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Abstract

We study enumeration problems with probabilistic meth-
ods and apply them to verification problems. We consider
the enumeration of monomials of a polynomial given as a
black box, and the enumeration of discrete points which
separate two polytopes in a space of dimension n, using
a random walk which provides witnesses if the volume of
the difference of the polytopes is large enough. We apply
the first method to enumerate words which distinguish two
probabilistic automata with n states and m transitions in
time O(n.m). We apply the second method to enumerate
words which ε-distinguish two nondeterministic finite au-
tomata using an embedding in a vector space of dimension
p, in time polynomial in p. We also enumerate strate-
gies which ε-distinguish two Markov Decision Processes
in time polynomial in the dimension of their statistical
representation.

I. Introduction

An enumeration problem consists in generating all
structures that satisfy a given property. It can be defined for
any NP problem: instead of deciding if there is one correct
solution among an exponential number of candidates, one
should list all the solutions. In fact, enumeration is better
understood as a dynamic process which produces the solu-
tions one at a time. One wants to bound the time between
two solutions, called the delay. Enumeration problems can
also be defined for large objects given as a black box.
On such objects, the number of solutions to enumerate is
potentially infinite. In this case, we either arbitrarily restrict
the solutions or sample them uniformly at random.

We study two enumeration problems, which have direct

applications to verification. First, the enumeration of the
monomials of a large multivariate polynomial given as
a black box, i.e., the polynomial can be evaluated on
specific values for the variables, in one call. One of the
monomials of a polynomial can be produced with a number
of calls to the black box polynomial in the number of
variables and the degree [1]. Moreover, if the polynomial
is multilinear, the polynomial can be interpolated with a
polynomial number of calls to the black box between each
produced monomial [2]. Second, the enumeration of points
which separate two polytopes whose difference has a large
enough volume. The algorithm to solve this problem, the
so-called Polytope Separator, is based on a random walk
as the one used to compute the volume of a polytope [3]
and is polynomial in the dimension of the space.

A fundamental problem in Model-Checking is to com-
pare schemas, such as regular expressions, Büchi Automata
on words, DTDs on trees. One may ask to enumerate all
the words which distinguish two regular expressions or
two Büchi Automata and similarly trees which distinguish
two DTDs: they represent the counter-examples. More
generally, given two formulas ψ1 and ψ2 in some Logic
L, we want to enumerate all the structures U such that
ψ1 and ψ2 disagree on U . As the separation may be
computationally hard, we study if we can realize it with
high probability. If it is still hard, we relax the exact
enumeration to an approximate enumeration. We fix a
distance on the structures U and for 0 ≤ ε ≤ 1, define
U |=ε ψ if there exists a structure U ′, ε-close to U such
that U ′ |= ψ. The approximate ε-version is to enumerate U
such that U |= ψ1 and U 6|=ε ψ2 or symmetrically U |= ψ2

and U 6|=ε ψ1.
In Probabilistic Model-Checking, a similar question can

be asked. Given two probabilistic automata A1 and A2,
enumerate the words w such that Pr[w ∈ A1] 6= Pr[w ∈
A2]. There is a deterministic polynomial algorithm to dis-



tinguish two probabilistic automata [4] and a recent more
efficient probabilistic algorithm [5] based on polynomials
associated to the automata. We apply our enumeration
methods to these very structured multilinear polynomials
and obtain probabilistic algorithms to generate one or all
the words which distinguish the two automata.

It is computationally hard to separate nondeterministic
automata or Markov Decision Processes (MDPs), even
with probabilistic methods, unless PSPACE = BPP. We
thus only solve approximate versions of these problems.
In both cases, we represent the objects to compare by
polytopes and apply our Polytope Separator algorithm to
generate counter-examples. On nondeterministic automata,
we use the word embedding introduced in [6]. We want to
ε-distinguish (for the distance introduced in [7]) two MDPs
with traces on the same alphabet Σ. We represent them by
the k-gram (for k = 1/ε) of the stationary distributions of
their traces, i.e. vectors of dimension |Σ|k. We show how to
find strategies which ε-distinguish the MDPs in polynomial
time in the size of the MDPs and the dimension, whereas
previous methods were exponential in the dimension.

Our main results on enumeration problems are:
• An improvement of the method which generates one
monomial of a multilinear polynomial for some very
structured polynomials (Theorem 3).
• A probabilistic algorithm to generate points in the
difference of two polytopes in polynomial time in the
dimension(Theorem 6).

Our main results on approximate verification are:
• A probabilistic method for enumerating words that
distinguish two probabilistic automata (Theorem 4).
• A probabilistic method to enumerate words which ε-
distinguish two nondeterministic automata (Theorem 7).
• A probabilistic method to enumerate strategies which
ε-distinguish two MDPs (Theorem 8).

In section II, we review the enumeration of monomials
of a polynomial given as a black box, and the statistical
embeddings which we will use for the approximate enu-
meration. In section III, we show how to enumerate one
or several words which distinguish two probabilistic au-
tomata. In section IV, we construct the Polytope Separator
algorithm. In section V, we apply this separator to enumer-
ate words which ε-distinguish two regular expressions and
to enumerate strategies which ε-distinguish two MDPs.

II. Preliminaries

We first review the enumeration of monomials of poly-
nomials, one of the basic technique of this paper. We then
recall how certain polytopes can be associated with regular
expressions in the context of approximate verification [6],
and with MDPs in the context of (state, action) frequencies
[7]. These representations will be used in section V.

