
Université Paris Diderot - Paris 7

UFR de Mathématiques

Thèse

pour obtenir le titre de

Docteur de l’université Paris Diderot - Paris 7

Spécialité mathématiques

présentée par

Yann STROZECKI

Enumeration complexity and matroid decomposition

Directeur de thèse : Arnaud DURAND

Soutenue publiquement le 8 décembre 2010, devant le jury composé de :

M. Bruno Courcelle Rapporteur
M. Arnaud Durand Directeur
M. Miki Hermann Co-Directeur
M. Daniel Král’ Rapporteur
M. Guillaume Malod
M. Michel De Rougemont Rapporteur
M. Gilles Villard

ii

Remerciements

Je veux d’abord remercier Arnaud Durand de m’avoir accompagné pendant ces trois
années et quelques de thèse. J’ai beaucoup apprécié sa gentillesse, sa disponibilité malgré
son emploi du temps chargé et son ouverture sur un grand nombre de domaines de l’in-
formatique théorique.

Je tiens à remercier Bruno Courcelle, Daniel Král’ et Michel de Rougemont qui ont
accepté d’être rapporteurs de ma thèse. Je suis extrêmement touché qu’ils soient tous
présents pour ma soutenance, particulièrement Daniel Král’, qui vient de Prague. Je re-
mercie également les autres membres du jury – Guillaume Malod, Miki Hermann et Gilles
Villard– d’avoir pris de leur temps pour lire mon manuscrit et assister à la soutenance.

Arnaud Durand, David Duris et Guillaume Malod ont suggéré un nombre incalculable
de corrections et d’améliorations à mon manuscrit et surtout à mon anglais ! Bruno Cour-
celle a fait de nombreux commentaires qui m’ont aidé à améliorer le fond et la forme de la
deuxième partie de cette thèse. Hervé Fournier et Sylvain Périfel m’ont permis de rendre
le chapitre trois présentable, et les discussions que j’ai eu avec eux et Guillaume pendant
deux ans m’ont beaucoup appris : maintenant je sais ce qu’est un circuit skew (mais je
suis un peu biaisé). Je les remercie tous pour m’avoir fait (un peu) progresser dans la dure
discipline qu’est l’écriture scientifique.

Merci à tous les professeurs de mathématiques pour qui l’enseignement est plus une
joie qu’une croix, je pense par exemple au sourire de M. Malric et au talent de beaucoup
d’autres.

Ce long travail n’aurait pas été possible sans tous les moments de détente et de bonheur
que j’ai pu avoir avec mes amis de Chevaleret ou d’ailleurs. Il est d’usage de remercier le
bureau 5C06 (et un peu le bureau 5B01, on n’est pas raciste) pour l’ambiance de *travail*
agréable. Sur le travail, je ne dirai rien, mais, pourtant, j’y suis allé tous les jours pendant
trois ans, c’est dire la qualité de ses habitants, merci donc à :

Avenilde, pour avoir été un petit bout de Mexique à Paris et une grande amie dans
mon cœur. David, pour quelques soirées surréalistes, des histoires dignes des feux de
l’amour (promis je ne révèle rien) et pour son soutien. Fares, parce que c’est mon Kousin
et qu’il vient de Berlin (il dit prégéométrie pour dire matröıde, ces gens là ne parlent pas
comme nous). Ana, à qui j’ai pu raconter tant d’histoires et vice-versa. Victor, pour avoir
essayé de m’apprendre à danser. Au duo chilio-didacticien Carolina/Quelita, sept-consoles
Rémi, Brice le modeste trappeur, Clément et Gonenc, Karim, Laura ses pantoufles et son
manchon, Marc le cohérent, François. . . Aux deux petits ”nouveaux”, one-eyed Pablo le
mousquetaire et Julia, je sais qu’après mon départ le bureau sera plus que vivant grâce à
eux. Aux visiteurs du midi, Jérôme a.k.a. Machete et Nini patte de lapin : je trouve que
la fac a eu une excellente iniative en embauchant des clowns pour détendre ses thésards.

Merci à Pierre pour m’avoir cité dans ses remerciements et à Alexis, qui va bientôt
m’inviter pour un post-doc au Chili. À Pablo W., pour ses idées saugrenues et ses petits

iii

iv

cafés. À Arnaud, de m’honorer de son amitié une fois par an (environ).
Merci à la Fabryk, pour m’avoir offert un espace de création, d’expression et surtout

m’avoir fait rencontrer tellement de gens géniaux que je vais forcément en oublier beau-
coup : Alexis, Fanny, Fatou, Sonia, Flora, Amel, Simon, Rémi, Sophie-anne, Charlotte,
Thibault, mon coiffeur. . . et Manu. Merci à Catherine la batate, à qui j’ai dû faire subir
les pires moments de ma thèse et qui m’a aidé à compenser en me gavant de quantités
incroyables de Kouign-aman et autre morue séchée.

Généralement le CIES a mauvaise presse, mais ses ateliers théâtres m’ont permis de
rencontrer Géraldine, JE, Benôıt. . . qu’il en soit remercié à jamais.

Merci à mes amis de toujours :
Yanis même s’il perd en gold league, Nico K., Laurène et Lily, leur sous-produit, de
m’avoir accueilli si souvent chez eux avec de bons ”sandwichs”. Thomas, qui a passé, sans
le vouloir, sa vie à me suivre (ou est-ce le contraire). J’en déduis que je serai à Lyon
l’année prochaine. Jade et Jules, on se boit quelques pintes ? Émily dont la gentillesse
arrive encore à me surprendre et Fabien H. pour avoir essayé de me briser les bras pendant
que je corrigeais ce manuscrit. Nico N. d’avoir tout partagé avec moi depuis treize ans,
même ses amis : Benôıt, Juju, Pouikipoo, Laure qui me fait sentir agréablement snob et
intello quand je vais voir des expos avec elle, Fabien M. qui restera anonyme. Marie, qui,
lorsqu’elle s’envole, veut bien parfois me prendre sous son aile. À Jérémie, qui est retenu
sous une avalanche de choucroute depuis trois ans, mais que j’aime quand même.

Pour ne pas être redondant, je choisis cet emplacement pour dire merci à Jo, mon alter
ego, mais il pourrait être dans chacun des autres paragraphes, travail, ami du bureau, ami
d’ailleurs, presque famille. Je n’oublierai pas sa générosité à faire partager la musique qu’il
aime (sa voisine non plus).

À Mia, sans sa maison je n’aurai jamais commencé à rédiger et sans elle je gagnerai
moins souvent au Trivial Pursuit. À Dany, pour ses jolis chapeaux. À Nath, qui m’a aidé
à développer mon alcoolisme en bonne compagnie, à Cyrille, qui m’a fait découvrir les
plus belles fontaines en forme de dauphin du monde.

Merci à Camille, qui est comme du bon vin, il s’améliore tout les jours et il réconforte
dans les moments difficiles. Merci à ma mère de se faire du souci parce que je ne m’en fais
pas assez et à mon père de se faire du souci parce que je m’en fais trop. Merci à tous les
deux de m’avoir appris, chacun à sa façon, à profiter de la vie et à être heureux.

En général merci, à la vie de valoir la peine d’être vécue et d’être remplie de tellement
de beaux livres, films, chansons, théorèmes et rencontres qu’on se dit qu’on n’en aura
jamais assez d’une.

Il y a dix-neuf occurrences de merci dans ce texte, en voilà une dernière pour tout
ceux que j’ai oublié : Merci !

That’s all.

Contents

1 Preliminaries 1

1.1 Graphs, hypergraphs and matroids 1

1.1.1 Graphs . 1

1.1.2 Hypergraphs . 2

1.1.3 Matroids . 3

1.1.4 Oriented matroids . 5

1.2 Complexity . 6

1.2.1 Problems . 6

1.2.2 Model of computation . 7

1.2.3 RAM machine for enumeration 8

1.2.4 Other complexity measures 9

1.2.5 Complexity classes: a short zoology 10

1.3 Logic . 14

1.3.1 Structure . 14

1.3.2 First-order logic . 14

1.3.3 Second-order logic . 15

1.3.4 The model-checking problem 16

1.4 Polynomials . 16

1.4.1 Representation . 16

1.4.2 Examples . 18

I Complexity 21

2 Enumeration 23

2.1 Basics . 24

2.2 Complexity measures and classes 25

2.2.1 Polynomial total time . 26

2.2.2 Incremental polynomial time 28

2.2.3 Polynomial delay . 29

2.3 Separation between classes . 31

2.3.1 Unordered enumeration problems 32

2.3.2 Ordered enumeration problems 33

v

vi CONTENTS

2.4 The power of ordering . 34

2.4.1 Hardness through a family of orders 35

2.4.2 Hardness through one order 35

2.4.3 Hardness through one enumerable order 36

2.5 Operations on predicates and enumeration 37

2.5.1 Union of predicates . 37

2.5.2 Subtraction of predicates 39

2.5.3 Intersection of predicates 40

2.6 An example: A-Circuit . 40

3 Enumeration of Monomials 47

3.1 Introduction . 47

3.1.1 Preliminaries . 49

3.2 Finding one monomial at a time 49

3.2.1 The algorithm . 51

3.3 An incremental algorithm . 52

3.4 A polynomial delay algorithm . 53

3.4.1 Small values . 54

3.4.2 Large values . 55

3.4.3 Circuits . 56

3.4.4 The algorithm . 58

3.5 Complexity classes for randomized enumeration 59

3.6 Higher degree polynomials . 62

3.6.1 KS algorithm . 63

3.6.2 Interpolation of fixed degree polynomials 63

3.6.3 Comparison of interpolation methods 66

3.7 Modest improvements . 67

3.7.1 Finite fields . 68

3.7.2 A method to decrease the degree 68

3.7.3 Reduction of error and number of monomials 69

3.7.4 Derandomization . 69

3.8 Hard questions for easy to compute polynomials 70

3.8.1 Polynomials of unbounded degree 71

3.8.2 Degree 3 polynomials . 72

3.8.3 Degree 2 polynomials . 72

3.8.4 Hardness regardless of the degree 74

4 Polynomials and Hypergraphs 77

4.1 Introduction to the Pfaffian Tree theorem 77

4.2 Enumeration of the spanning hypertrees 78

4.3 Parallelism . 79

4.4 Maximal spanning hypertree . 80

CONTENTS vii

II Logic 83

5 Monadic Second-Order Logic 85
5.1 Terms and trees . 85
5.2 Decomposition: the different notions of width 86

5.2.1 Tree-width . 86
5.2.2 Branch-width . 88
5.2.3 Clique-width . 89

5.3 The logic MSO on graphs . 91
5.4 The logic MSO on higher order structures 91

5.4.1 Hypergraphs . 91
5.4.2 Matroids . 92

6 Decomposable Matroids 95
6.1 Introduction . 95
6.2 Matroid decomposition . 96

6.2.1 Matroid branch-width . 96
6.2.2 Enhanced branch decomposition Tree 98

6.3 Decision on an enhanced tree . 99
6.3.1 Signature . 99
6.3.2 From matroids to trees . 103

6.4 Extensions and applications . 106
6.4.1 Logic extension . 106
6.4.2 Spectra of MSOM formulas 106
6.4.3 Enumeration . 108

6.5 Matroid operations . 109
6.5.1 Amalgam of boundaried matrices 109
6.5.2 Series and parallel connections 115

6.6 Discussion . 121

7 Decomposable Hypergraphs 123
7.1 Representation of a hypergraph . 123
7.2 Decomposition-width . 126

7.2.1 Structural properties . 128
7.3 Decision of MSO over decomposable hypergraphs 129

7.3.1 Representation of hyperedges over a term 130
7.4 Representation of hypergraph like structures 131

7.4.1 Definable subclasses . 131
7.4.2 Encoding other decompositions 133

viii CONTENTS

Introduction (en français)

Cette thèse s’intéresse à divers aspects de la théorie de la complexité. Celle-ci es-
saye de quantifier les “ressources” dont on a besoin pour résoudre un problème.
Imaginons la situation suivante : Arthur veut remplir son sac à dos avec des ob-
jets utiles pour la quête du Graal, mais celui-ci est trop petit pour tout ranger.
Comment va-t-il faire pour trouver une combinaison d’objets qui va remplir exac-
tement son sac afin de ne pas perdre un espace précieux ? Le mieux qu’il puisse
faire (en l’état actuel de nos connaissances) est de demander la réponse à Merlin,
son enchanteur personnel. Celui-ci, grâce à ses talents de divination, trouve une
solution. Par ailleurs, Arthur, qui n’a pas particulièrement confiance en Merlin
–les mages ont leur propre agenda– peut facilement la vérifier : il met les objets
proposés dans son sac et vérifie que celui-ci est parfaitement rempli. La ressource
pour ce problème est donc un magicien douteux : c’est un problème NP.

