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Abstract. We investigate the computational complexity of two decision
problems concerning the existence of certain acyclic subhypergraphs of
a given hypergraph, namely the Spanning Acyclic Subhypergraph
problem and the Maximal Acyclic Subhypergraph problem. The
former is about the existence of an acyclic subhypergraph such that each
vertex of the input hypergraph is contained in at least one hyperedge of
the subhypergraph. The latter is about the existence of an acyclic sub-
hypergraph with k hyperedges where k is part of the input. For each of
these problems, we consider different notions of acyclicity of hypergraphs:
Berge-acyclicity, γ-acyclicity, β-acyclicity and α-acyclicity. We are also
concerned with the size of the hyperedges of the input hypergraph. De-
pending on these two parameters (notion of acyclicity and size of the
hyperedges), we try to determine which instances of the two problems
are in P ∩ RNC and which are NP-complete.

1 Introduction

A spanning tree of a graph G is a connected and acyclic subgraph H of G
such that every vertex of G belongs to at least one edge of H. When G is
connected, it always has a spanning tree. Various efficient algorithms have been
devised to find a spanning tree, since it is an important object both for theoritical
reasons (base in the cycle matroid) and practical applications (spanning tree
protocol in networks). For instance, by means of a depth-first search, one can
build a spanning tree in time linear in the size of the graph. One may also find
it in probabilistic logarithmic parallel time (cf. [9]). If we change the spanning
condition into a size condition, that is to say deciding if a graph has an acyclic
subgraph of a given size, the problem is trivial.

The generalization of these two problems to hypergraphs make them much
more interesting. First because there exist various notions of acyclicity for hyper-
graphs, and because the complexity of these problems depends also on the sizes
of the hyperedges. The notions of acyclicity we consider here are (in increasing
order of generality): Berge-acyclicity (cf. [2]), γ-acyclicty (cf. [5]), β-acyclicity (cf.
[3]) and α-acyclicity (cf. [1]). They arise from hypergraph theory and database
theory but they are studied in various areas such as combinatorics (cf. [16]) or
logic (cf. [4]).



There are a few results on the complexity of the two problems Spanning
Acyclic Subhypergraph and Maximal Acyclic Subhypergraph. Lovász
has proved that, for Berge-acyclicity and 3-uniform hypergraphs, Maximal
Acyclic Subhypergraph is computable in polynomial time thanks to an adap-
tation of its matching algorithm in linear polymatroids (cf. [12]). In [13], they
also consider Berge-acyclicity and they show that Spanning Acyclic Subhy-
pergraph on k-uniform hypergraphs is in RP for k = 3 and NP-complete if
k ≥ 4. In [10], they consider Spanning Acyclic Subhypergraph and Max-
imal Acyclic Subhypergraph for α-acyclicity and they show that they are
NP-complete. But they have no condition on the size of the hyperedges of the
input hypergraph. They even notice that they do not know the complexity of
Maximal Acyclic Subhypergraph on hypergraphs where there is no hy-
peredge contained in another (so, in particular, when the input hypergraph is
k-uniform for any k).

In this paper, we first show that Spanning Acyclic Subhypergraph is
NP-complete even when k = 3 for γ, β and α-acyclicity. We also give an algorithm
solving Maximal Acyclic Subhypergraph for 3-uniform hypergraphs and
Berge-acyclicity. This algorithm is in probabilistic polylogarithmic parallel time,
it uses algebraic techniques and a polynomial from [14]. Then we prove the NP-
completeness of Maximal Acyclic Subhypergraph when k ≥ 4 for Berge
acyclicity and when k ≥ 3 for the other notions of acyclicity. These results show
once again that Berge-acyclicity is quite different from γ, β and α-acyclicity.

2 Definitions

A hypergraph is a couple H = (V, E) where V is a finite set and E is a set of
nonempty subsets of V. This is a generalization of the notion of graph since the
hyperedges can have any size instead of size 2. A subhypergraph S = (V ′, E ′) of
H is a hypergraph such that V ′ ⊆ V and E ′ ⊆ E .

A hypergraph is Berge-acyclic if it contains no Berge-cycle. A Berge-cycle is
a sequence (E1, x1, ..., En, xn) with n ≥ 2 such that :

– the Ei are distinct hyperedges,
– the xi are distinct vertices and
– for every i ∈ [1, n− 1], xi belongs to Ei and Ei+1.
– xn belongs to En and E1.