A. Polynomials and Enumeration

A polynomial can be defined by a directed acyclic
graph, whose nodes of indegree two are labeled by + or
× and whose nodes of indegree 1 are labeled by variables
or constants. Such objects are called arithmetic circuits
and one fundamental problem is to test in deterministic
polynomial time if two circuits compute the same poly-
nomial. This problem is called POLYNOMIAL IDENTITY
TESTING (PIT) and is equivalent to testing if a polynomial
is identically zero. PIT has been proved tractable only
for restricted classes of circuits [8]. However, if we allow
randomness to be used, PIT is tractable even in the more
general model of polynomials given by a black box as
shown in the next lemma.

Lemma 1. [Schwarz-Zippel [9], [10]] Let P be a non
zero polynomial with n variables of total degree D, if
x1, . . . , xn are randomly chosen integers in a set S of size
D
ε then the probability that P (x1, . . . , xn) = 0 is bounded

by ε.

Thanks to this lemma, we can test whether two polyno-
mials given by a black box are equal. Moreover, we can get
more information from a polynomial: one of its monomial
can be computed in time polynomial in the number of
its variables and its degree [1], [2]. Using the algorithm
computing one monomial, we can produce all monomials,
a process called interpolation.

When the polynomial is multilinear, there is a faster
interpolation method. We use an appropriate variables
substitution, a univariate interpolation and Lemma 1 to
decide if there is a monomial which contains all variables
in a set L1 and no variables in a set L2. Then we vary the
value of L1 and L2 to discover all monomials with a good
delay as stated in the next theorem.

Theorem 1. [Theorem 2 of [2]] Let P be a multilinear
polynomial with n variables, there is a randomized al-
gorithm with a delay polynomial in n which lists all the
monomials of P .

B. Statistical embeddings on words

For a word w, let ustatk(w) be the density vector of
all the n−k+1 subwords of length k of the word w, also
called the k-gram of w or the shingles’s density vector in
[11]. As an example, for binary words and k = 2 there
are 4 possible subwords of length 2, which we take in
lexicographic order. For the binary word w = 000111,
ustat(w) = (2/5, 1/5, 0, 2/5) as there are 2 subwords 00,
1 subword 01, no 10 subword and 2 subword 11 among the
possible 5 subwords. We extend the definition of ustat to
loops of length n > k by considering all the n subwords of
length k. This representation is useful to design Property



Testers [6] which approximately decide if two words are
close or far, or if a word is close or far to a regular
expression.

The edit distance between two words is the minimal
number of insertions, deletions and substitutions of a letter
required to transform one word into the other. The edit
distance with moves (EDM ) allows one additional oper-
ation: Moving one arbitrary substring to another position
in a single step. Two words are ε-close if dist(w,w′) =
EDM(w,w′)

max{|w|,|w′|} ≤ ε. They are ε-far if they are not ε-close.
The distance of a word w to a regular expression r is
minw′∈r{dist(w,w′)}.

Note that for the 2n binary words of length n, there are
only a polynomial number of possible ustatk vectors. An
ε-Tester to decide if w ∈ r or if w is ε-far from r uses
this property as it constructs Hr = {ustatk(w) : w ∈ r}
for k = 1/ε, which is a union of polytopes. Consider the
nondeterministic automaton A associated with the regular
expression r, and Ak the automaton where a transition is
made of k transitions in A. Each polytope is the convex
hull of ustatk(l) vectors of compatible loops l of Am for
m ≥ k, i.e. loops which occur on the same accepting run.

As an example, let r = (0110)∗(11)∗, A an automa-
ton for r, and k = 2. (0110)l and (11)l are the Ak-
loops of r, for any l. These loops are Ak-compatible.
Let ustat((0110)l) = ( l−1

4l−1 ,
l

4l−1 ,
l

4l−1 ,
l

4l−1 ) which con-
verges to s1 = (1/4, 1/4, 1/4, 1/4) when l → ∞ and
s2 = ustat((11)l) = (0, 0, 0, 1). Then by definition,
Hr = Convex− Hull(s1, s2), which is a segment. Notice
that although the dimension of the si is large (2k), each
vector is sparse and has at most |A| non zero entries.

The distance of a word w to r is approximately the
L1-distance between ustatk(w) and Hr (see [6]). To
compare two regular expressions r1 and r2, we construct
the polytopes Hr1 and Hr2 . We provide in this article a
way to compare these polytopes in time polynomial in the
dimension, while previous techniques were exponential in
the dimension. This approach also generalizes to infinite
words, to context-free properties and also to unranked
ordered trees.

C. Statistical analysis of MDPs

Let Σ be a finite alphabet (set of actions) and S the set
of states. If S is finite, ∆(S) denotes the set of distributions
over S.

Definition 1. A Markov Decision Process (MDP) is a tuple
S = (S,Σ, P,∆0(S)). S is a finite set of states, Σ is a set
of actions, and P : S × Σ × S → [0; 1] is the transition
relation. The probability to go from a state s to a state a,
when an action a ∈ Σ is chosen, is denoted by P (s, a, t)
or P (t|s, a). The initial distribution is denoted by ∆0(S).

If there is no action a from s, P (t|s, a) = 0 for all t ∈
S. A run, on S is a finite or infinite alternating sequence of
states and actions, which begins with a state and ends with
a state. We write Ω∗ for the set of finite runs, Ω for the
set of infinite runs on S. If n ∈ N and r ∈ Ω, we write r|n
for the sequence of the first n−1 state action couples in r
and the n-th state in r. The trace Tr(r) of a run r is the
sequence of actions. If n ∈ N, Xn and Yn are the random
variables which associate to a run r its n-th state and its
n-th action. A policy on S is a function σ : Ω∗ → ∆(Σ).
A policy resolves the non determinism of the system by
choosing a distribution on the set of available actions from
the last state of the given run. We write HR for the set of
History dependent and Randomized policies. A policy is
deterministic when for all runs r = (s1, a1, . . . , ai−1, si)
on S, σ(r) ∈ Σ. The simplest policies are positional, i.e.,
only depend on the states, and σ(r) = σ(si).

