in Application of Enumeration

Number of solutions can be *superpolynomial* in the input size \Rightarrow generation in polynomial space of the exact and explicit solution set is not relevant.

Relevance of Polynomial Space in Application of Enumeration

Number of solutions can be *superpolynomial* in the input size \Rightarrow generation in polynomial space of the exact and explicit solution set is not relevant.

Polynomial space is relevant when we compute something from the set of solutions:

- maximum (optimization)
- counting
- statistics
- intermediary objects to generate another set

Is Exponential Space Useful?

Theorem

- **1**. ENUMP \subseteq ENUM^{poly}
- 2. $P \neq PSPACE$ if and only if ENUMP \neq ENUM^{poly}

Proof:

1) Solutions of E_{NUMP} problems are of polynomial size and can be checked in polynomial time.

2) Encode a PSPACE problem as the enumeration of its truth value. Conversely a polynomial space enumeration algorithm implies a polynomial space verification algorithm.

Transfer from Classical Complexity

Adaptation from decision complexity:

- Hierarchy theorem in space
- Non-deterministic polynomial space can be defined in several ways
- Savitch like theorem: Non-deterministic polynomial space equal to ENUM^{poly}
- Logarithmic space enumeration can be defined
- An Immerman-Szelepcsényi like theorem for non deterministic logarithmic space

Incremental time

A machine solves A in incremental time f(t,n) if, on every input x of size n and $t \leq |A(x)|$, it enumerates t elements of A(x) in time f(t,n).

Definition (Incremental polynomial time hierarchy)

A problem A is in INCP_a if there is a machine M which solves it in incremental time $O(t^a n^b)$ for some constant b. When M is in polynomial space, then $A \in INCP_a^{poly}$.

- Minimal tractability: Polynomial incremental time.
- Real tractability: linear incremental time (polynomial delay) and polynomial space, the class INCP^{poly}₁.

Polynomial Space and Tractable Classes

Not possible to systematically get rid of exponential space in efficient algorithms.

Theorem

If EXP \neq PSPACE then INCP₁ $\not\subset$ ENUM^{poly}.

Proof:

From $A \in \mathsf{EXP}$ build an enumeration problem $\mathrm{ENUM} \cdot B$. It has a solution witnessing the answer to A and an exponential number of trivial solutions, hence $\mathrm{ENUM} \cdot B \in \mathrm{INCP}_1$. If $\mathrm{ENUM} \cdot B \in \mathrm{ENUM}^{poly}$, we get that $A \in \mathsf{PSPACE}$.

Polynomial Space and Tractable Classes

Not possible to systematically get rid of exponential space in efficient algorithms.

Theorem

If EXP \neq PSPACE then INCP₁ $\not\subset$ ENUM^{poly}.

Proof:

From $A \in \mathsf{EXP}$ build an enumeration problem $\mathrm{ENUM} \cdot B$. It has a solution witnessing the answer to A and an exponential number of trivial solutions, hence $\mathrm{ENUM} \cdot B \in \mathrm{INCP}_1$. If $\mathrm{ENUM} \cdot B \in \mathrm{ENUM}^{poly}$, we get that $A \in \mathsf{PSPACE}$.

Open Question: Can we get the same theorem for checkable version of $INCP_1$?

Open Question: Find a real problem for which we can prove an $INCP_a^{poly}$ lower bound.

Regularization

In one case, we can "remove" exponential space: regularization.

Many problems become polynomial delay and polynomial space with a small overhead?

Regularization

In one case, we can "remove" exponential space: regularization.

Theorem (Capelli, S.) $INCP_1^{poly} = DELAYP^{poly}$

Many problems become polynomial delay and polynomial space with a small overhead?

No: problems using a datastructure for regularization also use it for duplicates elimination!

Regularization

In one case, we can "remove" exponential space: regularization.

Theorem (Capelli, S.) $INCP_1^{poly} = DELAYP^{poly}$

Many problems become polynomial delay and polynomial space with a small overhead?

No: problems using a datastructure for regularization also use it for duplicates elimination!

Open Question: Examples of regularization and duplicates elimination in exponential space in the litterature?

Eliminating duplicates

Duplicates do not matter when solving an *optimization problem* using enumeration.

You should eliminate duplicates when:

- Computing statistics on the solution set.
- Generating a temporary set of solutions to be used by something else.
- Generating a few examples solutions \rightarrow easy.

Algorithm with duplicates

An algorithm solves an enumeration problem $E_{NUM} \cdot A$ with duplicates if it outputs all solutions at least once.

Definition

ENUM-A is in INCP_a with duplicates, if there is an algorithm and a polynomial p, such that the algorithm outputs at least t distinct solutions in time $t^a p(n)$.

Algorithm with duplicates

An algorithm solves an enumeration problem $E_{NUM} \cdot A$ with duplicates if it outputs all solutions at least once.

Definition

ENUM-A is in INCP_a with duplicates, if there is an algorithm and a polynomial p, such that the algorithm outputs at least t distinct solutions in time $t^a p(n)$.

