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The space question

Observation: Space use may be a bottleneck in practical
enumeration algorithms.

How can we reduce space use in
enumeration?
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What to do?

Not in this talk:
▶ Design specific algorithms, typically going from supergraph

method to reverse search.
▶ Find alternative to enumeration to not generate all solutions.

In this talk:
▶ How space change the complexity landscape.
▶ Dealing with duplicates with small space overhead.
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Framework

An enumeration problem A is a function which associates to each
input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

Computation model: RAM with uniform cost measure and an
OUPTPUT instruction. Support efficient data structures.

Complexity measures:

▶ total time
▶ incremental time
▶ delay
▶ space

Parameters:

▶ input size
▶ output size
▶ single solution size



Two Classical Complexity Classes

Equivalent of NP for enumeration:

Definition
EnumP is the set of enumeration problems whose solutions are of
polynomial size and can be checked in polynomial time.

Enum·SAT is EnumP-complete.

Equivalent of PSPACE for enumeration:

Definition
Enumpoly is the set of all enumeration problems solvable using a

polynomial space machine

Enum·QSAT is Enumpoly-complete.
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Relevance of Polynomial Space in Application
of Enumeration

Number of solutions can be superpolynomial in the input size ⇒
generation in polynomial space of the exact and explicit solution
set is not relevant.

Polynomial space is relevant when we compute something from the
set of solutions:
▶ maximum (optimization)
▶ counting
▶ statistics
▶ intermediary objects to generate another set
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Is Exponential Space Useful?

Theorem
1. EnumP ⊆ Enumpoly

2. P ̸= PSPACE if and only if EnumP ̸= Enumpoly

Proof:
1) Solutions of EnumP problems are of polynomial size and can
be checked in polynomial time.

2) Encode a PSPACE problem as the enumeration of its truth
value. Conversely a polynomial space enumeration algorithm
implies a polynomial space verification algorithm.



Transfer from Classical Complexity

Adaptation from decision complexity:
▶ Hierarchy theorem in space
▶ Non-deterministic polynomial space can be defined in several

ways
▶ Savitch like theorem: Non-deterministic polynomial space

equal to Enumpoly

▶ Logarithmic space enumeration can be defined
▶ An Immerman-Szelepcsényi like theorem for non deterministic

logarithmic space



Incremental time

A machine solves A in incremental time f(t, n) if, on every input x
of size n and t ≤ |A(x)|, it enumerates t elements of A(x) in time
f(t, n).

Definition (Incremental polynomial time hierarchy)
A problem A is in IncPa if there is a machine M which solves it
in incremental time O(tanb) for some constant b. When M is in
polynomial space, then A ∈ IncPpoly

a .

▶ Minimal tractability: Polynomial incremental time.
▶ Real tractability: linear incremental time (polynomial delay)

and polynomial space, the class IncPpoly
1 .



Polynomial Space and Tractable Classes

Not possible to systematically get rid of exponential space in
efficient algorithms.

Theorem
If EXP ̸= PSPACE then IncP1 ̸⊂ Enumpoly.

Proof:
From A ∈ EXP build an enumeration problem Enum·B. It has a
solution witnessing the answer to A and an exponential number of
trivial solutions, hence Enum·B ∈ IncP1. If
Enum·B ∈ Enumpoly, we get that A ∈ PSPACE.

Open Question: Can we get the same theorem for checkable
version of IncP1?
Open Question: Find a real problem for which we can prove an
IncPpoly

a lower bound.
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Regularization

In one case, we can "remove" exponential space: regularization.

Theorem (Capelli, S.)
IncPpoly

1 = DelayPpoly

Many problems become polynomial delay and polynomial space
with a small overhead?

No: problems using a datastructure for regularization also use it
for duplicates elimination!

Open Question: Examples of regularization and duplicates
elimination in exponential space in the litterature?
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Eliminating duplicates

Duplicates do not matter when solving an optimization problem
using enumeration.

You should eliminate duplicates when:
▶ Computing statistics on the solution set.
▶ Generating a temporary set of solutions to be used by

something else.
▶ Generating a few examples solutions → easy.



Algorithm with duplicates

An algorithm solves an enumeration problem Enum·A with
duplicates if it outputs all solutions at least once.

Definition
Enum·A is in IncPa with duplicates, if there is an algorithm and
a polynomial p, such that the algorithm outputs at least t distinct
solutions in time tap(n).

Theorem
Let Enum·A be a problem in IncPa with repetitions then
Enum·A ∈ IncPa and exponential space.

Proof: Use a trie, overhead in the size of a single solution.
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Eliminating Duplicates Without Space

Theorem
Let Enum·A be a problem in IncPpoly

a with duplicates then
Enum·A ∈ IncPpoly

2a .

Proof:
Simulate the algorithm solving Enum·A with incremental time
kap(n). Each time t such that a solution y is produced, we run a
new simulation up to time t − 1 and output y only if y is not
output in this second simulation. This algorithm produces at least
k distinct solutions in time O(k2ap(n)2).



Eliminating Duplicates Faster (Forward)

Theorem
Let Enum·A be a problem in IncPpoly

a with polynomial number of
duplicates then Enum·A ∈ IncPpoly

a+1.

Same algorithm, at most q(n) occurences of each solution. From
incremental time O(p(n)ka) with duplicate to in incremental time
O(q(n)p(n)ka+1).

t
s1

1 s
q(n)
1s4

1s3
1s2

1

time to check
duplicates of s1
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Eliminating Duplicates Faster (Backward)

Theorem
Let Enum·A be a problem in IncPpoly

a with an algorithm which
can be computed backwards then Enum·A ∈ IncPpoly

a+1.

For each solution output, check whether it appears before in the
computation, by doing it backwards from this point in time. From
incremental time O(p(n)ka) with duplicates to incremental time
O(p(n)ka+1).
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Space-Time Trade-off to Eliminate Duplicates

From a result of Leslie Ann Goldberg on turning a random
generator to an enumeration. Bound on the total time.

Theorem
Let λ(n) be any function and let Enum·A be a problem which can
be solved with duplicates in total time t(n) using a space s(n) and
each solution of size at most p(n). Then there is an algorithm in
total time O(t(n)p(n) ∗ ⌈t(n)/λ(n)⌉) and space s(n) + λ(n)p(n).

Probabilistic settings: product of space and delay larger than
number of solutions.

Open Question: prove the lower bound in the deterministic, black
box settings. Adapt it to incremental time.
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Efficient methods to remove duplicates

Removing duplicates in IncPpoly
1 , in special cases:

1. Solutions are a polynomial union of sets that can be generated
in IncPpoly

1 .
2. Solutions are a quotient by an equivalence relation.

Equivalence classes are polysize and polytime canonicity test.
▶ (y1, . . . , yk) → {y1, . . . , yk}
▶ (y1, . . . , yk) → (y1, . . . , yk−1)

3. Equivalence class are polysize on average and we can list
small equivalence classes first.

Open Question: Another method to eliminate duplicates without
space?
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