Let σ be a policy on S, k ∈ N and T ≥ 0. Let ŷTk
be the random variable which associates to all r ∈ Ω the
k-gram of its prefix of length T , i.e. ŷTk = ustatk(r|T ) ∈
[0; 1](S×Σ)k . Given an initial distribution α, the Expected
state action frequency vector yTσ,α,k is Eσ,α[ŷTk ], i.e. the
expectation of ŷTk . It may converge as T → +∞, to
the limit point yσ,α,k. The analysis of MDPs with this
state action frequency vector was initiated in [12] and
[13] for k = 1 and generalized in [7] for an arbitrary k,
by introducing the new MDP Sk = (S′,Σ, P ′, α) which
iterates k transitions in S, i.e. S′ = (

∏k−1
i=1 S × Σ) × S

and with probabilities adjusted to k transitions. Consider
the set of possible yσ,α,k over all the strategies in HR,

Hk(α) =
⋃

σ∈HR
yσ,α,k

This set Hk is a polytope independent of the initial
distribution α which has an efficient H-representation:
for each s′ ∈ S′:∑

s∈S′

∑
a∈Σ

P ′(s′|s, a) · y(s, a) =
∑
a′∈Σ

y(s′, a′) (1)

Each hyperplane corresponds to the conservation of den-
sities in state s′, and we have |S′| such equations.

We are interested in the set of possible traces of an
MDP, as we want to compare two MDPs with entirely
different states but with the same action set. Hence,
we consider the similar vector on the traces x̂Tσ,α,k =

ustatk(Tr(r|T )) ∈ [0; 1](Σ)k and its limit xσ,α,k when
T → +∞. Notice that:

xσ,α,k[v] =
∑

u∈(S×Σ)k s.t. Tr(u)=v

yσ,α,k[u] (2)

i.e., the projection vector on the actions. We are mainly
interested in the projection of the polytope Hk, also



independent of α, that we denote by π(Hk) and which
is defined as follows: π(Hk) = {xσ,α,k}

The ε-distance between two weakly communicating
MDPs S1,S2, introduced in [7], is the the Haussdorf
distance between π(H1,k) and π(H2,k) for k = 1/ε. A
vector x ε-distinguishes two MDPs if it is inside one
polytope and ε-far from the other one. It corresponds to
strategies which separate the most the traces of the MDPs
for the edit distance with moves between traces. Precisely,
let distk(x,S) = Infz∈π(Hk)||x− z||1. Then

distk(S1,S2) = max
x1∈π(H1,k)
x2∈π(H2,k)

{distk(x1,S2), distk(x2,S1)}

We can easily compute distk(x,S) with a linear pro-
gram while distk(S1,S2) is hard (in the dimension), even
to approximate, as we could otherwise approximate the
diameter which is hard [14]. Other metrics to compare
probabilistic systems are related to bisimulation [15], [16],
[17], the L1 or L2 distances between distributions, the
relative entropy of two distributions (Kullback–Leibler
divergence), and the D̄ distance [18].

III. Enumeration of monomials and separa-
tion of probabilistic automata

Here, we compare two automata denoted by A and B.

Definition 2. A probabilistic automaton is a tuple A =
(S,Σ,M, α, η) where S is a set of n states, Σ a finite
alphabet, M is a collection of transition matrices M for
each letter σ ∈ Σ: M : Σ→ Rn×n where each M(σ) is a
probabilistic transition matrix, α is an initial probabilistic
distribution of states, η is the final vector in Rn.

Let w = w1w2 . . . wk be a word, we let A(w) =
α(
∏
i=1...kM(wi))η denote the probability that w is ac-

cepted by A. The number of states of A and B is bounded
by n and their number of transitions is bounded by m.

A. Polynomial of an automaton

In this subsection, we present a polynomial introduced
in [5] and a way to evaluate it efficiently. The polynomial
is associated with an automaton A and is denoted by PA.
The set of its |Σ|n variables is {Xσ,i}σ∈Σ,i≤n. It encodes
the words of size less or equal to n and their probability
to be accepted by A:

PA(x) =

n∑
k=0

∑
w∈Σk

A(w)Xw1,1Xw2,2 . . . Xwk,k.

The polynomial PA has an exponential number of mono-
mials exponential and thus seems hard to evaluate. We give

an alternate form of PA, which enables us to evaluate it
in polynomial time. First, remark that:∑
w∈Σi

A(w)Xw,1Xw2,2 . . . Xwi,i = α

i∏
j=1

∑
σ∈Σ

Xσ,jM(σ)η.

Indeed, expanding the product of the right expression leads

to α

∑
w∈Σi

i∏
j=1

Xwj ,jM(wj)

 η. By definition A(w) =

α(
∏
i=1...kM(wi))η, thus factoring the product of matri-

ces in front of each monomial lead to the stated equality.
Therefore, PA is equal to the following expression:

α

 n∑
k=0

k∏
j=1

∑
σ∈Σ

Xσ,jM(σ)

 η

Since this expression involves only polynomial size sums
and products it is possible to evaluate PA efficiently.

B. Equivalence checking

Given two probabilistic automata A and B, we wish to
decide if A ≡ B, i.e. if all words are accepted with the
same probability. There is a deterministic polynomial time
algorithm [4] to decide this property with a complexity in
O(n3|Σ|). It is also possible to use the polynomial repre-
sentation of A and B, to design a probabilistic algorithm
to test if A and B have the same language as it has been
proved in [5].