A hypergraph is γ-acyclic if it contains no γ-cycle. A γ-cycle is a Berge-cycle
(E1, x1, ..., En, xn) with n ≥ 3 such that, for every i in [1, n− 1], xi belongs no
other Ej than Ei and Ei+1 (but xn belongs possibly to other Ej).

Equivalently, a hypergraph is γ-acyclic iff one obtains a hypergraph with
no hyperedge after applying successively the following four rules (see [5] for a
proof):

1. If a vertex is isolated (i.e. it belongs to precisely one hyperedge), then remove
that vertex from V and from the hyperedge that contains it.



2. If a hyperedge has one or zero element, then remove that hyperedge from E .
3. If two hyperedges contain precisely the same vertices, then remove one of

those hyperedges from E .
4. If two vertices belong to precisely the same hyperedges, then remove one of

those vertices from V and from every hyperedge that contains it.

A hypergraph is β-acyclic if it contains no β-cycle. A β-cycle is a γ-cycle
(E1, x1, ..., En, xn) such that xn belongs to no other Ej than En and E1.

A hypergraph is α-acyclic if it has a join tree, i.e. a tree T whose vertices are
the hyperedges of H and such that, for every vertex v of H, the subgraph of T
induced by the vertices of T containing v is connected.

For every hypergraph, we have the following implications: Berge-acyclic ⇒
γ-acyclic ⇒ β-acyclic ⇒ α-acyclic.

We are also interested in the size of the hyperedges. A hypergraph is k-
uniform if all of its hyperedges have size k. In this paper, we consider the two
following decision problems for all notions of acyclicity and we restrict them to
k-uniform hypergraphs for k = 3 and k ≥ 4.

Spanning Acyclic Subhypergraph
Input: a hypergraph H
Output: is there a spanning acyclic subhypergraph of H, i.e. an acyclic subhy-

pergraph of H such that each vertex of H is contained in at least one hyperedge
of the subhypergraph?

Maximal Acyclic Subhypergraph
Input: a hypergraph H and an integer n
Output: is there an acyclic subhypergraph of H of size n, i.e. with n hyper-

egdes?

3 Spanning acyclic subhypergraphs

In [13], the problem of finding a spanning hypertree for Berge-acyclicity on k-
uniform hypergraphs is considered. It is a variation of Spanning Acyclic Sub-
hypergraph, where the subhypergraph must be connected. They show that this
problem admits an RP algorithm for k = 3 and is NP-complete if k ≥ 4. A prob-
abilistic algorithm using the same idea is given in the next section and solves
both Spanning Acyclic Subhypergraph and Maximal Acyclic Subhy-
pergraph for Berge-acyclicity on 3-uniform hypergraphs. We consider here the
other ayclicity notions and prove that this problem is NP-complete even when
k = 3.

3.1 NP-completeness for γ, β and α-acyclicity

Proposition 1. For the three notions γ, β and α-acyclicity and 3-uniform hy-
pergraphs, Spanning Acyclic Subhypergraph is NP-complete.



Proof. We give a polynomial time reduction from Sat to Spanning Acyclic
Subhypergraph. Let f be a propositional formula under conjunctive normal
form (instance of the Sat problem). We have f = ∧i∈[1,n]Ci where, for every
i, Ci is a clause ∨j∈[1,ni]Bi,j with Bi,j equal to a variable or its negation. We
define a 3-uniform hypergraph Hf = (Vf , Ef ) such that f is satisfiable if and
only if Hf has a θ-acyclic spanning subhypergraph (for θ = γ, β and α). For
each variable A, Vf contains the vertices 0A,a, 0A,b, 1A,a, 1A,b, rA,a and rA,b. For
each clause C, Vf contains the vertex pC . For each variable A, Ef contains the
hyperedges {0A,a, rA,a, 1A,a} and {0A,b, rA,b, 1A,b}. Moreover, for each clause C
and each variable A in C, Ef contains :

– the hyperedge {0A,a, 0A,b, pC} if ¬A appears in C and
– the hyperegde {1A,a, 1A,b, pC} if A appears positively in C.

Figure 1 shows an example of this construction.

Fig. 1. The hypergraph Hf associated to the propositional formula f := U ∧ V ∧ W
with U := A ∨ ¬B, V := ¬A ∨B and W := ¬A ∨ ¬B.