Est-ce qu’Arthur aurait pu se débrouiller seul ? Il aurait pu essayer toutes les
combinaisons d’objets, mais à ce rythme-là sa barbe serait devenue aussi blanche
que celle de Merlin. De nombreux chercheurs spéculent qu’il ne peut pas faire
mieux [Coo71], ce qu’on exprime par P 6= NP. En tout cas Arthur ne doit pas
avoir honte de recourir à Merlin car aucun mathématicien n’a fait mieux que lui
ces 40 dernières années. La difficulté de cette question peut parâıtre intimidante
mais heureusement il existe de nombreux moyens de la contourner. La présente
thèse en explore quelques-uns.

Le chapitre 1 fournit le vocabulaire pour poser et résoudre des problèmes de
complexité. Il sert d’introduction technique à la thèse. Par ailleurs les principaux
chapitres sont précédés d’une introduction plus détaillée que cette introduction
générale.

Enumération Le petit problème d’Arthur est un problème de recherche : il
veut obtenir une solution. S’il veut seulement savoir s’il y en a une, c’est un
problème de décision, alors que s’il veut trouver le nombre de solutions on ap-
pelle cela un problème de comptage. Nous allons étudier dans les chapitres 2, 3
et 4 des problèmes d’énumération, c’est-à-dire qu’Arthur veut trouver toutes les
solutions. Un problème difficile à décider l’est bien évidemment au moins autant
dans sa version d’énumération. Ce nouveau point de vue permet donc de clas-
sifier différemment des problèmes considérés comme faciles dans leur version de
décision.

ix

x CONTENTS

A Camelot, Arthur est confronté à un problème d’importance : en tant que
souverain il doit organiser les mariages de ses dames et chevaliers. Après avoir
considéré la naissance, le mérite et le thème astral de chacun, il sait quels couples
feront la paire. Il doit maintenant résoudre le problème suivant : comment ma-
rier tout le monde sans décevoir personne (et est-ce seulement possible ?). Comme
précédemment il peut demander à Merlin une solution et il pourra ensuite rapi-
dement décider si elle est correcte. Mais il peut faire mieux : il peut demander
à Edmond [Edm65] et utiliser son algorithme pour trouver tout seul et rapide-
ment une solution si il y en a une. Par contre, si il cherche le nombre de telles
solutions (problème de comptage), il va avoir besoin d’un temps immense [Val79]
(ou devenir plus riche d’un million de dollars1). S’il veut essayer chaque solution,
il peut les énumérer avec un délai linéaire [Uno97] en le nombre de participants.
Cet exemple illustre le fait qu’en changeant de point de vue sur un problème –
décision, comptage ou énumération– on obtient différentes conclusions quant à sa
complexité.

Les ressources considérées dans le cadre de l’énumération sont le temps pour
trouver toutes les solutions et le délai entre deux solutions.

Dans le chapitre 2, nous étudions en détail les trois classes suivantes (et
quelques autres) :

1. TotalP est la classe des problèmes énumérables en un temps polynomial en
la taille de l’entrée et de la sortie

2. IncP est la classe des problèmes énumérables avec un délai polynomial en
la taille de l’entrée et en le nombre de solutions déjà produites

3. DelayP est la classe des problèmes énumérables avec un délai polynomial
en la taille de l’entrée

Quand on étudie des classes de complexité, on essaye de montrer qu’elles sont
incluses strictement les unes dans les autres. Ici, comme dans beaucoup de cas, on
n’arrive à montrer ce genre de résultat que relativement à des hypothèses comme
P 6= NP. On obtient dans cette thèse la suite d’inclusions suivante :

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP

Malheureusement, les relations entre les deux classes les plus naturelles IncP et
DelayP restent inconnues. On étudie aussi le rôle de l’ordre dans lequel l’énumération
des solutions doit être fait, celui-ci pouvant créer des difficultés supplémentaires.
Enfin on s’intéresse aux opérations ensemblistes sur les ensembles de solutions. On
montre que seule l’union laisse stable la plupart des classes de complexité. Cela
permet, par exemple, d’énumérer les solutions d’une formule sous forme normale
disjonctive avec un délai linéaire (section 2.5).

1Un prix d’un million de dollars est offert par le Clay Mathematics Institute pour la résolution
du problème P 6= NP.

CONTENTS xi

Hasard Pour pouvoir résoudre plus efficacement des problèmes, on se permet
d’utiliser un peu de hasard, c’est à dire qu’on a le droit de jouer à pile ou face. Cela
permet de concevoir des stratégies ou protocoles qui ne pourraient pas fonctionner
sans hasard. Par exemple Arthur, qui était daltonien, veut vérifier que Merlin ne lui
joue pas un tour quand ce dernier prétend qu’il a mis des chaussettes dépareillées
(une verte et une rouge). Il lui suffit de permuter aléatoirement (et secrètement)
ses chaussettes et de demander à Merlin laquelle était à gauche. Si elles étaient
de la même couleur, Merlin n’a aucune information et va se tromper une fois sur
deux.

Dans le chapitre 3 on essaie de trouver une méthode qui permette à Arthur
de gagner le jeu suivant : Merlin pense à un polynôme multivarié (comme tous les
matins en se rasant) et Arthur doit le deviner. Dans ce but, il peut demander à
Merlin la valeur du polynôme en un point. On appelle cela le problème d’interpo-
lation pour un modèle à oracle. Les ressources sont le nombre de questions posées
à Merlin et la quantité de calculs que doit effectuer Arthur. On peut montrer que
si Arthur n’utilise pas de hasard, pour décider si le polynôme auquel pense Merlin
est le polynôme nul (quel blagueur ce Merlin), il a besoin d’un nombre exponentiel
de questions en le nombre de variables du polynôme. Comme nous voulons trouver
le premier monôme rapidement, nous allons utiliser fondamentalement le hasard
et un petit lemme [Zip79, Sch80].

Par contre, quand le polynôme a une représentation concrète, un petit circuit
par exemple, il est peut-être possible de résoudre le problème sans hasard. En fait,
le problème de décider si le polynôme est nul (Polynomial Identity Testing)
sans utiliser de hasard (derandomization) est un sujet de recherche très actif ces
dernières années. Il a été prouvé qu’on peut résoudre ce problème de manière
déterministe sur des circuits de petite profondeur [KMSV10, SS10]. Le but est de
montrer qu’on n’a pas besoin de hasard pour le résoudre sur les circuits en général.
Cela aurait comme conséquence qu’il n’y a pas plus de problèmes qui puissent être
résolus efficacement avec du hasard que sans. Ce qui, en langage mathématique,
s’écrit P = BPP. En fait cette question est équivalente à la séparation de classes
de circuits, c’est-à dire quelque chose de très proche de P 6= NP [IW97, KI04].

Le problème d’interpolation peut être vu comme un problème d’énumération :
on veut donner les monômes du polynôme les uns après les autres dans un court
délai. Le premier algorithme proposé dans cette thèse (section 3.3) permet d’in-
terpoler les polynômes dont aucun monôme n’utilise exactement les mêmes va-
riables avec un délai incrémental. Le second algorithme (section 3.4) interpole les
polynômes multilinéaires (une sous-classe de la précédente) avec un délai polyno-
mial. En outre, ces deux algorithmes ont une bonne complexité globale et utilisent
dans leurs requêtes à Merlin des petits entiers. Ce dernier point est utile si Merlin
pense à un polynôme sur un corps fini (ce qui arrive souvent car il a une mauvaise
mémoire).

On peut encoder un certain nombre de problèmes combinatoires dans les
monômes d’un polynôme facilement évaluable. Ainsi les deux précédents résultats
peuvent fournir des algorithmes probabilistes pour des problèmes d’énumération

xii CONTENTS

plus classiques, par exemple énumérer les couplages parfaits d’un graphe. On intro-
duit donc les variantes probabilistes des classes d’énumération du chapitre 2, qu’on
nomme TotalPP, IncPP et DelayPP. On montre ainsi, dans le chapitre 4, que
le problème d’énumérer les hyperarbres couvrants d’un hypergraphe 3-uniforme
est dans DelayPP.

Il existe déjà un algorithme qui permet d’interpoler les polynômes de degré
quelconque avec un délai incrémental [KS01]. Nous présentons un algorithme al-
ternatif (dans la section 3.6) pour résoudre ce problème, construit à partir des
deux algorithmes précédemment proposés. Sa complexité est exponentiellement
dépendante en le degré, il n’est donc meilleur que l’algorithme existant que pour
des polynômes de degré infèrieur à 10.

Enfin on essaye de comprendre pourquoi il est difficile de donner un algorithme
à délai polynomial pour les polynômes de degré deux ou plus. On se restreint à
l’étude de polynômes donnés par des circuits. On montre que des questions comme
“est ce qu’un terme a un coefficient différent de zéro dans le polynôme ?” sont
NP-dures pour les polynômes de degré deux. L’algorithme d’interpolation pour
les polynômes multilinéaires ainsi que tout ceux que je peux imaginer peuvent
résoudre cette question. Ceci suggère qu’il est difficile –impossible ?– de construire
un algorithme d’interpolation plus général avec un délai polynomial.

Parallélisme Pour améliorer son pouvoir de résolution de problèmes, Arthur
peut mettre à contribution ses sujets qui sont fort nombreux. Il leur donne un
problème et ceux-ci doivent, en collaborant2, trouver sa solution. Si l’utilisation
d’un grand nombre de cerveaux disponibles augmente la rapidité à trouver une
solution, on dit que le problème est parallélisable.

Dans le chapitre 4, on étudie le problème d’énumération des hyperarbres cou-
vrants d’un hypergraphe 3-uniforme, ce qui est l’occasion de proposer quelques
notions de parallélisme adaptées à l’énumération.

