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In enumeration complexity we are interested in listing a set of elements,
which can be of exponential cardinality in the size of the input. The delay of an
enumeration algorithm is the time between the production of two consecutive
solutions. Thus a good enumeration algorithm must have a bounded delay so
that giving more time to the algorithm ensures to get more solutions.

Many enumeration problems can be seen as saturation problems, that is we
are given a set of solutions S and a polynomial time function f which from a
k-uple of solutions produces a solution. The problem is to generate the closure
of S by f , denoted by f(S). The natural algorithm is just to apply the function
until we find no new solutions, therefore its delay is bounded by a polynomial
in the input and the number of solutions already generated. We call such an
algorithm an incremental polytime algorithm. There are many examples of such
algorithms, for instance to generate the circuit of a matroid [6] or the minimal
transversals of particular hypergraphs [5].

It turns out that when the elements of S are subsets of a ground set E
and when the function f acts as a set operation (union, symmetric difference,
majority . . . ), there are better algorithms to generate f(S). The method is to
solve the extension problem in polytime, that is given two subsets of E, A and B,
does there exists A ⊆ C ⊆ E \B such that C ∈ S? One can then use a backtrack
search which keeps adding elements to partial solution in every possible way
allowed by the extension problem. The delay of the algorithm is then polynomial
in the size of the input only. In a recent article [8], we use Post’s lattice [3] to list
every possible set of functions f (called clone) and to prove that the associated
extension problem is polynomial. We also provide better enumeration algorithm
than the plain backtrack search when possible.

The natural generalization would be to consider more general functions f .
For instance, we could consider functions acting coefficient-wise on a domain
with more than two elements. We already provide few results in our article, and
researchers from the universal algebra community proved that the extension
problem is polytime for field, ring, group and some semi-group operations [9, 4].
To go beyond what is known requires an extensive knowledge of algebra and is
limited since we have proved that for some very simple function f , the extension
problem is NP-complete or even PSPACE-complete.

We develop here an alternative generalization. We only study closure by
set operations but we add additional operators acting on the set of solutions
to capture more natural enumeration problems. The problems we get may not



have incremental polytime algorithm anymore, but most of them can be solved
in polynomial delay using other methods than the backtrack search.

1 Heredity operator

Let S ⊆ P([n]), we define the closure by heredity ↑ S = {A | A ⊇ B,B ∈ S}, a
property enjoyed by all systems of dependent sets. Given a set of solutions we
now ask to generate the closure by a set of functions F and the heredity oper-
ator ↑. A different problem would be to enumerate ↑ F(S). The Post’s lattice
becomes simpler when we add the heredity operator to the clones, since we can
easily simulate a disjunction using it. If there is a way to generate a unique min-
imal element, for instance when there is a conjunction in the closure functions,
then the solutions are elements containing the minimal element. Moreover, class
containing negation are trivial and constants do not matter.

In addition to the trivial problems we have just described, there are only two
cases; the first corresponds to F = ∅, that is computing the set of supersets of
elements in S. It can be seen as the sets of satisfying assignments of a monotone
DNF formula, where each literal represents an element of S. This problem can
be solved in polynomial delay but the polynomial depends both on the size of the
subsets in S and on the cardinal of S. Dropping the dependency in the cardinal
is an intriguing open question.

The second case are the clones whose closure can be characterized by pro-
jections over all k-uples of the elements of S, for instance by the Baker-Pixley
theorem. It is then enough to compute the closure of the projections by the
elements of the clone and by ↑ and combine them as in [8].

2 Minimal and maximal solutions

We define the set of minimal solutions by Min(F(S)) = {A ∈ F(S) | B ∈
F(S) and B ⊆ A ⇒ A = B}. Max(F(S)) is defined symmetrically. When enu-
meration is used to find some optimal solutions, it is useful to generate only
maximal or minimal solution when they contain the optimal.

First we can remark that the reductions between saturation problems parametrized
by clones established in [8] still work when one considers only the minimal el-
ements (up to exchanging minimal and maximal elements). Therefore one has
to deal with the simplified Post’s lattice, that is 13 clones and two infinite fam-
ilies. For some clones, only one maximal or minimal element is generated by
saturation which makes the problem trivial. This is the case for all clones which
contain either the conjunction or the disjunction, which already settles the case
of 6 clones.

Let f be the sum modulo two, then f(S) is the vector space generated by
S. If we chose S to be a basis of the dependent sets of a binary matroid, then
Min(S) represent the set of circuits of this matroid, a problem which can be
solved with an incremental polytime algorithm, but for which no polynomial



delay algorithm is known. In particular the extension problem is NP-hard [2]
therefore the backtrack search cannot be used.

A general method that works for many clones, is a variation of the method
described in [7]. It was originally designed to enumerate maximal subsets of an
independent set system (a set system closed under inclusion). While for most
clones, F(S) does not form an independent system, the method can be used
anyway.

The main idea is to enumerate all maximal (resp. minimal) restrictions of
F(S) on the i + 1 first elements of the ground set from all maximal (resp.
minimal) restriction of F(S) on the i first elements. Assume for instance that
we want to enumerate all minimal elements of f(S) where f is the maj operator.
For a given i ≤ |E|, let us denote by f(S)i the set of restrictions on the i first
elements of subsets of f(S). Let T be a subset that belongs to Min(f(S)i) Then
one can produce from T subsets of Min(f(S)i+1) in the following way.

1. Either T itself belongs to f(S)i+1 and then it belongs to Min(f(S)i+1)
2. Or T ∪ {i + 1} belongs to Min(f(S)i+1) and there exists a unique T ⊂ T ′ ⊆
{1, ..., i} such that T ′ belongs to Min(f(S)i+1). Moreover such T ′ can be
found in polynomial time.

The key point is that any subset of Min(f(S)i+1) can be ”produced” in this
way from a subset of Min(f(S)i). This define a directed acyclic graph where
vertices correspond to all restrictions of solutions and where there is an arc
between T1 ∈ Min(f(S)i) and T2 ∈ Min(f(S)i+1) if T2 can be produced from T1.
The only source of this graph is ∅ which is the only element of Min(f(S)0) and the
sinks correspond to Min(f(S)). The enumeration algorithm consists in a simple
DFS of this graph starting from the only source. This leads to a polynomial
delay algorithm since the depth of the DAG is linear. To avoid an exponential
storage, one can use a classical reverse search method (cf. [1])
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