Let θ ∈ {γ, β, α}. For every variable A, a spanning subhypergraph contains
necessarily the hyperedges {0A,a, rA,a, 1A,a} and {0A,b, rA,b, 1A,b} (so that they
cover the vertices rA,a and rA,b). In order to be θ-acyclic, a spanning subhyper-
graph can only contain for every A, hyperedges of the form {0A,a, 0A,b, pC} or
{1A,a, 1A,b, pC}. In other terms, we have to choose an assignment 0 or 1 for each
variable A. In order to be spanning, the subhypergraph must also contain at least
one hyperedge {εA,a, εA,b, pC} (with ε ∈ {0, 1}) for each clause C, which means
that the assignment must satisfy every clause. Moreover, in order not to contain
a cycle, we can keep, for each clause C, only one hyperedge containing pC . Thus,
there exists a θ-acyclic spanning hypergraph if and only if f is satisfiable.

We easily check that this reasoning works for every θ in {γ, β, α}. However,
we notice that, in most cases, a spanning subhypergraph corresponding to an



assignment f making f true is Berge-cyclic. For instance, if it contains the hy-
peredges {0A,a, 0A,b, pC} and {0A,a, 0A,b, pD}, then it contains the Berge-cycle
({0A,a, 0A,b, pC}, 0A,a, {0A,a, 0A,b, pD}, 0A,b). ut

4 Maximal acyclic subhypergraphs

The next two subsections show in particular that the Maximal Acyclic Sub-
hypergraph problem is in RP when we consider Berge-acyclicity and when the
input hypergraph is 3-uniform. In Subsection 4.3, we show that this problem is
NP-complete for every acyclicity notion on 4-uniform hypergraphs and for γ, β
and α-acyclicity on 3-uniform hypergraphs.

4.1 A method to determine the degree of polynomial relatively to a
subset of its variables

From now on, we consider polynomials with n variables, denoted by X1, . . . , Xn,
and rational coefficients. A sequence of n positive integers e = (e1, . . . , en) char-
acterizes the term Xe = Xe1

1 Xe2
2 . . . Xen

n . The total degree of a monomial is the
sum of the degrees of its variables and the total degree of a polynomial is the
maximum of the total degrees of its monomials.

Definition 1 (Degree of a polynomial with regard to a set of indices).
Let n be an integer and S ⊆ [1, n]. The degree of the term Xe with regard to S is
the sum of the ei such that i ∈ S. The degree of an n variable polynomials with
regard to S is the maximum of the total degrees of its monomials with regard to
S, we denote it by dS(P ).

Let P (X) be an n variables polynomial over Q, and (S1, S2) a partition
of [1, n]. We can see P as a polynomial with variables (Xi)i∈S1 over the ring
Q[(Xi)i∈S2 ]. In fact, the total degree of P as a polynomial over this ring is
equal to dS1(P ). We introduce a new variable Xn+1, the polynomial P̃ is the
polynomial P where Xn+1Xi is substituted to Xi when i ∈ S1. We have the
equality d{n+1}(P̃ ) = dS1(P ).

We now propose an algorithm which, given a polynomial P and a set of
indices S, finds dS(P ). The polynomial is given as a black box, meaning that
we can evaluate it on any input in unit time. We use the following lemma which
states that we can decide with good probability if a polynomial is non zero by
evaluating it on big enough points.

Lemma 1 (Schwartz-Zippel (cf. [15])). Let P be a non zero polynomial with
n variables of total degree D, if we chose randomly x1, . . . , xn in a set of integers
S of size D

ε then the probability that P (x1, . . . , xn) = 0 is bounded by ε.

Proposition 2. Let P (X) be a polynomial with n variables, a total degree D
and let S be a subset of [n]. There is an algorithm which finds dS(P ) with prob-
ability greater than 1

2 in time polynomial in n, D and the size of the coefficients
of P .



Proof. From P and S we define the polynomial with n + 1 variables P̃ as ex-
plained previously. It is equal to

d∑
i=0

(Xn+1)
iQi(X)

where Qd is a non zero polynomial. Here d is both dS(P ) and the degree of P̃ seen
as an univariate polynomial over Q[X1, . . . , Xn]. Now choose randomly a value
xi in [1, 2D] for each Xi. The polynomial P̃ (x1, . . . , xn, Xn+1) is a univariate
polynomial, and the coefficient of (Xn+1)

d isQd(x). By Lemma 1, the probability
that Qd(x) is zero is bounded by 1

2 .