On propose également un algorithme probabiliste pour trouver la taille du plus
grand sous-hypergraphe acyclique d’un hypergraphe 3-uniforme. Cet algorithme
est parallélisable, on dit que le problème est dans RNC. Cela signifie que si Arthur
utilise un nombre de sujets polynomial en la taille de l’hypergraphe, il a besoin
d’un temps polylogarithmique en cette taille pour obtenir la solution.

Paramètrisation et logique Quand un problème est NP-complet, on veut
identifier ce qui le rend dur. C’est l’objet de la complexité paramétrée : on cherche
un paramètre du problème qui une fois fixé le rend facile. Par exemple, dans le
cas du sac à dos d’Arthur, si la taille des objets est fixée, le problème devient
facile. De la même manière, si on fixe le degré des polynômes que l’on interpole,
l’algorithme de la section 3.6 devient efficace.

2Pour que cette fable soit vraiment représentative de la définition formelle, il faudrait installer
internet dans l’Angleterre arthurienne. En effet, tout les participants doivent pouvoir communi-
quer rapidement entre eux.

CONTENTS xiii

Il existe un cadre général, qui permet de décrire une très grande classe de
problèmes qui deviennent faciles quand un certain paramètre est fixé. Pour com-
prendre cela, revenons à Arthur qui a récemment hérité d’un artefact puissant
appelé automate d’arbre3. Il a également appris un langage magique appelé lo-
gique monadique du second ordre (ou MSO pour sauver des arbres). Tous les
problèmes qu’il arrive à décrire dans ce langage et qui concernent des arbres, il
peut les résoudre efficacement avec son automate d’arbre [TW68].

Souvent les problèmes qu’Arthur veut résoudre sont définis sur des graphes
comme le problème des mariages et pas seulement sur des arbres. Il existe de
nombreux paramètres de largeur de graphe –tree-width, branch-width, clique-
width, rank-width ...– qui mesurent à quel point un graphe “ressemble“ à un
arbre. Certain des ces paramètres ont pour origine le ”Graph minor project“
[RS83, RS86, RS91, RS95] qui a permit de montrer que l’exclusion d’un nombre
fini de mineurs est une manière universelle de définir l’identité d’un groupe de
graphe4. De manière remarquable, on peut transférer les algorithmes efficaces qui
existent sur les arbres en des algorithmes sur les graphes en augmentant leur
complexité de manière importante mais dépendant uniquement du paramètre de
largeur [Cou91].

Dans le chapitre 5, on fait un rapide tour d’horizon de différentes notions de
largeur d’arbre et de leur relations. Cela sert d’introduction au chapitre suivant
qui s’intéresse au même genre de problème mais sur une structure qui généralise
les graphes.

Dans le chapitre 6, on s’intéresse aux matröıdes qui sont une manière d’axio-
matiser la notion d’indépendance linéaire. Ils permettent d’abstraire l’espace des
cycles d’un graphe ou des colonnes d’une matrice. De nombreux problèmes com-
binatoires sont en fait des cas particuliers de quelques problèmes comme l’inter-
section de matröıdes ou les mariages dans les matröıdes [Lov80]. Les matröıdes
permettent aussi aux distributeurs automatiques de rendre leur monnaie aux glou-
tons.

La notion de branch-width se généralise facilement aux matröıdes et on vou-
drait obtenir des résultats comparables à ceux obtenus pour les graphes. Dans le
cas des matröıdes représentés par des matrices sur des corps finis et de branch-
width bornée, on peut décider la logique MSO en temps linéaire [Hli06]. Pour
démontrer ce genre de résultat, il existe deux approches complémentaires :

• On donne des opérations, une grammaire qui permet de construire la classe
d’objets qu’on étudie et on se sert des propriétés des opérations pour montrer
le résultat recherché.

• On étudie des décompositions arborescentes qui caractérisent des bonnes
propriétés de l’objet. Généralement cela veut dire qu’on peut couper la struc-
ture en petits morceaux tel que chacun ”interagit” peu avec le reste.

3Un objet étrange : il parcourt les arbres de bas en haut et pourtant des feuilles vers la racine !
4Ce qui est mieux que pour les groupes d’humains ou l’identité est souvent définie par l’ex-

clusion d’une infinité de personnes et pas que des jeunes.

xiv CONTENTS

La première partie du chapitre 6 est consacrée à une preuve alternative que
la logique MSO est décidable en temps linéaire sur les matröıdes représentables
de branch-width bornée. Pour démontrer cela, on créé un arbre de décomposition
appelé enhanced tree qui encode de manière locale les informations permettant de
décider de l’indépendance d’un ensemble dans un matröıde. Cette approche est
plus simple et donne plus d’informations sur les matröıdes représentables que la
preuve existante qui repose sur une grammaire.

Dans un deuxième temps, on introduit un cadre algébrique qui permet de
définir la grammaire qui engendre les matröıdes représentables d’une certaine
branch-width. On fait le lien avec la vision arbre de décomposition et on ex-
plique pourquoi il faut définir la grammaire sur les matrices plutôt que sur les
matröıdes qu’elles représentent. Dans la section 6.5 on propose une grammaire,
qui permet d’engendrer une classe de matröıdes qui ne sont pas nécessairement
représentables et sur lesquels la décision de MSO est efficace. Les techniques de
preuve de ce chapitre sont très uniformes et s’adapteraient facilement à d’autres
classes obtenues par des opérations similaires.

Enfin, dans le chapitre 7, on essaie d’abstraire les constructions du chapitre
précédent. On introduit une représentation arborescente des hypergraphes qui
généralise celles présentées pour les matröıdes. On peut de nouveau montrer que
la logique monadique du second ordre est décidable en temps linéaire sur ces
hypergraphes.

On étudie quelques propriétés du paramètre de largeur naturellement associé
à cette représentation. Il se comporte notemment bien par rapport aux opérations
simples sur les hypergraphes comme la complémentation, l’union disjointe ou
la restriction des sommets. Enfin on montre comment un certain nombre de
décompositions peuvent être vues comme des cas particuliers de celle-ci. Les
résultats de ce chapitre ont donc surtout pour intérêt de donner un cadre simple
pour imaginer d’autres décompositions arborescentes. Il reste, et c’est le plus diffi-
cile, à trouver des classes intéressantes d’hypergraphes 5 ainsi que des algorithmes
pour produire leurs décompositions.

5sur lesquels la logique MSO permet d’exprimer des problèmes NP-complets

Introduction (in english)

This thesis studies several aspects of computational complexity, the theory whose
aim is to measure the “ressources“ one needs to solve a problem. Imagine the
following situation: Arthur has a knapsack that he wants to load with useful
objects in his quest to find the Grail. Which objects should he take with him in
order to exactly fill its knapsack? The best he can do (to our current knowledge) is
to ask Merlin, his personal wizard. Indeed, thanks to his magical powers, Merlin is
able to guess the solution. However, Arthur who does not trust him much –wizards
tend to be tricky– can easily check the solution: he just packs his knapsack with
the suggested objects and checks wether it is exactly filled. The ressource for this
problem is an untrustworthy wizard: it is a NP problem.

Could have Arthur found the solution himself? Well, he could have tried every
combination of objects, but it is such a lengthy process that his beard would have
become as white as Merlin’s. Many computer scientists think that he cannot do
better [Coo71], a fact one writes P 6= NP. In this respect, Arthur must not be
ashamed to ask for Merlin his help, since no mathematician has found a better
way in the last 40 years. The hardness of this question may seem frightening,
hopefully they are many ways to escape it. This thesis studies some of them.

Chapter 1 presents the vocabulary used to formulate and solve complexity
problems. It is a technical introduction to the thesis. Most chapters also begin
with a detailed and more specific introduction.

Enumeration Arthur’s problem is a search problem: he wants to find a solution.
If he only wants to know if there is one, it is a decision problem, whereas if he
wants to count the number of solutions, it is a counting problem. In the Chapters
2, 3 and 4 we study enumeration problems, that is Arthur wants to find all the
solutions. An enumeration problem is obviously as hard, if not harder, as its
decision version. This new point of view allows us to classify problems considered
as easy in their decision version.

In Camelot, Arthur is responsible for the weddings of his knights and ladies.
After much consideration about the birth, the virtue and the horoscope of every-
one, he knows which couples will match. He must now solve the perfect matching
problem: how to marry everyone without deceiving anyone (and is that even pos-
sible)? As before, Arthur may ask Merlin for the solution and then easily check
if it works. But he can do better: he may ask Edmond [Edm65] for his algorithm

xv

xvi CONTENTS

which gives a way to find quickly a solution if there is one. On the other hand, if
he wants to count the number of solutions, it will require a huge time (or he be-
comes a million dollars wealthier6). If he needs all solutions, he can generate them
with a linear delay in the number of ladies and knights to be married [Uno97].
This example illustrates the fact that by changing one’s point of view on the prob-
lem –decision, counting or enumeration– we obtain contrasting conclusions on its
complexity.

The considered ressources in enumeration complexity are the time to find all
solutions and the delay between two of them.

In Chapter 2, we study in detail the three following classes (and a few others):

1. TotalP is the class of enumeration problems solvable in polynomial time in
the size of the input and the output

2. IncP is the class of enumeration problems solvable with a polynomial delay
in the size of the input and in the number of already generated solutions

3. DelayP is the class of enumeration problems solvable with a polynomial
delay in the size of the input

When one studies complexity classes, one tries to prove that they are properly
included in one another. In this thesis, as in most of the literature, we prove this
kind of result only under some hypothesis like P 6= NP. We obtain the following
sequence of inclusions:

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP

Note that we still do not know if there is a proper inclusion between the two
most natural classes IncP and DelayP. We also study the influence of the order
in which the solutions have to be enumerated, since it can create some artificial
hardness. Finally, we study set operations on enumeration problems. We prove
that most complexity classes are stable under the union only. For instance, it
enables us to enumerate the solutions of a formula in disjunctive normal form
with a linear delay (Section 2.5).

Randomness To solve more efficiently some problems, we use a bit of random-
ness, that is to say we are allowed to flip a coin. It is useful to design strategy
or protocols that wouldn’t work otherwise. For instance Merlin tells Arthur, who
is colorblind, that he is wearing a red sock and a green sock (and a king shall
not wear red). Arthur wants to determine if Merlin is telling the truth and not
playing one of his little tricks again. He only has to randomly (and secretly) swap
his socks and ask Merlin which one was he wearing on his left foot. If they are of
the same color, Merlin has no information to answer and his lie will be revealed
every two times.

6A price of a million dollars is offered by the Clay Mathematics Institute for a solution to the
problem P 6= NP.

CONTENTS xvii

In Chapter 3, we try to find a method to make Arthur win the following game:
Merlin thinks about a multivariate polynomial (which proves that wizards and
mathematicians are about the same) and Arthur has to guess it. To this aim, he
can ask Merlin the value of the polynomial in any point. This is the interpolation
problem for an oracle model. The ressources are the number of questions asked to
Merlin and the computations that Arthur does. One can prove that if Arthur does
not use randomness, even to determine if Merlin’s polynomial is zero (how funny
of him), he needs an exponential number of questions in the number of variables
of the polynomial. Since we want to find the first monomial quickly, we basically
use randomness and a little lemma [Zip79, Sch80].