To decide whether PA is equal to PB is equivalent to
decide A ≡ B. By Schwarz-Zippel Lemma 1, to decide
if PA = PB , one should compare the evaluation of PA
and PB on random integer points. The complexity of this
testing procedure is equal to the one of the evaluation
of PA and PB , which can be done very efficiently by
a succession of products of a vector by the matrices
representing the transitions of A and B.

Theorem 2 (In [5]). Let A and B be two automata with
at most n states and m transitions. We can decide with
probability 1 − ε whether A ≡ B in O(nm log(ε−1))
arithmetic operations.

If the inputs A and B are sparse, that is m = o(|Σ|n2),
which is very common in equivalence testing, the complex-
ity is better than the one of the best deterministic method.
In fact, this probabilistic algorithm has been benchmarked
on typical instances and performs better than the known
deterministic methods [5].

C. Producing one counter-example

Here, we give a probabilistic algorithm which produces
one word such that its probability to be accepted by A and



B is different. We call this word a counter-example and
we say it separates A from B. Our algorithm is efficient:
it has the same complexity as the equivalence testing and
is faster than the algorithm of the next subsection which
produces all counter-examples. This algorithm is related
to one given in Section 2.4 of [5], but also to a procedure
given in [2] which produces a monomial of any multilinear
polynomial. Our aim is to find one monomial of PA−PB ,
since it represents a word which separates A from B.

There are two steps in the procedure. The first one is
a run of the probabilistic equivalence testing algorithm on
the automata A and B described in Section III-B. Let de-
note by M( ~Xi) the matrix

∑
σ∈ΣXσ,iM(σ) whose coef-

ficients are linear forms over |Σ| variables. We have PA =

α1

(∏s
i=1M1( ~Xi)

)
η1 and PB = α2

(∏s
i=1M2( ~Xi)

)
η2.

From this run, we compute:
• the size s of the smallest word which separates A

from B
• the set {vσ,i}σ∈Σ,i≤s such that PA(~v) 6= PB(~v)

• the vectors ul =
(∏l

i=1M1(~vi)
)
η1

• the vectors wl =
(∏l

i=1M2(~vi)
)
η2

The second step is deterministic: we try to set as many
variables of PA − PB to zero, so that the remaining
polynomial will be only one monomial. The algorithm
begins with PA(~v)−PB(~v) 6= 0 and replaces most vσ,i by
0 without changing this property.

By definition of PA and PB and linearity, we can
decompose them in the following sums:{

PA(~v) =
∑
σ∈Σ α1vσ,1M1(σ)us−1

PB(~v) =
∑
σ∈Σ α2vσ,1M2(σ)ws−1

Since PA(~v)− PB(~v) 6= 0 there is a σ ∈ Σ such that

α1vσ,1M1(σ)us−1 6= α2vσ,1M2(σ)ws−1.

We now set vσ′,1 = 0 for all σ′ 6= σ. We have PA(~v) =
α1vσ,1M1(σ)us−1 and Q(~v) = α2vσ,1M2(σ)ws−1 thus
PA(~v) − PB(~v) 6= 0. Remark that if we set Xσ′,1 = 0
for all σ′ 6= σ in the symbolic polynomial PA − PB ,
all its monomials contain the variable Xσ,1. We apply
this transformation for i = s to 1: we select one σ
and set to zero all vσ′,i with σ 6= σ′, while keeping
PA(~v)−PB(~v) 6= 0. It is easy to see that if we set all the
corresponding variables to zero in the polynomial PA−PB ,
a single monomial remains and the associated word of size
s separates A from B.

The results of this section are summarized as follows.

Theorem 3. Let A and B be two probabilistic automata
over the same alphabet with at most n states and m
transitions. There is an algorithm which decides if A
and B define the same language and if not, outputs a
minimal counter-example with probability 1 − ε in time
O(nm log(ε−1)) and in space O(n2).

Algorithm 1: Separation of two automata
Input: A, B: automata; s: integer; vσ,i ∈ Q:

evaluation points; ui, wi: vectors
Output: A monomial of PA − PB
begin

a = α1; b = α2; r = 1;
for i = s− 1 to 0 do

for σ ∈ Σ do
if avσ,iM1(σ)ui 6= bvσ,iM2(σ)wi then

a←− avσ,iM1(σ);
b←− bvσ,iM2(σ);
r ←− rXσ,i

vσ,i
;

Break ;

return (aη1 − bη2)r
end

Proof: During one inner loop of Alg. 1 we do several
products between a matrix and a vector in O(m) arithmetic
operations. There are s iterations of the inner loop with
s ≤ n. Thus the complexity of finding a separating
word is dominated by the complexity of the first step: the
equivalence testing. Since we have to keep in memory the
vectors ul and wl to speed up the computation, the space
used is O(n2).

D. Producing all counter-examples

In some practical context it is interesting to produce
many counter-examples which will be used as a test bed
to separate a program from its specification.

We leverage the polynomial representation to design
an algorithm which enumerates all counter-examples: the
monomials of PA − PB are the words which separates A
from B and their coefficient is the difference of accepting
probability for A and B. Since PA−PB is multilinear, all
its monomials can be enumerated with a delay polynomial
thanks to Theorem 1. It is easy to change the definition
of PA and PB so that they represent the words of size
l accepted by A and B for any given integer l. As a
consequence, we can state the following proposition.