Theorem

Let $\text{ENUM} \cdot A$ be a problem in INCP_a with repetitions then $\text{ENUM} \cdot A \in \text{INCP}_a$ and exponential space.

Proof: Use a trie, overhead in the size of a single solution.

Eliminating Duplicates Without Space

Theorem

Let ENUM·A be a problem in IncP_a^{poly} with duplicates then ENUM·A $\in \text{IncP}_{2a}^{poly}$.

Proof:

Simulate the algorithm solving ENUM·A with incremental time $k^a p(n)$. Each time t such that a solution y is produced, we run a new simulation up to time t-1 and output y only if y is not output in this second simulation. This algorithm produces at least k distinct solutions in time $O(k^{2a}p(n)^2)$.

Eliminating Duplicates Faster (Forward)

Theorem

Let ENUM·A be a problem in INCP_a^{poly} with polynomial number of duplicates then ENUM·A \in INCP_{a+1}^{poly}.

Eliminating Duplicates Faster (Forward)

Theorem

Let ENUM·A be a problem in INCP_a^{poly} with polynomial number of duplicates then ENUM·A \in INCP_{a+1}^{poly}.

Same algorithm, at most q(n) occurences of each solution. From incremental time $O(p(n)k^a)$ with duplicate to in incremental time $O(q(n)p(n)k^{a+1}).$

Eliminating Duplicates Faster (Backward)

Theorem

Let ENUM·A be a problem in INCP_a^{poly} with an algorithm which can be computed backwards then $\text{ENUM} \cdot A \in \text{INCP}_{a+1}^{poly}$.

Eliminating Duplicates Faster (Backward)

Theorem

Let ENUM A be a problem in INCP^{poly}_a with an algorithm which can be computed backwards then ENUM $A \in INCP^{poly}_{a+1}$.

For each solution output, check whether it appears before in the computation, by doing it backwards from this point in time. From incremental time $O(p(n)k^a)$ with duplicates to incremental time $O(p(n)k^{a+1})$.

Space-Time Trade-off to Eliminate Duplicates

From a result of Leslie Ann Goldberg on turning a random generator to an enumeration. Bound on the total time.

Theorem

Let $\lambda(n)$ be any function and let ENUM·A be a problem which can be solved with duplicates in total time t(n) using a space s(n) and each solution of size at most p(n). Then there is an algorithm in total time $O(t(n)p(n) * \lceil t(n)/\lambda(n) \rceil)$ and space $s(n) + \lambda(n)p(n)$.

Space-Time Trade-off to Eliminate Duplicates

From a result of Leslie Ann Goldberg on turning a random generator to an enumeration. Bound on the total time.

Theorem

Let $\lambda(n)$ be any function and let ENUM·A be a problem which can be solved with duplicates in total time t(n) using a space s(n) and each solution of size at most p(n). Then there is an algorithm in total time $O(t(n)p(n) * \lceil t(n)/\lambda(n) \rceil)$ and space $s(n) + \lambda(n)p(n)$.

Probabilistic settings: product of space and delay larger than number of solutions.

Space-Time Trade-off to Eliminate Duplicates

From a result of Leslie Ann Goldberg on turning a random generator to an enumeration. Bound on the total time.

Theorem

Let $\lambda(n)$ be any function and let ENUM·A be a problem which can be solved with duplicates in total time t(n) using a space s(n) and each solution of size at most p(n). Then there is an algorithm in total time $O(t(n)p(n) * \lceil t(n)/\lambda(n) \rceil)$ and space $s(n) + \lambda(n)p(n)$.

Probabilistic settings: product of space and delay larger than number of solutions.

Open Question: prove the lower bound in the deterministic, black box settings. Adapt it to incremental time.

Efficient methods to remove duplicates

Removing duplicates in $INCP_1^{poly}$, in *special cases*:

- 1. Solutions are a polynomial union of sets that can be generated in $INCP_1^{poly}$.
- 2. Solutions are a quotient by an equivalence relation. Equivalence classes are polysize and polytime canonicity test.

$$(y_1, \dots, y_k) \to \{y_1, \dots, y_k\}$$
$$(y_1, \dots, y_k) \to (y_1, \dots, y_{k-1})$$

3. Equivalence class are polysize *on average* and we can list small equivalence classes first.

Efficient methods to remove duplicates

Removing duplicates in $INCP_1^{poly}$, in *special cases*:

- 1. Solutions are a polynomial union of sets that can be generated in $INCP_1^{poly}$.
- 2. Solutions are a quotient by an equivalence relation. Equivalence classes are polysize and polytime canonicity test.

$$(y_1, \dots, y_k) \to \{y_1, \dots, y_k\}$$
$$(y_1, \dots, y_k) \to (y_1, \dots, y_{k-1})$$

3. Equivalence class are polysize *on average* and we can list small equivalence classes first.

Open Question: Another method to eliminate duplicates without space?

Thanks.