On the other hand, when the polynomial has an explicit representation, a
small circuit for instance, it may be possible to solve the problem without ran-
domness. In fact, the problem to decide if the polynomial is the zero polynomial
(Polynomial Identity Testing) without using randomness (derandomization)
is a very active topic of research. It has been proved that the problem can be solved
deterministically for circuits of small depth [KMSV10, SS10]. The aim is to prove
that one does not need randomness for any circuit. A consequence of this state-
ment would be that there aren’t more problems that can be solved efficiently with
randomness than without. In mathematical terms, one says P = BPP. In fact this
question is equivalent to the separation of class of circuits, that is to say something
very close to P 6= NP [IW97, KI04].

The interpolation problem can be seen as an enumeration problem: one has to
output the monomials of the polynomial one after another within a short delay.
The first algorithm given in this thesis (Section 3.3) interpolates with incremental
delay polynomials such that no two of their monomials use exactly the same
variables. The second algorithm (Section 3.4) interpolates multilinear polynomials
(and is thus less general) with a polynomial delay. Furthermore both algorithms
have a good global complexity and use only small integers in their questions to
Merlin. The last point is useful if Merlin thinks about a polynomial over a finite
field (which happens often since he has a bad memory).

One can encode a good number of combinatorial problems into the monomials
of an easy to compute polynomial. So the two previous algorithms can be used
to solve more classical enumeration problems, for instance generating the perfect
matchings of a graph. We introduce the probabilistic counterparts of the com-
plexity classes of Chapter 2, that we name TotalPP, IncPP and DelayPP. As
an illustration of these new classes, we prove in Chapter 4, that the problem of
enumerating the spanning hypertrees of a 3-uniform hypergraph is in DelayPP.

There already is an algorithm to interpolate polynomials of any degree with
an incremental delay [KS01]. We present an alternative algorithm (in Section 3.6)
to solve this problem, inspired by the two algorithms built for restricted classes of
polynomials. Its complexity depends exponentially on the degree, it is therefore
better than the existing algorithm only for polynomials with a degree inferior to
ten.

Finally, we try to understand why it is so difficult to find a polynomial delay

xviii CONTENTS

algorithm for polynomial of degree 2 or more. We prove that questions like ”has
a term got a coefficient different from zero in the polynomial?“ are NP-hard for
degree 2 polynomials. The interpolation algorithm for multilinear polynomials as
well as all the polynomial delay ones I can think of are able to answer this question.
This suggests that it is hard –impossible?– to build a more general interpolation
algorithm with a polynomial delay.

Parallelism To improve his problem solving capacities, Arthur can rely on his
numerous loyal subjects. He gives them a problem and they must work together7

to find a solution. If the use of a great quantity of brains speed up the resolution
of the problem, one says it is parallelizable.

In Chapter 4, one considers the problem of generating all spanning hyper-
trees of a 3-uniform hypergraph. It serves as an illustration for some notion of
parallelism for enumeration that we introduce.

In Section 4.4, we provide a randomized algorithm which finds the size of the
largest acyclic subhypergraph of a 3-uniform hypergraph. This algorithm can
be parallelized, one says that the problem is in RNC. It means that if Arthur
commands a number of subjects polynomial in the size of the hypergraph, he
needs a polylogarithmic time in this size to solve the problem.

Parametrized complexity and logic When a problem is NP-complete, one
wants to know what makes it hard. This is the problematic of parametrized
complexity, that we can rephrase by what parameter can we fix to turn a hard
problem into an easy one? For instance, filling Arthur’s knapsack becomes easy
if the size of the objects is fixed. In the same way, if we fix the degree of the
polynomial we try to interpolate, the algorithm of Section 3.6 is efficient.

There is a framework to describe a great variety of problems made easy by
fixing some parameters. To understand it, consider that Arthur just received
from the Lady of the Lake, not Excalibur but a powerful artifact called a tree
automaton8. He was also taught a magic language called monadic second order
logic (or MSO to spare some trees). He can solve efficiently all the problems on
trees he is able to describe in this language, thanks to its tree automaton [TW68].

Often, the problems that Arthur wants to solve are defined not on trees but
on graphs, as the wedding problem. There are numerous width-parameters for
graphs –tree-width, branch-width, clique-width, rank-width . . . – which measure
how similar to a tree a graph is. Some of these parameters originate from the
”Graph minor project“ [RS83, RS86, RS91, RS95] which has proved that any
hereditary class of graphs can be defined by exclusion of a finite number of mi-
nors. Quite surpisingly, one can use the efficient algorithms for trees on graphs by

7For this story to be accurate, one should bring the internet to medieval britain. Indeed all
the people working on the problem must be able to communicate quickly.

8A strange object which goes bottom-up but from the leaves to the root!

CONTENTS xix

increasing their complexity in a way which depends only on the width parameter
[Cou91].

In Chapter 5 some notions of width and their relationships are studied. It
serves as an introduction to the next chapter which considers a related parameter
on a structure which, in a way, generalizes graphs.

In Chapter 6 one considers matroids which are an axiomatization of the notion
of linear dependency. A lot of combinatorial problems are particular instances of
some problems on matroids like matroids intersection or matroid matching [Lov80].
Matroids are also used in vending machines to give their money back to greedy
customers.

The notion of branch-width can be generalized to matroids and one wants
results in the same vein as those obtained for graphs. In the case of matroids
represented by matrices over finite fields and of bounded branch-width, one can
decide the logic MSO in linear time [Hli06]. To prove this kind of result there are
two complementary approaches:

1. One defines a grammar, that is to say a way to build a class of matroids
from operations and a set of base matroids. One then uses the properties of
the operations to prove a result on the whole class.

2. One studies tree-decompositions which characterize some good properties of
a matroid. Usually it means that we can cut the matroid into small pieces
such that they are mostly ”isolated“ from each other.

The first part of Chapter 6 is devoted to a new proof that the model-checking
of MSO can be decided in linear time over representable matroids of bounded
branch-width. To prove this, we introduce a decomposition tree called enhanced
tree which locally encodes all necessary informations to decide the dependency of
a set in a matroid. This approach is simpler and gives more informations than the
existing proof which uses grammar techniques.

In the second part, we introduce an algebraic framework to define matroids
grammar, in particular the one which defines representable matroids of bounded
branch-width. We give the relationship between this grammar and the tree de-
composition of the first part. We also explain why one should define the grammar
on matrices rather than directly on the matroids they represent. In Section 6.5,
we define a grammar which generates non necessarily representable matroids and
for which the model-checking of MSO is still linear. The proof techniques of
this chapter are very uniform and could be easily adapted to new operations on
matroids.

In Chater 7, the previous construction are abstracted. We introduce a tree
representation of hypergraphs which generalizes the one given for matroids. We
prove again that MSO is linear time decidable on these hypergraphs.

We then study some properties of the width-parameter naturally associated to
this representation. This parameter is ”regular” with regard to simple operations
on hypergraphs like complementation, disjoint union or section. In Section 7.4, we

xx CONTENTS

explain how graphs or matroids decompositions can be seen as particular instances
of this hypergraph decomposition. This chapter can thus be helpful to imagine new
tree-decompositions. We still have, and it is the hardest part, to find interesting
classes of hypergraphs 9 and algorithms to find their decomposition.

9on which MSO can express NP-complete problems

Chapter 1

Preliminaries

This chapter provides some background and definitions about most of the objects
and concepts which will later be used in this thesis. It should serve as both an
introduction and a reference while reading the other chapters.

1.1 Graphs, hypergraphs and matroids

Here we introduce mathematical objects which are used to modelize a lot of com-
puter science problems.

1.1.1 Graphs

Some basic notions of graph theory are given in this subsection, for a more com-
plete view on the subject one can read [Die05] among the numerous reference
books available.

A graph G = (V,E) is a pair where V is a finite set of vertices and E ⊆ V ×V
is the set of edges. This definition forbids loops, i.e. edges of the form {v}. We
may also consider oriented graphs, where the edges are ordered pairs, that is to
say the edges (u, v) and (v, u) are different.

A path of G is a sequence of distinct vertices {x1, . . . , xk} such that for all
0 < i < k, {xi, xi+1} is an edge of G. A cycle is a path such that x1 = xk. An
acyclic graph is a graph with no cycle, we also call it a tree when it is connected
and a forest when it is not.

A graph is called connected if for all two vertices u and v, there is a path from
u to v. A graph is k-connected if, when we remove any set of k − 1 edges, the
graph is still connected. Equivalently, a graph is k-connected, if for all u and v
there are k disjoint paths from u to v.

Let G = (V,E) be a graph, when V ′ ⊆ V and E′ ⊆ E ∩ V ′2, we say that
G′ = (V ′, E′) is a subgraph of G. One says that G′ spans G if V ′ = V . Let
V ′ ⊆ V , GV ′ the subgraph induced by V ′ is the graph (V ′, {e ∈ E|e ⊆ V ′}. The
subgraph induced by E′ ⊆ E, notedGE′ , is the graph ({v ∈ V |∃u {u, v} ∈ E′}, E′).

1

2 CHAPTER 1. PRELIMINARIES

A subgraph G′ of G is called a spanning tree if it is a tree and it spans G. A
Hamiltonian path is a path which spans G. Let E′ ⊆ E be a set of edges of G
such that no two edges share a vertex (are incident), GE′ is a matching of G. If
GE′ spans G then it is a perfect matching.

2

1

3

4

5 6

Figure 1.1: A graph on 6 vertices, with a perfect matching in bold

A graph is said to be a clique, if there is an edge between every vertex. If it
has no edge at all, the graph is independent. A graph G = (V,E) is bipartite if we
can find a partition of V into V1 and V2 such that GV1 and GV2 are independent.

A graph is planar if it can be embedded in the plane, i.e., it can be drawn on
the plane in such a way that its edges intersect only at their endpoints. A graph
H is a minor of another graph G if a graph isomorphic to H can be obtained from
G by contracting some edges (merging of the two vertices of the edge), deleting
some edges, and deleting some isolated vertices. A graph is planar if it does not
contain the complete graph on 5 elements nor the complete bipartite graph on 6
elements as a minor (Kuratowski’s theorem, see [Kur30]).

Graph representations We label the vertices of a graph G = (V,E) by the
integers from 1 to |V |. The graph G is represented by its adjacency matrix defined
by Ai,j = 1 if {i, j} ∈ E, otherwise Ai,j = 0.

Assuming we have also indexed the edges by integers from 1 to |E|, we may
also represent a graph by its incidence matrix, defined by Ii,j = 1 if the vertex i
is in the edge j, otherwise Ii,j = 0.

1.1.2 Hypergraphs

A hypergraph H = (V,E) is a pair where V is a finite set and E ⊆ P(V). We
usually forbid the empty set or the loops to be in E. A hypergraph is said to
be k-uniform if every element of E is of cardinal less or equal to k. A 2-uniform
hypergraph is thus a graph.

There are several ways to generalize the notion of tree by defining different
notions of acyclicity, they are all defined and extensively studied in [Dur09]. The
most simple is called Berge-acyclicity . A Berge-cycle is a sequence of edges and
vertices x1, E1, x2, E2 . . . , xl, El, xl+1 such that for l ≥ 2, x1 = xl+1 and for all i,
xi+1 ∈ Ei∩Ei+1. A hypergraph without Berge cycle is called a (Berge) hypertree.