Theorem 4. Let A and B be two probabilistic automata
with at most nm transitions. There is a probabilistic algo-
rithm which enumerates with probability 1 − ε all words
of size less than l which separate A and B. Moreover, the
delay between the production of two counter-examples is in
O(ml3ε−1) and the time to produce all counter-examples
is linear.

Producing all the words which separate two automata,
can be seen as a way to compute the distance between
them. We show below that computing such a distance or an



approximation is usually hard. The enumeration may be the
best way to approach this problem. Indeed the delay of the
algorithm is polynomially bounded, thus any increase in
computing time enables to produce more counter-examples
which allow to compute a better approximation of the
distance.

E. Distance between two automata

We want to compute the distance between two prob-
abilistic automata A and B to obtain a more qualitative
information than their equivalence. The maximal distance
is defined as the maximum of |A(w) − B(w)| over all
words w. The problem to decide whether a probabilistic
automata computes a word with a probability greater
than some given positive rational is called the Emptiness
problem. The emptiness problem is undecidable [19], and
can be reduced to the computation of the maximal distance.

To overcome the undecidability, we have to change the
distance: we consider the bounded maximal distance that
is the maximum of |A(w) − B(w)| over all words w of
size n. The n-Emptiness problem is the Emptiness problem
restricted to words of size n, where n is part of the instance
and given in unary. Remark that the n-Emptiness problem
can be reduced to the computation of the bounded maximal
distance. Some relaxed version of the n-Emptiness problem
is proved to be NP-hard in [7]. Hence the computation of
the bounded maximal distance is hard to compute, in fact
approximating this distance is still hard. It is one of the
reason why we choose to relax the problem, for instance
with the edit distance with moves.

The hardness result can be used to show that enumera-
tion in some order may be hard, a result of self interest.

Proposition 1. Let P be a multilinear polynomial given
by a black box. There is no polynomial delay algorithm to
produce the monomials in decreasing order of coefficient
unless P = NP.

IV. Separation of two polytopes

This section considers polytopes and their geometric
difference. A polytope can be represented by a set of
points, of which it is the convex hull, it is then called
a V-polytope. It can also be represented by a set of linear
inequalities, it is then called a H-polytope. In general, the
number of vertices can be exponential in the number of
inequalities and vice-versa. One way to abstract away the
representation is to represent a polytope by a so-called
strong membership oracle: the oracle is given a point and
answers whether it belongs to the polytope.

From a H-polytope or a V-polytope, we can simulate
a strong membership oracle. For a V-polytope, defined by

a set of point S, we check if the point given to the oracle
is in the convex hull of S, that is the point is a convex
combination of points in S. This problem can be reduced to
solving a system of linear inequalities in a time polynomial
in S. For a H-polytope, defined by a system of linear
inequalities, we only have to test if the input point satisfies
the inequalities in time linear in the size of the system.

From an algorithmic point of view, the representation
is crucial. In particular, the problem to separate two
polytopes is easy for H-polytope. Let K1 and K2 be
two H-polytopes represented respectively by the sets of
inequalities S and {e1, . . . em}. Let ēi denotes the negation
of ei. The set of inequalities S ∪ {ēi} defines a polytope,
from which a point can be find in polynomial time. Since
K1 \ K2 is equal to the union of the points satisfying
S ∪ {ēi} for all i, we have a polynomial time algorithm
to decide whether K1 \K2 = ∅ and to produce one of its
elements.

However, we need another method when the represen-
tation is different. This is the reason why we design a
complex algorithm to find a point in the difference of two
polytopes through a random walk. Moreover, the random
walk method enables us to sample almost uniformly the
difference of two polytopes. This should be seen as the
best approximation to the enumeration of all points, an
unfeasible task since the difference of two polytopes has
an infinite number of points.

A. Hardness and relation between dis-
tances

Let K ∈ Rn be a polytope, we denote by V(K) the
volume of the polytope. Let d(x, y) be the L1 distance on
Rn. The distance of a point x to a compact K is d(x,K) =
miny∈K d(x, y), and this minimum is realized by some
point of K. We denote by diam(K) the diameter of K,
that is the largest distance between two points of K. Let
K1 and K2 be two convex polytopes in Rn, we consider
the two following distances between these objects:

1) The Hausdorff pseudo-distance:

dH(K1,K2) = max
x∈K1

d(x,K2)

We symmetrize and normalize this distance:

dh(K1,K2) = max

{
dH(K1,K2)

diam(K1)
,
dH(K2,K1)

diam(K2)

}
2) The volume of the difference as a pseudo-distance:

dVOL(K1,K2) = V(K1 \K2)

We symmetrize and normalize this distance:

dvol(K1,K2) = max

{
dVOL(K1,K2)

V(K1)
,
dVOL(K2,K1)

V(K2)

}



Remark that dvol is not defined when K1 and K2 are of
volume 0 which happens if their dimensions are lower than
the dimension of the space in which they are embedded.
It is always possible to assume that at least one of the
polytope is of positive volume (if it is not a singleton): we
compute an affine subspace generated by the points of the
polytope and restrict the whole space to this subspace.

It is worth noting that these two distances are related,
as the following lemma states (see the proof in appendix).

Lemma 2. For all polytopes K1 and K2 such that K1 ∩
K2 6= ∅ we have:

dh(K1,K2)n < dvol(K1,K2)

K1

K2

Fig. 1. The polytope K1 in hard lines and the
polytope K2 in hard lines and dotted lines

The inequality of lemma 2 is tight, see for instance
Fig. 1 in dimension two, a situation easily generalizable
to any dimension. Moreover, it is not possible to bound
dvol(K1,K2) by some continuous increasing function of
dh(K1,K2). Indeed in Fig. 2, dvol(K1,K2) = 1

2 while
dh(K1,K2) = 1

2l2 where l can be made arbitrarily large.

l

1
l

1
2l

Fig. 2. The polytope K1 in hard lines and the
polytope K2 in dotted lines

In fact, the Hausdorff distance is hard to compute, while
it is possible to approximate the volume distance (if it is
not too small). The proof that the Hausdorff distance is
hard to approximate relies on the hardness to approximate
the diameter of a polytope, as stated in theorem 5.