We can interpolate the polynomial P̃ (x1, . . . , xn, Xn+1) if we have its value
on the integers 0, . . . , D, because it is of degree less or equal to dS(P ), which
is less than the total degree D. The value of P̃ (x1, . . . , xn, xn+1) is equal to
P (x′

1, . . . , x
′
n) where x′

i = xn+1xi if i ∈ S and xi otherwise. The time to inter-
polate P̃ (x1, . . . , xn, Xn+1) with s a bound on the size of P̃ (x1, . . . , xn, xn+1)
for 0 ≤ xn+1 ≤ D is O(D2 log(s)). Note that s is polynomial in the size of the
coefficients of P and in D.

Finally, the interpolation of P̃ (x1, . . . , xn, Xn+1) gives its degree, which is
equal to dS(P ) with probability greater than 1

2 . ut

4.2 Application of the method

Thanks to the method given in the previous section, we are going to find the
size of the largest Berge-acyclic subhypergraph of a given 3-uniform hypergraph.
To this purpose we introduce a family of polynomials ZH, where each ZH is
associated to the hypergraph H. The monomials of ZH are in bijection with the
spanning hypertrees – that is the connected Berge acyclic subhypergraphs– of
H, whose set is denoted by T (H).

Definition 2.

ZH =
∑

T∈T (H)

ε(T )
∏

e∈E(T )

we

where ε(T ) ∈ {−1, 1}.

This polynomial has exactly one variable we for each hyperedge e of H. We
also write w{i,j,k} for the variable associated to the hyperedge which contains
the vertices i, j and k.

Definition 3. Let H = (V, E) be a 3-uniform hypergraph, Λ(H) is the Laplacian
matrix defined by

Λ(H)i,j =
∑
k 6=i,j

εi,j,kw{i,j,k},

where w{i,j,k} is 0 when {i, j, k} /∈ E and εi,j,k ∈ {−1, 1}.



In both cases, ε has a precise definition, see [14], but it is not needed for the
present article. We may relate to ZH, the Pfaffian of the Laplacian matrix which
is of interest since it is computable in polynomial time. The following theorem
is inspired by a similar theorem for graphs called the Matrix-Tree Theorem.

Theorem 1 (Pfaffian-Hypertree (cf. [14])). Let Λ(i) be a minor of Λ(H)
where we have removed a column and a line of index i.

ZH = (−1)i−1Pf(Λ(i)).

For H a hypergraph with n vertices and m hyperedges, ZH is a multilinear
polynomial withm variables, its monomials are of total degree 2n−1 and the size
of its coefficient is one. Since we are interested in the acyclic subhypergraphs of a
hypergraph, we now give a connection between them and the spanning hypertrees
of a related hypergraph.

Proposition 3. Let Hn be the complete 3-uniform hypergraph over n elements
and H one of its acyclic subhypergraphs. We can extend H into a spanning
subhypertree of Hn, Hn+1 or Hn+2.

Proof. Let H be an acyclic hypergraph with n vertices, let C0, . . . , Ct be its con-
nected components and v0, . . . , vt be vertices such that vi ∈ Ci. The hypergraph
H′ is the union of the hyperedges of H and of {v2i, v2i+1, v2i+2} for 0 ≤ i ≤ b t

2c.
If vt+1 appears, it is a new vertex, thus H′ is a subhypergraph of Hn or Hn+1.
Since we have connected by a path all connected components of H which is
acyclic, H′ is both acyclic and connected: it is a hypertree.

Let now H be a subhypertree on the vertices 1, . . . , k of the hypergraph Hn.
The hypergraph H′′ is the union of the hyperedges of H and the hyperedges
{2i + k, 2i + k + 1, 2i + k + 2} for 0 ≤ i ≤ bn−k

2 c. Again we may introduce a
new vertex labeled n+ 1, which makes H′′ a subhypergraph of Hn+1 instead of
Hn. The hyperedges added to H form a path which covers all points not in H,
therefore H′′ spans either Hn or Hn+1. Since this path has only one point in
common with H which is acyclic, H′′ is also acyclic.