1.1. GRAPHS, HYPERGRAPHS AND MATROIDS 3

Figure 1.2: A 4-uniform hypergraph on 8 vertices

Let H = (V,E) be a hypergraph and let W ⊆ V . The subhypergraph HW

induced by W is defined as (W, {e ∩W |e ∈ E}). The section hypergraph H ×W
induced by W is defined as (W, {e ⊆ W |e ∈ E}). Let F ⊆ E, the subhypergraph
HF induced by F is defined as (V, F).

We say that the subhypergraph H spans G if V (H) = V (G). Let H = (V,E)
be a hypergraph, we say that S ⊆ V is a hitting set of H if it intersects every
element of E. In other words, it is a vertex cover of the hypergraph, and the
minimal hitting sets for inclusion, called transversal , have been extensively studied
[EG95, FK96, EG].

1.1.3 Matroids

Matroids have been designed to abstract the notion of dependence that appears,
for example, in graph theory or in linear algebra. All needed informations about
matroids (and the proofs of what is stated in this section) can be found in the
book Matroid Theory by J. Oxley [Oxl92].

Definition 1.1. A matroid is a pair (S, I) where S is a finite set, called the
ground set, and I ⊆ P(S). Elements of I are said to be independent sets, the
others are dependent sets. A matroid must satisfy the following axioms:

1. ∅ ∈ I

2. If I ∈ I and I ′ ⊆ I, then I ′ ∈ I

3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1

such that I1 ∪ e ∈ I.

The matroids, like the graphs, may have loops, which are dependent singletons,
but in all this thesis we assume that the matroids are loop free.

Definition 1.2. In a matroid, a base is a maximal independent set for inclusion.
A circuits is a minimal dependent set for inclusion.

For each matroid M , we can define the dual matroid M∗ by taking the same
underlying set and calling a set a basis in M∗ if and only if its complement is a
basis in M . It is not difficult to verify that M∗ is a matroid and that the dual of
M∗ is M .

4 CHAPTER 1. PRELIMINARIES

We introduce two operations on the matroids, in order to define the notion
of a minor of a matroid. Let M be a matroid, S a subset of its elements, the
restriction of M to S, written M |S is the matroid (S, I), such that a set is in I
if it is independent in M and contained in S. The contraction of M by S is the
matroid (M∗|S)∗. One says that N is a minor of M if we can obtain N from M
by a sequence of restrictions and contractions.

Vector Matroid Let A be a matrix, the vector matroid of A has for ground set
the columns of A and a set of column vectors is independent if they are linearly
independent.

Definition 1.3. A matroid M is representable over the field F if it is isomorphic
to a vector matroid of a matrix A with coefficients in F. We also say that M is
represented by A and that M is a F-matroid.

The notion of representable matroid is central to Chapter 6. Note that there
are matrices which are not similar1 but represent the same matroid.

Example 1.4.

A =

 1 0 1 0 1
1 1 0 0 1
0 1 1 1 1

The matrix A is defined over F2. The convention is to name a column vector by
its position in the matrix. Here the set {1, 2, 4} is independent while {1, 2, 3} is
dependent.

One can prove that the dual of a matroid representable over F is also repre-
sentable over F. The matroids representable over F2 are called binary matroids
and those which are representabe over any field are called regular matroids.

Cycle Matroid The second example is the cycle matroid; such matroids are
said to be graphic. Let G be a graph, the ground set of its cycle matroid is the
set of its edges. A set is said to be dependent if it contains a cycle. Here a base
is a spanning tree if the graph is connected and a circuit is a cycle.

Example 1.5. In Fig. 1.3, the set {1, 2, 4} is independent whereas {1, 2, 3, 4} and
{1, 2, 5} are dependent.

Remark 1.6. Any cycle matroid of a graph G is a binary matroid. To see this,
one chooses an order on the edges and on the vertices of G then build the incidence
matrix of G over the field F2. The dependence relation is the same over the edges
and over the vectors representing the edges.

1a matrix A is similar to B if there is an invertible matrix S such that A = SBS−1

1.1. GRAPHS, HYPERGRAPHS AND MATROIDS 5

1

2

3

4
5

X =

1 0 0 1 1
1 1 0 0 0
0 1 1 0 1
0 0 1 1 0

Figure 1.3: A graph and its representation by a matrix over F2

Other representations The rank function on matroids, similar to the rank
function on vector spaces, plays an important role. It is defined by:

rank(B) = max{|A| |A ⊆ B and A independent }

This function is monotonic, that is for all subsets X and Y , X ⊆ Y ⇒ r(X) ≤
r(Y). It is also submodular:

rank(A ∪B) + rank(A ∩B) ≤ rank(A) + rank(B)

and it even leads to a characterization of matroids:

Proposition 1.7. Let E be a finite set and r a function from 2E to Z. The
function r is the rank of a matroid if and only if it is submodular, monotonic and
such that the rank of any element is 0 or 1.

This function allows to define the closure of a set, which is the set of all elements
which may be added to the set without increasing the rank. This construction
shows how close to vector spaces matroids are, since we define a notion similar to
the subspace generated by a set of elements.

We may also define matroids by the set of bases, by the dependent sets or by
the circuits. Let E be a finite set and let C ⊆ P(E), it is the collection of the
circuits of a matroid with ground set E if and only if:

1. ∅ /∈ C

2. C1, C2 ∈ C2 if C1 ⊆ C2 then C1 = C2

3. C1, C2 ∈ C2, if C1 6= C2 and e ∈ C1 ∩ C2 then ∃C ∈ C, C ⊆ C1 ∪ C2 \ {e}

1.1.4 Oriented matroids

Here we briefly present an extension of the matroids, namely the oriented matroids.
Oriented matroids have been introduced as an abstraction of cycles of oriented
graphs, like the matroids abstract the cycles spaces of undirected graphs. They
are used in combinatorial geometry and optimization (arrangement of hyperplanes,
linear programming).

6 CHAPTER 1. PRELIMINARIES

Definition 1.8 (Signed part). Let E be a finite set, a signed part C = (C+, C−)
of E is a pair of two disjoint sets of E. We note −C the signed part (C−, C+) and
C the set C+ ∪ C−.

We now introduce oriented matroids, which are defined by axioms very similar
to those of matroids, but represent more geometric objects. We give an axioma-
tization of the circuits of an oriented matroid, since it is simpler.

Definition 1.9. Let E be a finite set and let C be a set of signed parts of E.
The set C is the set of oriented circuits of an oriented matroid if it satisfies the
following axioms:

• ∅ is not in C

• if X is in C, then so is −X

• for all X,Y in C, such that X ⊆ Y , X = Y or X = −Y

• let X,Y be two distinct circuits and e ∈ X+ ∩ Y −, then there is a Z ∈ C
such that Z+ ⊆ X+ ∪ Y + \ {e} and Z− ⊆ X− ∪ Y − \ {e}

Oriented matroids from directed graphs The most simple example of an
oriented matroid is, like in the unoriented case, a graph and its cycles. Let G be
a directed graph, the ground set of the matroid MG is the set of its edges E. The
signed part (C+, C−) is a circuit of MG if C is an undirected cycle of G and for
one of its orientations C+ is the set of edges which are directed in the same way
as this orientation and C− is the set of edges in the other direction.

1.2 Complexity

In computability, one of the fundamental question concerns the decidability of
a language. Put in an other way, is the characteristic function of the language
recursive or equivalently computable by a Turing/RAM machine ? The complexity
theory proposes a refinement to this question: once we know that a language L is
decidable, what is the computational cost to decide wether x ∈ L, that is what is
the running time of a Turing/RAM machine computing its characteristic function?

This section is dedicated to the formalization of computational complexity,
which is the main subject of this thesis. For a good and general treatment of the
subject, there are numerous reference books, two of those are [PP94, AB09].

1.2.1 Problems

Let Σ be a finite alphabet, it can be of any size larger than one, and often we use
{0, 1,]}. If x and y are {0, 1} words, x]y denotes the pair (x, y). Let x ∈ {0, 1}∗,
the Hamming weight of x, denoted by w(x) is the number of 1 in x. We write Σn

for the set of words of size n and Σ>n for the set of words strictly greater than n.
We denote by |x| the length of the word x.

1.2. COMPLEXITY 7

Definition 1.10. A polynomially balanced binary predicate A, is a subset of
Σ∗ × Σ∗, such that if A(x, y) then |y| < Q(|x|), for Q a polynomial. Argument x
is called an instance of A, and y is called a solution (or a witness) if A(x, y) holds.
The finite set {y|A(x, y)} is denoted by A(x).

From a polynomially balanced predicate, we define four different problems:

1. Decision Problem. The decision problem associated to A, denoted by
∃.A, is the function which to x ∈ Σ∗ associates 0 if A(x) = ∅, 1 otherwise.
Sometimes we identify the function with the language L = {x|A(x) 6= 0}.

2. Search Problem. A search problem associated to A, is any function which
to x ∈ Σ∗ associates y ∈ A(x) if A(x) 6= ∅, a reserved element of the alphabet
otherwise, that we denote by “None”.

3. Counting Problem. The counting problem associated to A, denoted by
].A, is the function which to x ∈ Σ∗ associates the cardinal of A(x).

4. Enumeration Problem. The enumeration problem associated to A, de-
noted by Enum·A, is the function which to x ∈ Σ∗ associates the set A(x).

An algorithm solves a problem, if it computes the function defined by the
problem. The complexity of a problem is a measure of the “ressources“ used by
the algorithms which solve it, and we now present a model of computation to
formalize this.

1.2.2 Model of computation

In this thesis we consider the RAM machine as computation model and we follow
the definition of [Bag]. More details may be found herein and in the series of
articles about this model [Gra96, GS02, GO04].

Definition 1.11 (RAM machine). A RAM machine is:

• an infinite sequence of input registers I(0), I(1), . . . , of computation registers
R(0), R(1), . . . and two special registers A and B often called accumulators.
The input registers contain the input and the others are initialized to the
integer 0.

• a finite sequence of indexed instructions (the program) of the following type:

1. A← I(A)

2. A← R(A)

3. B ← A

4. R(A)← B

5. A← A+B

8 CHAPTER 1. PRELIMINARIES

6. A← A−B
7. If A > 0 Goto(i)

8. Stop

The semantic of this machine is simple, it executes sequentially its program,
except when it encounters a If A > 0 Goto(i), which makes it jump to the
ith instruction if the content of A is more than 0. The arrow ← denotes the
affectation of the value on its right to the register on its left. The machine stops
when it encounters a Stop instruction. We assume that the machine stops on
every input.

An input of the machine is a word x = x1x2 . . . xn, with xi ∈ {0, 1} for all
i ≤ n. The size n is stored in the register I(0), and for all 1 ≤ i ≤ n, I(i) = xi.
The output of the machine is the binary word w = w1w2 . . . wk where wi is the
binary representation of the integer in R(i) when the machine encounters the Stop
instruction and k is the last index such that R(k) is non zero.