Theorem 5 (Theorem 1.2 of [14]). The diameter of a
H-polytope is NP-hard to approximate within a factor
polynomial in the dimension.

In prop. 2(see the proof in appendix), we show that
the Hausdorff distance and its normalized version are hard
to compute. This strengthen our choice of the volume

distance to design an algorithm to separate two sufficiently
different polytopes.

Proposition 2. The approximation of the functions dH or
dh within a factor polynomial in the dimension over H-
polytopes is NP-hard.

B. Sampling the difference

Our goal is to design an algorithm that provides a
witness to the fact that two polytopes K1 and K2 are
different. To do so, our algorithm is sampling points
in each polytope. If dvol(K1,K2) is large enough, the
algorithm samples points in the difference between K1

and K2 with high probability. Sampling uniformly points
of a convex body is a well-studied algorithmic problem.
Our algorithm is based on known results [20], [3], [21].

To sample points, we use the Ball Walk. The idea of
this walk is to pick a uniform random point y from the
ball of a given radius centered at the current point x. If y
is in the polytope, we proceed from y, otherwise from x.

In order to speed up the convergence of random walks
into polytopes, it is convenient to pre-process the polytopes
by putting them into quasi-isotropic position [21]. Once
this is done, sampling becomes easier. Finding the exact
isotropic position is hard, so we consider algorithms for
putting a convex body into nearly isotropic position (see
for instance [20], [3]).

Definition 3. Let K be a polytope with center of gravity
b(K). Let 0 < γ < 1. K is in γ-nearly isotropic position
if ||b(K)|| ≤ γ, and if ∀v ∈ Rn, we have:

(1−γ)||v||2 ≤ 1

vol(K)

∫
K−b(K)

(v>x)2dx ≤ (1+γ)||v||2.

In Th. 6 of [21], it is stated that for 0 < γ < 1, there is
a randomized algorithm that finds an affine transformation
A such that AK is γ-nearly isotropic, with probability at
least 2/3. The number of oracle calls of the algorithm is
O(n5| ln γ| lnn).

Algorithm 2: QISO(K, γ)

Input: K : convex body ; γ ∈]0, 1[
Output: γ-nearly isotropic version of K, with prob.

at least 2/3

Here, we only sketch the idea of the algorithm to put K
in nearly isotropic position (we call it QISO, see Alg. 2).
First, pairwise “nearly” independent points are “nearly”
uniformly drawn from K. Then, by applying an affine
transformation A, we bring K into nearly isotropic posi-
tion. A depends mainly on the barycenter of the sampled
points. The idea is to center the polytope around the origin
by translating the center of gravity, but also to “round” it. If



the sampling is close to the uniform distribution, then with
high probability we obtain the nearly isotropic position.
However, sampling pairwise “nearly” independent points
is by itself a difficult task, for which a bootstrapping step
is required (thus the overall complexity).

Algorithm 3: P-B(x, δ)

Input: x : point ; δ : radius
Output: y ∈ B(x, δ), distributed uniformly at

random

Once the nearly isotropic position has been computed,
we can use the Ball Walk in order to efficiently sample
points uniformly at random from our polytope. To do so,
we use Alg. 3 which samples a point in a ball of a given
radius. Then, Alg. 4 picks at random, a point of a set given
by a strong membership oracle (SMO). The parameter k in
Alg. 4 is set at the mixing time of a Ball Walk, thus Alg. 4
outputs a point almost uniformly distributed in S. The
parameter δ is the step size of the Ball Walk. (K1,K2, γ, ε)
and (K2,K1, γ, ε)) we find with high probability a witness
that K1 6= K2 if dvol(K1,K2) ≥ ε. We denote the use of
Alg. 5 on (K1,K2, γ, ε) and (K2,K1, γ, ε), the Polytope
Separator.

Algorithm 4: B-W(S, x, k, δ)

Input: S : set (as a strong membership oracle) ; x :
point ; k : int

Output: a point of S
begin

if k = 0 then
return x

y =P-B(x, δ);
if y ∈ S then

B-W(S, y, k − 1, δ)

B-W(S, x, k − 1, δ)
end

Theorem 6. Let K1 and K2 be two polytopes, given as
SMOs. For all ε > 0, if dvol(K1,K2) ≥ ε, then the Poly-
tope Separator outputs a point x such that x ∈ K1∧x 6∈ K2

or x ∈ K2 ∧ x 6∈ K1 with probability greater than 2/3.
Moreover, the running time of this algorithm is polynomial
in n and ε−1.