Combining the two constructions proves the result. ut
The class NC is the set of decision problems decidable in polylogarithmic

time on a parallel computer with a polynomial number of processors. It does not
depend on the model of parallel computer and can be alternatively defined to be
the decision problems decidable by a uniform Boolean circuit with polylogarith-
mic depth and a polynomial number of gates. A problem is in randomized NC,
denoted by RNC, if it is decided with probability 3

4 by a family of randomized
Boolean circuits with polylogarithmic depth and a polynomial number of gates.
For more details on parallel computation see [8].

Proposition 4. For Berge-acyclicity and 3-uniform hypergraphs, Maximal Acy-
clic Subhypergraph is in RNC.

Proof. LetH be a hypergraph on n vertices and k an integer, we want to decide if
there is an acyclic subhypergraph of size k in H. Consider the polynomial ZHn ,



its monomials are in bijection with the spanning hypertrees of the complete
hypergraph Hn. We denote by S the set of indices of the variables of ZHn in
bijection with the hyperedges of H.

By Proposition 3, an acyclic subhypergraph H′ of H can be extended into a
spanning hypertree, say w.l.o.g. ofHn, which is hence represented by a monomial
of ZHn . This monomial has a degree with regard to S equal to the size of H′.
Conversely, since the restriction of a spanning hypertree of Hn to H is acyclic,
the degree of the corresponding monomial in ZHn

with regard to S is the size of
the restriction. Therefore the maximum of dS(ZHn), dS(ZHn+1) and dS(ZHn+2)
is the maximal size of an acyclic subhypergraph of H.

In order to find dS(ZHn), dS(ZHn+1) and dS(ZHn+2) we use the algorithm
of Proposition 2. These polynomials have O(n3) variables, a total degree O(n)
and coefficient bounded in size by 1, hence the algorithm is in time polynomial
in n and it does O(n) evaluations on points of size less than O(logn). Thanks to
Theorem 1, the evaluations can be done in time polynomial in n, thus we find the
degrees in polynomial time with probability 1

2 . If the maximum of the degrees
is more or equal to k, we are sure that there is an acyclic subhypergraph of size
k, and if not there is none with probability 1

2 , which proves that the problem is
in RP.

The evaluation of ZHn is the evaluation of a Pfaffian on values obtains by
sums of the values of the variables of ZHn . Since the Pfaffian is the square root of
a determinant, one can compute it and then the polynomial ZHn with a circuit
of logarithmic depth and polynomial size. The algorithm of Proposition 2 does
one interpolation of a univariate polynomial obtained from ZHn and a random
choice of values. The interpolation is done by solving a linear system built from
the results of the evaluation of the polynomial. It is well known that it can be
done in NC, therefore the whole algorithm is in RNC. ut

One may consider only the “3-Pfaffian” hypergraphs (cf. [7]), a property
similar to the “Pfaffian” orientation, which is used to count perfect matchings in
planar graphs [11]. In this case, the polynomial ZH has only positive coefficients
and the previous algorithm can be trivially made deterministic, and is thus in
NC.

4.3 NP-complete cases

Proposition 5. For the four notions Berge, γ, β and α-acyclicity and 4-uniform
hypergraphs, Maximal Acyclic Subhypergraph is NP-complete.

Proof. We give a polynomial time reduction from Hamiltonian Path to Maxi-
mal Acyclic Subhypergraph. More precisely, we consider the Hamiltonian
Path problem for cubic graphs (i.e. graphs whose vertices have degree 3) and
we look for Hamiltonian paths that are not Hamiltonian circuits. This instance
of Hamiltonian Path is still NP-complete (cf. [6], p. 199).

Let G = (V,E) be a cubic graph. We can assume that G is connected because
else it can not have a Hamiltonian path. We define a hypergraph H = (V, E) as
follows. We have

V = {xy | {x, y} ∈ E}



and
E = {{xa | a 6= y} ∪ {yb | b 6= x} | {x, y} ∈ E}.

Since G is cubic, each element of E has size 4. We show that G has a Hamil-
tonian path if and only if H has an acyclic subgraph S with |V | − 1 hyperedges.
For each vertex x of G, there are three vertices xa, xb and xc in H and three
hyperedges

{xb, xc, ap, aq}, {xa, xc, br, bs} and {xa, xb, cu, ct}.

A hypergraph which contains those three hyperedges is not θ-acyclic for θ ∈
{Berge, γ, β, α}. Since S is acyclic, it does not contain them and the subgraph
S of G with edges

{{x, y} | {xa | a 6= y} ∪ {yb | b 6= x} is a hyperedge of S}

has maximal degree 2. S also have |V |−1 edges because S has |V |−1 hyperedges,
hence it is a Hamiltonian path of G.