There are several different models of RAM machines and of ways to define their
complexity (see [vEB91]), but they are essentially equivalent for the problems we
are dealing with. To study classes of low complexity, such as linear time, one has
to be particulary careful with the way one represents the input, or the cost of an
arithmetic operation, but it is not relevant in this thesis and we adopt the uniform
measure for its simplicity.

In this model, every instruction is counted as one step, regardless of the size
of the values operated on. The time spent by a machine M on the input x is the
number of steps before stopping, we denote it by T (M,x). We want to relate the
time to the size of x rather than to x: we say that a machine is of time complexity
f(n) if max|x|=n T (M,x) = O(f(n)).

The other classical measure is the space used by M on the instance x. It is
defined as the maximum of the accessed registers indices and of the integers stored
during the computation of M on x.

A RAM machine computes a function from {0, 1}∗ to {0, 1}∗. Hence it can
compute a decision, a search or a counting problem, by encoding the relevant
alphabet in {0, 1}∗. For the enumeration problems, we change the model, since
we do not want to compute a word which represents the set of solutions and stop,
but rather to output the solutions one after the other.

1.2.3 RAM machine for enumeration

To the previously defined RAM machine, we add an instruction Output. The
output of such a RAM machine is the sequence of words (w1, . . . , wn), where wi
is the binary encoding of the integer in A when the the ith Output instruction is
executed.

Let M be such a machine and x a word, we write M(x) the result of the
computation of M on x. Sometimes we will use M(x) to denote the set of outputs
although it is a sequence. We note |M(x)| the size of the output sequence, which

1.2. COMPLEXITY 9

is equal to the number of Output instructions executed. Given a RAM machine
M and an input x, we note T (M,x, i) the number of instructions executed before
the ith Output. This function is defined for 1 ≤ i ≤ |M(x)| and we extend it at
i = 0 by 0 and at i = |M(x)|+ 1 by the number of instructions before M stops.

Discussion: The RAM machine model is usually chosen over the Tur-
ing Machine model, when one wants to define low complexity classes and
also because it is closer to a real computer. Most of the time, complexity
theorists do not care about the model because a Turing machine may be
simulated by a RAM machine with only a polynomial overhead and con-
versely. But this simulation is not uniform, in the sense that if we isolate
a part of a computation done by a RAM machine, the Turing Machine
may need an exponentially bigger time to achieve the same task. More
specifically, with a RAM machine, we may deal with an exponential size
structure such as a binary search tree in polynomial time, whereas it is not
possible with a Turing machine. This is useful for enumeration problems,
and has been implicitly used to enumerate the maximal independent sets
of a graph in lexicographic order in [JPY88].

We study two complexity measures, the first one is the same as for the classical
RAM machine:

Definition 1.12. Let M be a RAM machine, and let x be a word. The total time
taken by M on x is T (M,x, |M(x)|+ 1). We say that the machine M has a total
time f(n) if max|x|=n T (M,x, |M(x)|+ 1) = O(f(n)).

The next measure is specific to enumeration and its study is the main objective
of enumeration complexity.

Definition 1.13. Let M be a RAM machine, let x be a word and i be an integer.
The delay between the ith and the i + 1th Output is the quantity T (M,x, i +
1)− T (M,x, i), when it is defined. We say that the machine M has a delay f(n)
if max|x|=n maxi≤|M(x)| T (M,x, i+ 1)− T (M,x, i) = O(f(n)).

1.2.4 Other complexity measures

In some settings, it can be useful to use another computation model and therefore
a different complexity measure. One convenient model is to define an object by
some of its properties that we can test in constant time. It is often called a
black box or an oracle model. We must adapt the RAM machine to the case of a
computation with an oracle.

10 CHAPTER 1. PRELIMINARIES

Definition 1.14. A RAM machine with oracle has a sequence of new registers
O(0),O(1), . . . and a new instruction Oracle. The semantic of the machine
depends on the oracle, which is a function f from {0, 1}∗ to {0, 1}∗. We call w
the word which is encoded in the register O(0),O(1), When the instruction
Oracle is executed, the machine writes in the register A the value of f(w).

The complexity measures of this particular model, in addition to the total time
and delay are the number of calls to the oracle and the size of the words which
are given as arguments to the oracle. One usually uses this model to work with
multivariate polynomials since it helps give lower bounds and it abstracts away
the operation of evaluating the polynomial. In Chapter 3, most of the results are
obtained for this black box model with f a multivariate polynomial.

When one devises an algorithm to solve a problem whose instances are ma-
troids, the representation of the matroids matters. One may ask a matroid to be
represented by the collection of its independent sets (or circuits, bases, . . .). This
collection can be exponential in the number of elements of the matroid. Most com-
plexity problems become trivial in this setting, and the usual way to address this
is to assume we have a black box deciding in constant time if a set is independent
or not, see [KBE+05]. We may also consider subclasses of matroids, for which we
do not need the explicit set of independent sets, because we can decide if a set is
independent or not in polynomial time. The cycle and vector matroids have this
convenient property, which allows to turn a black box algorithm into a classical
one. Two additional classes of matroids, with efficient decision of independence
are given in Chapter 6.

1.2.5 Complexity classes: a short zoology

Since complexity theorists are tidy people, they like to put problems in big boxes
with a nice label on it, and when there are none available, they create one with an
exotic name. Thoses boxes or ”classes” are sets of problems, which can be solved
by machines whose capacities and running time are restricted.

For instance, we say that a language L (or a decision problem) is in the class
P, if there is an integer k and a machine which computes 1 on the input x when
x ∈ L and 0 otherwise in a time O(|x|k) for all inputs x. In the same vein, we call
FP the class of functions computable by a RAM machine in polynomial time.

Reductions A fundamental tool to study complexity classes is the notion of
reduction, which relates the complexity of one problem to another. The idea is
that if a problem A is reducible to B, then an algorithm which solves B can be
used to solve A.

Definition 1.15 (Polynomial-time many-one reduction). Let L1 and L2 be two
languages, we say that L1 is many-one reducible to L2, if there is a polynomial
time computable function f such that x ∈ L1 iff f(x) ∈ L2.

1.2. COMPLEXITY 11

To study low complexity classes, we may change the condition that f is poly-
nomial time computable into f is log-space computable. The polynomial-time
many-one reduction is only useful to compare two decision problems. On the
other hand, the next reduction is adapted to counting and enumeration problems.

Definition 1.16 (Parsimonious reduction). We say that the predicate A reduces
parsimoniously to the predicate B if there are two polynomial time computable
functions f and g such that A(x, y) if and only if B(f(x), g(x, y)) and g(x, .) is a
bijection from A(x) to B(x).

For each reduction and class of problems we define the notion of hardness. We
say that a problem A is hard for a class C, if all problems in C reduce to A. If A is
also in C, we say that A is complete for C. One says that a class C is stable under
reduction, if any problem reducible to a problem in C is also in C.

The class NP and the polynomial hierarchy One of the highest achieve-
ments of the complexity theory is the introduction of the class of NP problems and
all the work done to understand them. We present them without introducing the
non deterministic machines, since the “logical” characterization, a.k.a. witness
checking, is more adapted to our exposition. The most well-known question of the
complexity theory is wether P 6= NP. This is widely believed to be true, but has
still resisted any attempt to prove it. We relate several questions to this one in
Section 2.3.

Definition 1.17.

1. The class NP is the set of decision problems associated to predicates decid-
able in polynomial time.

2. The class #P is the set of counting problems associated to predicates decid-
able in polynomial time.

There is an analog to NP for enumeration problems, we present it and other
complexity classes for enumeration with much details in Chapters 2 and 3. We
have seen how to define four problems from a predicate (decision, search, counting
and enumeration), the next example shows how their complexity may be different.

Example 1.18. Consider the predicate Matching(M,G) which is true when M
is a perfect matching of the graph G. The problem ∃.Matching is solvable in
polynomial time thanks to Edmond’s algorithm [Edm65] which is an improvement
of the simple algorithm which works for bipartite graphs. It solves in fact the
search problem, since it builds a matching by the augmenting path technique.

On the other hand, the problem].Matching is #P-complete, even for bipar-
tite graphs [Val79], this result is proved by a sequence of Turing reductions from
]Sat.

Finally, there is a very efficient algorithm to enumerate perfect matching in
bipartite graphs with a total time linear in the number of matchings [Uno97].

12 CHAPTER 1. PRELIMINARIES

The most celebrated problem in NP is Sat. It is complete for the class NP
[Coo71] under parsimonious reduction. It is defined by:

SAT
Input: a propositional formula φ in conjunctive normal form
Output: accept if there is a truth value assignment of the variables such that φ is
satisfied

The following restrictions of propositional formulas give rise to satisfaction
problems of different complexities.

• A clause is ternary if it is the conjunction of three literals. The problem of
the satisfaction of a conjunction of ternary clauses is denoted by 3CNF-SAT
or 3CNF and is NP-complete.

• A clause is binary if it is the conjunction of two literals. The problem of the
satisfaction of a conjunction of binary clauses is denoted by 2CNF-SAT or
2CNF and is in P.

• A clause is Horn if it contains at most one positive literal. The problem of
the satisfaction of a conjunction of Horn clauses is denoted by Horn-SAT
and is P-complete for log-space reductions.

• An affine clause is an equation over the variables seen as elements of F2.
For instance, x1 ⊕ ¬x2 ⊕ x3 = 1 is an affine clause. The problem of the
satisfaction of a conjunction of affine clauses is denoted by Affine-SAT
and is in P.

Let y1 and y2 be assignments of the variables of a formula. If we want to
compare them, one can say that y1 < y2 if all the variables set to true in y1 are
also set to true in y2 (it is the pointwise order). A solution greater than any other
for this order is said to be maximum.

The Hamming weight of a solution is the number of variables set to 1. We
define a partial order by saying that y1 < y2 iff w(y1) < w(y2). A solution greater
than any other for this order is said to be maximal. Remark that a maximal
solution is also maximum.

Usually finding a maximal solution is harder than finding a maximum solution.
For instance, one can find a maximum independent set in a graph in polynomial
time, while finding a maximal one is NP-hard.

Polynomial hierarchy The class of the complement of languages in NP is
denoted by coNP. Alternatively, from a polynomially balanced predicate A, one
defines the problem ∀.A, as the set of x ∈ Σ∗ such that Q is a polynomial and
∀y ∈ ΣQ(|x|)A(x, y). The class coNP is then the set of problems ∀.A, with A
decidable in polynomial time.

1.2. COMPLEXITY 13

One can further generalize the definition of NP and coNP by alternating the
quantifiers in front of the predicate. A language is in ΣP

k if it is the set of x ∈ Σ∗

such that Q1y1Q2y2 . . . QkykA(x, y1y2 . . . yk) and Q1 = ∃. When Q1 = ∀, it is in
the class ΠP

k . There is a natural complete problem for ΣP
k , the quantified boolean

satisfaction problem with k alternations of quantifiers denoted by QBFk. It is
the problem to decide wether Q1y1y2 . . . Qkykf is true, where f is a propositional
formula in the variables y1, . . . , yk and Q1 = ∃.

The polynomial hierarchy, denoted by PH, is the union of all ΣP
k and ΠP

k .
It is easy to prove that if P = NP then the whole hierarchy collapses: P = PH.
Toda has proved a beautiful theorem [Tod91], which states that, up to a particular
reduction, PH is included in #P.