Proof: Without loss of generality, we consider only
the case (K1,K2, γ, ε) and not the symmetric case
(K2,K1, γ, ε). First, we prove the correctness. Since the
parameter k = n3 · (2 + ln(2n)) · ln(2/ε) is the mixing
time for a Ball Walk, the algorithm outputs a point ε

2 -
nearly uniform in K1. Since dvol(K1,K2) ≥ ε, there is a
fraction ε of K2 which is not in K1. Thus the probability
of not finding a point x ∈ K1 such that x 6∈ K2 after

Algorithm 5: E-C(J,K, γ, ε)

Input: J , K : polytopes ; γ, ε ∈]0, 1[
Output: x such that x ∈ J and x 6∈ K
begin

k = n3 · (2 + ln(2n)) · ln(2/ε);
Jiso =QISO(J, γ);
for m = 1 to 2

ε ln(3) do
y=B-W(Jiso,P-B(0, 1), k, 1/

√
n);

Compute x ∈ J corresponding to y ∈ Jiso;
if x ∈ J and x 6∈ K then

return x
return FAIL

end

sampling m points is (1 − ε
2 )m (remind that the Ball

Walk is ε
2 -nearly uniform). By taking p = 2

ε ln(3) the
probability is upper bounded by 1/3. So the algorithm is
correct. The complexity can be decomposed as follows.
To put a polytope in quasi-isotropic position, we need
O(n5| ln γ| lnn) oracle calls (see [21]). The mixing time
of the Ball Walk is essentially O(n3) when δ = 1/

√
n

(see [3], [22]). The Ball Walk is repeated 4
ε ln(3) at most.

Thus the complexity in terms of oracles calls is polynomial
in n and ε−1. The cost of an oracle call depends on the
representation of the polytope, but is always polynomial.
The running time is then polynomial in n and ε−1.

V. Approximate Verification

We consider two applications of the Polytope Separator
algorithm to verification.

A. Approximate separation of regular lan-
guages

Given two regular languages r1, r2, we want to enumer-
ate the words which are in r1 but not in r2, or in r2 but not
in r1. Since the equivalence of two regular languages is
PSPACE-complete, the enumeration of one word is hard.
We relax the problem: we wish to enumerate words in r1

but ε-far from r2, or in r2 but ε-far from r1 using the
relative edit distance with moves between words.

The Equivalence testers, introduced in [6], build the
polytopes associated with each regular expression and then
test the equivalence by checking for all the points on the
grid of step ε if they are in one of the polytopes. This
procedure is exponential in the dimension. We show how
to use the Polytope Separator of section IV to generate
ustat vectors which separate r1 from r2.

Let A be an automaton with n states and M its
transition matrix, i.e., M(i, j) = a if there is an a-
transition between state i and state j. For simplicity let us



assume that A is strongly connected. If it is not, we have
to construct the graph of strongly connected component
and to associate a polytope to each components. Let
k = 1/ε, we consider Ak the automaton with k transitions
in A. The transition matrix Mk of Ak is defined by
Mk(i, j) = {u1, . . . , up} where each ul is a word of length
k such that j can be reached from i following ul in A. We
do not iterate Mk+1, . . . ,Mn since their coefficients are
sets which may grow exponentially large.

Instead, we replace the words by their
ustatk. Let U1 = ustatk[Mk], i.e., U1(i, j) =
{ustatk(u1), . . . , ustatk(up)}. In addition to the ustat
vector of a word, we need to remember its prefix wi and
suffix vi of length k− 1. Let p denotes the function prefix
(resp. suffix s) which remove the last (resp. first) letter of
a word, i.e., wi = p(ui) and vi = s(ui). Let us define the
extended U as:

U1
e (i, j) = {(ustatk(u1), w1, v1), . . . (ustatk(up), wp, vp)}

For m = 1, . . . , n − k + 1, let Um+1
e be the matrix such

that for each pair of states (i, j), Um+1
e (i, j) contains the

ustatk vectors of words of length k+m+ 1 linking state
i to state j. We build Um+1

e from Ume : in each coefficient,
we remove the first letter of the suffix v and add the new
letter a, that is the new suffix is v′ = s(v).a. We also
modify the ustat to take into account the addition of a
letter. Formally Um+1

e is defined as follows:
Um+1
e (i, j) = {(m·ustatkm+1 + ustatk(v.a)

m+1 , w, v′) |
∃l (ustatk, w, v) ∈ Ume (i, l), A(l, j) = a}.

When i = j, we reached a loop. We define Hm+1 as
the ustatk of the loops: we adjust the ustatk in Ume with
the ustatk of the k extra words. It is possible, as we kept
the prefix w and the suffix v of length k − 1.
Hm+1 = {ustatk. m

k+m+1 + ustatk(v.a). 1
k+m+1 +

ustatk(a.w). 1
k+m+1 + · · ·+ ustatk(s(v).a.w[1]). 1

k+m+1
| ∃i, l (ustatk, w, v) ∈ Ume (i, l), A(l, i) = a}
We stop at Une , and build the polytope H which is the

convex hull of all the Hm for all m ≤ n. This polytope
contains all the ustat of the loops of length less than n.

Algorithm 6: Construction of the ustat polytope
Input: A: automata; k: integer
Output: The polytope H associated with A
begin

Compute Ak; U1
e ;H1;

for m = 1 to n− k + 1 do
Compute Um+1

e

Compute Hm

return H = Hull{∪mHm}
end

Lemma 3. We can construct a V-representation of H of
size poly(n, k) in time poly(n, k).

Proof: Basic loops are of length less than n, and thus
appear at some stage m in Ume . Each entry of the matrix
is a set of polynomial size, since the set of possible ustat
vectors is polynomially bounded. The time to build H is
polynomially bounded.

Theorem 7. Given two regular expressions r1, r2 on words
and ε, if dvol(Hr1 , Hr2) ≥ λ we can generate ε-separating
words in polynomial time in the dimension and 1/λ.

Proof: Construct Hr1 and Hr2 as explained in the pre-
vious lemma. From each polytope, we build a membership
oracle which takes a ustat vector x and answers YES if
the L1 distance of x to the polytope is greater than ε and
NO otherwise. We apply the Polytope Separator on these
two oracles. It outputs a separating ustat vector with high
probability if it exists.