Conversely, it is clear that, if S is a Hamiltonian path of G then the hyper-
graph with hyperedges

{{xa | a 6= y} ∪ {yb | b 6= x} | {x, y} is an edge of S}

is a θ-acyclic subhypergraph of H with |V | − 1 hyperedges. ut

Proposition 6. For the three notions γ, β and α-acyclicity and 3-uniform hy-
pergraphs, Maximal Acyclic Subhypergraph is NP-complete.

Proof. We make a polynomial time reduction to Maximal Acyclic Subhy-
pergraph from the same instance of Hamiltonian Path as in the preceding
proof. As previously, given a cubic graph G = (V,E), we define a hypergraph
H = (V, E) such that, for every v ∈ V and the three vertices x, y and z such
that {v, x}, {v, y} and {v, z} are edges of G, we have in V three vertices vx, vy
and vz. This time, instead of a hyperedge in the form {sa, sb, te, tf} for every
{s, t} ∈ E, we have in E two hyperedges {sa, sb, t′} and {s′, te, tf} where t′ is
any vertex among te and tf and s′ is any vertex among sa and sb. Now, G has a
Hamiltonian path if and only if H has a θ-acyclic subhypergraph H′ = (V ′, E ′)
of size 2(|V | − 1) for θ ∈ {γ, β, α}. Indeed, if H has a θ-acyclic subhypergraph
H′ of size 2(|V | − 1) then, for every v ∈ V , E ′ can not contain the three hyper-
edges in the form {vx, vy, zg}, {vx, vz, yd} and {vy, vz, xa} because it θ-acyclic.
Also, if it contains a hyperedge {vx, vy, zg} then it also contains the hyperedge
in the form {zg, zh, v′} where v′ ∈ {vx, vy} because it has 2(|V | − 1) hyperedges
and does not contain a γ-cycle (this is for the same reasons that a connected
graph with at least as much edges than vertices necessarily contains a cycle).
The same reasoning as in the preceding proof completes the proof. We just have
to check that if S is a Hamiltonian path of G then the subhypergraph S of H
with hyperedges {sa, sb, t′} and {s′, te, tf} for every {s, t} edge of S is γ-acyclic.
For this, we use the four rules deciding γ-acyclicity described in Section 2. Since



S is a path, it has a vertex u of degree 1. Let v be the vertex such that {u, v} is
an edge of S. We can apply the rules so that we remove from S the vertices uv

and ub by Rule 1, ua by Rule 4 (because vd belongs to the same hyperedges as
ua), the hyperedge {vd} by Rule 2, vd by Rule 1 and the hyperedge {ve} by Rule
2 (see Figure 2). By applying repeatedly the rules with the remaining elements
of S we will be able to obtain the empty hypergraph.

Fig. 2. The part of S associated with the edge {u, v} of S.

ut

5 Conclusion

Figures 3 and 4 give a recap of the results in this paper.

θ = Berge γ, β and α

k = 3 P (cf. [12]) ∩ RNC (cf. [13]) NP-complete

k ≥ 4 NP-complete (cf. [13]) NP-complete

Fig. 3. Complexity of Spanning θ-Acyclic Subhypergraph for k-uniform hyper-
graphs.

There are two possible roads to further study the problem Maximal θ-
Acyclic Subhypergraph. The first is to find either an approximation algo-



θ = Berge γ, β and α

k = 3 P (cf. [12]) ∩ RNC NP-complete

k ≥ 4 NP-complete NP-complete

Fig. 4. Complexity of Maximal θ-Acyclic Subhypergraph for k-uniform hyper-
graphs.

rithm or to prove unapproximability results for the NP-complete cases of Max-
imal θ-Acyclic Subhypergraph.

The second is to see it as a problem parametrized by the size of the acyclic
subhypergraph. A hypergraph is Berge-acyclic if and only if there is an order
on the edges such that for all edges E, the union of all edges greater than E
has an intersection with E of size less than one. One may express the fact that
a hypergraph represented by an incidence structure, equipped with an order,
satisfies this condition by means of a Π1 formula. This means that Maximal
Berge-Acyclic Subhypergraph is in the class W[1]. Now an open question
is to know if it is W[1]-complete or FPT. The same kind of expressiveness in Π1

can be done for some other acyclicity notions, so of course the same question
holds.
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