Other classes Here we give some classes defined by different complexity mea-
sures and computational models. We say that a problem is in PSPACE if it is
decidable by a machine which uses a space O(|x|k) for all instances x. The problem
QBF, defined like QBFk but with no restriction on the alternation of quantifiers,
is PSPACE-complete. One can also prove that #P ⊆ PSPACE.

Since it is widely believed that NP-complete problems can only be solved in
exponential time, complexity theorists have tried to extend the class of easy or
“tractable” problems. One idea is to increase the power of a machine, here by
giving access to randomness, and to compute problems with a good probability.

A probabilistic RAM machine has the additional instruction Rand which
writes with probability one half 0 or 1 in a special register. We say that a proba-
bilistic RAM machine computes the word w on the instance x with probability p
if p is the number of runs on x for which the machine computes w divided by the
total number of runs. The class we now define is considered to be the probabilistic
equivalent of P.

Definition 1.19 (BPP). A language L is decidable in Bounded-error Probabilistic
Polynomial time, BPP if there is a probabilistic machine M always running in
polynomial time such that:

• ∀x ∈ L, Pr(M(x) = 1) ≥ 2
3

• ∀x /∈ L, Pr(M(x) = 1) ≤ 1
3

It is conjectured that BPP = P but the best result so far is the inclusion
BPP ⊆ ΣP

2 ∩ΠP
2 [Sip83]. In fact, most of the problems in BPP are also in one of

its subclasses, called RP, that we now introduce. The class RP is easily proved to
be in NP (but still not in P).

Definition 1.20 (RP). A language L is decidable in Randomized Polynomial
time, RP if there is a probabilistic machine M always running in polynomial time
such that:

• ∀x ∈ L, Pr(M(x) = 1) ≥ 2
3

14 CHAPTER 1. PRELIMINARIES

• ∀x /∈ L, Pr(M(x) = 1) = 0

Another idea to speed-up exponentially a computation is to allow parallel
computation on a polynomial number of processors. The class NC is the set
of decision problems decidable in polylogarithmic time on a parallel computer
with a polynomial number of processors. It does not depend on the model of
parallel computer and can be alternatively defined to be the decision problems
decidable by a uniform family of Boolean circuits with polylogarithmic depth and
a polynomial number of gates. A problem is in randomized NC, denoted by RNC,
if it is decided with probability 3

4 by a family of randomized Boolean circuits with
polylogarithmic depth and a polynomial number of gates. For more details on
parallel computation see [GHR95].

1.3 Logic

We recall a few key concepts about logic, a good and thorough exposition of
different logics and their connections with complexity can be found in [Lib04].

1.3.1 Structure

A signature σ = {R1, . . . , Rk, f1, . . . , fl} is a set of relation symbols R1, . . . , Rk, a
set of function symbols f1, . . . , fl and the arity of each symbol, i.e. the number of
its arguments.

A structure is defined as a pair A = (A, {SA|S ∈ σ}) where A is a finite set
called the domain of A and SA is the interpretation of the relation or function
S. If S is a relation of arity r, SA is a subset of Ar. If S is a function of arity r,
SA is a function from Ar to A. We say that a structure is relational if there is no
function symbol in its signature.

Example 1.21. Let σ = {E} where E is a relation symbol of arity two. Let
A = (D,EA) a finite σ structure, it represents a graph G. The vertices of G are
the elements of the domain D and there is an edge (x, y) in G if and only if E(x, y).
In fact, every graph is represented by such a structure and it is the canonical way
to do it (but not the only one).

1.3.2 First-order logic

The first order logic or FO is the name of a family of formulas and a way to
interpret them over structures. The first order formulas are defined inductively
on a signature σ. They are built from an infinite set of variables x, y, z, . . . , the
negation, conjunction and disjunction symbols ¬, ∧ and ∨, the quantifier symbols
∃x and ∀x and the elements of σ. A term is either a variable or a function symbol
of σ applied to terms. An atomic formula is an equality between two terms or a
relation applied to terms. A formula is in the closure of the atomic formulas by
logical connectives and quantifiers.

1.3. LOGIC 15

The set of free variables of a formula is defined as usual and we note φ(x1, . . . , xn)
a formula with free variables x1, . . . , xn

A prenex formula is of the form Q1 . . . Qnψ where Qi is a quantifier and ψ
has no quantifier. It is well known that every formula can be transformed into an
equivalent prenex formula.

One defines interesting fragments of FO, by restricting the number of quan-
tifiers in a formula. For instance, the set of formulas of the form ∃x1, . . . , xnψ
where ψ has no quantifier is denoted by ∃FO.

Finally, the semantic of the formulas, that is to say their interpretation on a
model, is defined as usual, by interpreting a variable as an element of the domain,
the relations and functions of the language by their interpretation. We write
(A, ā) |= φ(x̄), the fact that φ(ā) is true on the model A.

A property is a class of models with the same signature. Let P be a property,
it is expressible in a logic, here FO, if there is a formula φ ∈ FO such that:

M ∈ P ⇔M |= φ

Example 1.22. On a structure which represents a graph, as in Example 1.21,
the formula φ is true if the graph has no triangle.

φ = ∀x∀y∀z¬(Exy ∧ Eyz ∧ Ezx)

1.3.3 Second-order logic

One extends the first order logic by second-order variables denoted by capital let-
ters X,Y, Z, . . . which represent relations on the domain instead of elements. The
second-order logic, written SO, is defined like FO except it also has X(t1, . . . , tk)
for atomic formula where the t’s are terms and X is a second-order variable of
arity k. We also take the closure of atomic formulas by second-order quantifiers
∃X and ∀X.

We study a restriction of SO, the monadic second-order logic MSO, where all
second-order variables are of arity one and thus represent sets. One can express
properties in MSO logic, which are not definable in FO.

Example 1.23. It can be shown that graph connectivity cannot be expressed in
FO (see [Lib04]). On the other hand, it is expressible in MSO by the negation of
the following formula:

∃X(∃xX(x) ∧ ∃x¬X(x) ∧ (∀x∀y(X(x) ∧ ¬X(y))→ ¬E(x, y)))

The notion of expressivity enables us to characterize complexity classes by a
logic (implicit compexity). For instance, Fagin has proved that ∃SO captures NP
[Fag74], that is the problems on finite models which are in NP are expressible in
∃SO.

16 CHAPTER 1. PRELIMINARIES

1.3.4 The model-checking problem

The bridge between logic and complexity is the problem of model-checking : given
a formula φ in a logic L and a structure A, does A satisfy φ ?

It is a natural problem, which appears in many fields of computer science such
as verification, database, constraint satisfaction . . . The complexity of the model-
checking has been extensively studied for various logics and type of structures.
Moreover, one can study the complexity of such problems in terms of |A| and |φ|
(combined complexity), but also in term of |A| only (φ is fixed: data complexity)
or in term of |φ| (|A| is fixed: expression complexity).

We can characterize the complexity class NP thanks to model-checking. Let
S = ({0, 1}, ∅) be the model with a 2 element domain over an empty signature.
The model-checking of the logic ∃FO over S is nothing but the problem SAT. If
we want to decide all FO over S, the model checking is the problem Qbf.

Finally the model checking of MSO on trees has a deep relationship with tree
automata and this can be used to study more complex objects such as graphs and
matroids but we postpone this subject to Chapter 5.

1.4 Polynomials

Polynomials are certainly the most used functions in mathematics and are ubiqui-
tous in complexity theory where they serve to bound the ressources of computa-
tions, as a model of computation, or to encode solutions of classical combinatorial
problems like the Tutte polynomial.

We consider polynomials with n variables and coefficients in a ring, which is
most of the time a finite field, Z or Q. Usually, we call the variables X1, . . . , Xn or
all at once ~X. A sequence of n positive integers ~e = (e1, . . . , en) defines the term
~X~e = Xe1

1 X
e2
2 . . . Xen

n . A monomial is a term multiplied by a scalar, which is its
coefficient, and a polynomial is a sum of monomials.

The degree of a monomial λ ~X~e is maxi=1,...,n ei. The total degree of this mono-
mial is

∑
i=1,...,n ei. The (total) degree of a polynomial is the maximum of the

(total) degrees of its monomials. All the examples we give here are multilinear
polynomials, meaning that their degree is 1.

1.4.1 Representation

There are several ways of representing a polynomial. First we can store the list
of coefficients of its monomials or its explicit representation in any other base.
This representation does not give an efficient way of computing or even storing
the polynomial. Indeed, a polynomial with n variables and degree d may have

up to dn monomials. For instance
∑
I⊆[n]

∏
i∈I

Xi is a multilinear polynomial with 2n

monomials.

1.4. POLYNOMIALS 17

We can store the factorized form of a polynomial: it is represented by a list
of polynomials of which it is the product. The former polynomial may be written∏
i∈[n]

(Xi + 1) which is the product of only n degree one polynomials.

The generalization of this approach is to represent a polynomial by an arith-
metic circuit. It is a directed acyclic graph, whose nodes of indegree zero are called
input gates and are labeled by either a variable or a ring element. All the other
nodes are of indegree two and labeled by either + or ×. An arithmetic formula is
a circuit whose underlying graph is a directed tree.

The polynomial computed by an arithmetic circuit is defined inductively:

• for an input gate, it is the label

• for a node labeled +, which receives edges from two nodes computing f and
g, it is f + g

• for a node labeled ×, which receives edges from two nodes computing f and
g, it is f × g

One defines the formal degree of a circuit inductively. The degree of an input
gate is one, the degree of a + node is the maximum of the degrees of its inputs
and the degree of a × node is the sum of the degrees of its inputs. Notice that
there is a simple algorithm to evaluate a polynomial represented by a circuit on
any input. The evaluation algorithm is polynomial in the size of the circuit, the
size of the input and the formal degree.

We may further abstract the notion of representation of a polynomial by saying
that any algorithm which computes the same function as a polynomial represents
this polynomial. Finally, we may assume that we do not know the algorithm
which computes the polynomial, but that we have access to one. This model of
polynomial given by a black box is used for the following problem:

Polynomial Identity Testing

Input: a polynomial given as a black box.

Output: decides if the polynomial is zero.

One is also interested in finding an explicit representation of a polynomial given
by a black box, this problem is called Polynomial Interpolation.

We will now give three examples of polynomials, with n2 variables noted
(Xi,j)(i,j)∈[1,n]2 , which can thus be seen as applied to the n × n matrix X. By
choosing a good representation of a graph by a matrix, we can also associate those
polynomials to graphs.

18 CHAPTER 1. PRELIMINARIES

1.4.2 Examples

Determinant The Determinant has been defined in linear algebra to charac-
terize systems of linear equations or matrices of full rank.

det ~X =
∑
σ∈Σn

sg σ

n∏
i=1

Xi,π(i)

Here sg denotes the signature of a permutation, which is either 1 or −1.
To a graph G, we associate the matrix MG such that Mi,j = Xi,j if (i, j) is an

edge of G and 0 otherwise. We write det(MG) for the determinant of the matrix
MG, which is a projection of the full determinant in n2 variables. There is a
bijection between the cycle covers of the graph G and the monomials of det(MG).