Given a separating ustat vector x in Hr1 , which is not
in Hr2 , we can generate a large word w from x as follows:
pick a starting word u of length k according to the x
distribution, and let v be its suffix of length k − 1. Then
pick the next letter according to the conditional distribution
x(u|v), i.e., the distribution of words which have v as a
prefix. We repeat this process to obtain a word w of size
n, for a large enough n, such that ustatk(w) is ε-close to
x By the completeness of the edit distance with moves [6],
the word w is ε′-far from r2.

Notice that the process has two probabilistic compo-
nents: the random walk in the polytopes to find a separator
x and then the generator to find wn from x.

B. Approximate separation of MDPs

We want to apply the separator algorithm to ε-
distinguish two MDPs on the same action set. We construct
the polytopes π(Hk,1) and π(Hk,2) as defined in Section
II-C. We then define an oracle which takes x, π(Hk,1) and
ε and answers YES if dist(x, π(Hk,1)) ≤ ε.

Let us recall how to efficiently compute distk(x,S) =
Minz∈π(Hk)||x − z||1 with a linear program. Let y ∈
[0; 1](S×Σ)k and its projection and x ∈ [0; 1](Σ)k . Let us
write A.y = b for the equations (1) of section II-C and
the equality

∑
u y[u] = 1. Let x = C.y the equations (2)

of section II-C and let us assume that all variables are ≥ 0
and ≤ 1.

We want to compute Minz∈π(Hk)||x− z||1 such that:

z = C.y

A.y = b

We have to consider the sum of the absolute values of
x[u]−z[u], so let t[u] = |x[u]−z[u]| where t ∈ [0; 1](Σ)k is
a new vector. Then t[u] ≥ x[u]− z[u] and t[u] ≥ −x[u] +



z[u]. If e is the vector in [0; 1](Σ)k with all components
equal to 1, we can write:

Min
t∈R(Σ)k et · t

t ≥ x− C.y

t ≥ −x+ C.y

A.y = b

The Oracle necessary for the separator algorithm
takes x, π(Hk,1), ε as inputs and answers YES if
distk(x, π(Hk,1)) computed by the above linear program
is larger than ε and NO otherwise.

Theorem 8. Given two communicating MDPs on
the same action set Σ, π(Hk,1), π(Hk,2) and ε, if
dvol(π(Hk,1), π(Hk,2)) ≥ λ we can generate ε-separating
x vectors in polynomial time in the dimension and 1/λ.

Notice that the separator algorithm outputs a separating
x, the statistics of the stationary distribution of a strategy
in one of the MDP which is outside of the polytope of the
other MDP. The set of saturating constraints in the linear
system gives some information of the strategies whose
statistics is close to x.
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Appendix

For completness, we give the proofs of Section IV that
we have ommited.

Lemma. For all polytopes K1 and K2 such that K1 ∩
K2 6= ∅ we have:

dh(K1,K2)n < dvol(K1,K2)

Proof: Let x be a point of K1 such that d(x,K2)
is maximal. Let K be the intersection of K1 with the
ball of radius dH(K1,K2) = d(x,K2) centered in x.
By construction K ∩ K2 = ∅ and K ⊆ K1 \ K2. Since
K1 ∩K2 6= ∅, the ratio diam(K1)

dH(K1,K2) is greater or equal to
1. Moreover K1 is a convex polytope: we can cover it by
an homothetic transformation of K of center x and ratio
diam(K1)
dH(K1,K2) . Therefore, we have K1 ⊆ diam(K1)

dH(K1,K2)K and

V(K1) ≤
(
diam(K1)
dH(K1,K2)

)n
V(K). Moreover K ⊆ K1 \K2,

thus we obtain
(
dH(K1,K2)
diam(K1)

)n
≤ V(K1\K2)

V(K1) . The role of
K1 and K2 can be exchanged in the argument, thus we
have proved that dh(K1,K2)n ≤ dvol(K1,K2).

Proposition. The approximation of the functions dH or
dh within a factor polynomial in the dimension over H-
polytopes is NP-hard.

Proof: (dH) Let K be a polytope and x be any point
of K, which can be found in polynomial time from the lin-
ear inequalities defining K. dH(K,x) = maxy∈K d(y, x)
thus dH(K,x) ≤ diam(K). By triangular inequality, we
have that 2 × diam(K) ≤ dH(K,x). Thus, computing



dH(K,x) gives a 2-approximation of the diameter, which
is NP-hard to compute according to Theorem 5.

(dh) Let K1 be a H-polytope defined by a set of
inequalities. A linear inequality defines a halfspace and
thus K1 is the intersection of halfspaces. Modify each of
the inequalities of K1 so that the halfspaces they define are
translated by ε along their normal vectors. Let K2 be the
H-polytope defined by the new inequalities. Remark that
K1 ⊆ K2 and that each point of K2 is at distance at most
εn of a point in K1, where n is the dimension of the space.
Therefore, diam(K1) ≤ diam(K2) ≤ diam(K1) + ε2n.
It is possible to obtain an approximation of the diameter of
ratio exponential in n. From this approximation, we can set
ε to be small enough, so that diam(K1) ≤ diam(K2) ≤
2diam(K1).

Moreover we have ε ≤ dH(K2,K1) ≤ nε. From these
two inequalities we obtain: ε

2diam(K1) ≤ dh(K1,K2) ≤
nε

diam(K1) . And finally we have ε
2dh(K1,K2)−1 ≤

diam(K1) ≤ εndh(K1,K2)−1. If dh(K1,K2) could be
computed within a factor polynomial in n, we would obtain
an approximation of the diameter of K1, which is NP-hard
to compute according to Theorem 5.