We can also relate the determinant to the spanning trees of a graph G, by
defining its Kirchhoff matrix K(G): for i 6= j K(G)i,j = −Xi,j and K(G)i,i =∑
(i,j)∈E(G)

Xi,j . The Matrix-Tree theorem (see [Jer03]) is the following equality

where T is the set of spanning trees of G:

det(K(G)) =
∑
T∈T

∏
(i,j)∈T

Xi,j

The Determinant is easily computable, by gaussian elimination in O(n3) al-
gebraic operations. We can also use a dynamic programming algorithm [Rot01],
which does not use divisions and needs O(n4) algebraic operations. The most
elaborate algorithms [KV05] give the evaluation of the Determinant in (n2,7)1+o(1)

algebraic operations. There are also efficient randomized algorithms to deal with
the cost of the arithmetic operations. Any of these algorithms can be seen as a
representation of the Determinant.

We can also represent a Determinant of n2 variables by an arithmetic circuit
with divisions of size n3 or by an arithmetic formula of size 2O(log2 n) using Gaussian
elimination [Ber84]. This means that the computation of the Determinant is in
the class NC.

Pfaffian The Pfaffian is related to the Determinant, and may be seen as one
of its generalizations. One considers the set Π of all permutations π on [2n] such
that π(2t) = it and π(2t+ 1) = jt with ik < jk and i1 < · · · < i2n.

Pf(~X) =
∑
π∈Π

sg(π)Xi1,j1 . . . Xin,jn

Let G be a graph, we build the matrix AG such that (AG)i,j is

• Xi,j when (i, j) is an edge of G and i < j

• −Xi,j when (i, j) is an edge of G and i > j

1.4. POLYNOMIALS 19

• 0 when (i, j) is not an edge

The relation between the Pfaffian and the Determinant is Pf(AG)2 = det(AG)
[BR91]. Therefore the Pfaffian is as easy to compute as the Determinant. Each
monomial of Pf(AG) is of the form ε(M)

∏
(i,j)∈M Xi,j , where M is a perfect match-

ing of G and ε(M) is 1 or −1.
Moreover one generalizes the definition of AG to an orientation of G by saying

that (A ~G)i,j is Xi,j if (i, j) is an edge and −Xi,j if (j, i) is an edge. One can prove
that for every so called Pfaffian orientation of G, the coefficients ε(M) in Pf(A ~G)
are all the same, that is to say the Pfaffian is the perfect matching polynomial up
to a sign. Since every planar graph admits a Pfaffian orientation, we can use this
fact to compute the number of perfect matchings in a planar graph in polynomial
time [Kas61].

Permanent

Per ~X =
∑
σ∈Σn

σ

n∏
i=1

Xi,π(i)

The Permanent looks like the Determinant and its monomials are also in bijection
with the cycle covers of a graph. Alternatively, one may consider that its monomi-
als are in bijection with the perfect matchings of a bipartite graph. Its evaluation
is #P complete over Z [Val79], since it may be used to count the number of perfect
matching of a bipartite graph. However, over F2, it is equal to the determinant
and thus easy to compute.

20 CHAPTER 1. PRELIMINARIES

Part I

Complexity

21

Chapter 2

Enumeration

In the last 30 years, numerous results on enumeration complexity have been pub-
lished but they are of different nature and this field is still somewhat fragmented.

First, a lot of enumeration algorithms of interesting combinatorial objects have
been designed. For some authors, the considered complexity measure is the total
time or the amortized time (total time divided by the number of solutions). For
instance, we know how to enumerate efficiently with respect to this measure the
perfect matchings [Uno97], the spanning trees and the maximal matchings [AF96],
the linear extensions of a partial order [PR94], There are also results with
an emphasis on the delay, although the resulting algorithms often seem of less
practical interest: independent sets of matroids [KBE+05], maximal acyclic sub-
hypergraphs [DH09], independent sets [JPY88], assignments of a 2-SAT formula
[KSS00], . . .

The enumeration of the transversals of a hypergraph has also attracted a lot of
attention, since this problem seems to have a lot of applications in different fields
of computer science [KS93, EG95, FK96, EG].

If one introduces concepts like precomputation and local transformations, one
can study algorithms with a very low delay (linear or constant). There are a
number of results which state that a query –the enumeration of the satisfying
assignments of a formula– can be enumerated with such a low delay. For instance,
first-order queries on structures of bounded degree are computable with constant
delay [DG07] and one can even compute the jth solution of such queries in linear
time [BDGO08]. In the same vein, MSO queries on terms and thus on graphs or
matroids of bounded branch-width can be enumerated with linear delay ([Cou09]
and Section 6.4).

Finally, there have been some attempts to classify the complexity of enumera-
tion problems [JPY88, KSS00]. In this chapter our aim is to extend this classifica-
tion by introducing new classes and to prove some simple but useful properties of
these classes. We inspire ourselves from all tools, classes and concepts introduced
for classical complexity and try to adapt them to this particular context.

23

24 CHAPTER 2. ENUMERATION

2.1 Basics

We recall here the definition of an enumeration problem:

Definition 2.1 (Enumeration Problem). Let A ⊆ Σ∗ × Σ∗ be a polynomially
balanced binary predicate, we write A(x) for the set of y such that A(x, y) holds.
The enumeration problem Enum·A is the function which associates A(x) to x.
A RAM machine solves Enum·A if, for each x ∈ Σ∗, it computes a sequence
y1, . . . , yn such that:

1. {y1, . . . , yn} = A(x)

2. i 6= j ⇒ yi 6= yj , for all i, j

One might require the elements of the enumeration to be generated in a partic-
ular order. This constraint increases the complexity of the enumeration problem
and is sometimes considered in the literature [ASY, JPY88, DH09].

Definition 2.2 (Enumeration order). Let Σ be a finite alphabet and let {<x}x∈Σ∗

be a sequence of total orders on Σ∗ that we write <. We say that < is an enu-
meration order if there is a polynomial time algorithm, which given x, y1 and y2

decides if y1 <x y2.

Example 2.3.

• The lexicographic order for enumeration, denoted by<lex, is the set {<x}x∈Σ∗ ,
where each <x is the lexicographic order on Σ∗.

• Let Σ = {0, 1}, the enumeration order <w is the set of orders {<x}x∈Σ∗ ,
where u <x v if w(u) < w(v) (w is the Hamming weight).

In these two examples, the enumeration order is one order instead of a family.
However, the possibility to have a family of order is useful, since the order on
solutions which is considered in many problems often depends on the instance.

Definition 2.4 (Ordered Enumeration Problem). Let Enum·A be an enumera-
tion problem and let < be an enumeration order. The pair (A,<) is an ordered
enumeration problem, which is denoted by Enum·(A,<). A RAM machine which
solves Enum·A also solves Enum·(A,<), if for every x it generates a sequence
y1, . . . , yn sorted in increasing order according to <x.

Discussion: We could unify ordered and unordered enumeration prob-
lems by defining partially ordered enumeration problems, where the order
<x is partial and may then be empty or total. But a lot of properties
or their demonstrations are different in the ordered and unordered case.
Therefore a lot of results would be stated for the two special cases and
the unification would be artificial. Moreover, the case of a partial order,
which is neither total or empty, is sometimes very difficult to deal with,
when it comes to classification and reduction of enumeration problems.

2.2. COMPLEXITY MEASURES AND CLASSES 25

We define a complexity class similar to NP or #P for enumeration, by a re-
striction of the predicates the problems are defined from.

Definition 2.5. The problem Enum·A (respectively an ordered enumeration
problem Enum·(A,<)) is in the class EnumP (resp. EnumPo) if the predicate
A(x, y) is decidable in polynomial time.

Note that the order plays no role in the definition of the class, then if Enum·A ∈
EnumP then for all enumeration orders <, Enum·(A,<) is in EnumPo. We
recall now the notion of parsimonious reduction, since it is adapted to enumeration
problems and to this class especially.

Definition 2.6 (Parsimonious reduction). Let Enum·A and Enum·B be two enu-
meration problems (resp. Enum·(A,<1) and Enum·(B,<2) two ordered enumer-
ation problem). A parsimonious reduction from Enum·A to Enum·B (resp. from
Enum·(A,<1) to Enum·(B,<2)) is a pair (f, g) of polynomial time computable
functions such that A(x, y) if and only if B(f(x), g(x, y)) and g(x, .) is a bijection
(resp. an increasing bijection) from A(x) to B(x).

For obvious reason, the class EnumP is closed under parsimonious reductions.
Moreover we know that every NP problem is parsimoniously reducible to the
problem SAT. Therefore the problem Enum·SAT is EnumP-complete.

Remark 2.7. We would like to find a complete enumeration problem, whose
decision is not hard. This question is inspired by the fact that counting the
matchings of a graph is #P-complete, whereas deciding if there is one is in P. To
answer this question we have to propose new reductions adapted to enumeration
problems.

We give here an artificial problem which is not complete for parsimonious re-
ductions, but which has an efficient enumeration algorithm if and only if Enum·SAT
has one. Let A be the predicate such that A(x, 0) is true and A(x, 1y) is true if
SAT(x, y). This problem cannot be complete for parsimonious reductions, be-
cause the decision problem is trivial (always true). However Enum·A can be seen
as “complete” since we can simulate any other enumeration problem only by re-
moving the 0 solution. It suggests a kind of subtractive reduction, but we will see,
in Section 2.5, that it does not enjoy as good properties as for counting problems
[DHK05].

2.2 Complexity measures and classes

One of the most studied problems in enumeration is the following:

Enum·MaxIS
Input: a graph
Output: all the maximal (for the inclusion) independent sets of the graph

26 CHAPTER 2. ENUMERATION

In an article by Johnson et al. [JPY88] about Enum·MaxIS, the notions
of polynomial total time, incremental polynomial time and polynomial delay are
introduced. They correspond to the first three classes of the five we define in this
section.

In this thesis, all considered enumeration problems will be in the class EnumP,
i.e. the predicates which define them are all decidable in polynomial time.

Discussion: The separation of the classes defined in this section are
made harder (but more interesting) by this hypothesis. In fact, the time
hierarchy theorem is enough to separate unconditionally all classes if we
do not ask the problems to be in EnumP.
This hypothesis is not too strong since most studied enumeration prob-
lems, if not all, satisfy it. Furthermore the problems in EnumP enjoy
better properties, for instance stability by union (Section 2.5) and the
randomized classes we define in Chapter 3 are more robust when inter-
sected with EnumP.

2.2.1 Polynomial total time

Let M be a RAM machine, recall that T (M,x, i) is the number of steps before
the ith instruction Output. From now on, the machine M will be clear from the
context and we will write T (x, i) instead of T (M,x, i).

Definition 2.8. A problem Enum·A (resp. Enum·(A,<)) is computable in poly-
nomial total time, written TotalP (resp. TotalPo) if there is a polynomial Q(x, y)
and a machine M which solves Enum·A (resp. Enum·(A,<)) and satisfies for all
x, T (x, |M(x)|+ 1) < Q(|x|, |M(x)|).

Remark 2.9. It has been remarked in [JPY88] that to study TotalPo, the or-
der is not relevant. Indeed, one can always generate all solutions in any order,
sort them and then output them in the desired order. This means that when
Enum·A ∈ TotalP, for all enumeration orders <, (Enum·A,<) ∈ TotalPo. How-
ever, this method requires to store all solutions before sorting them. Therefore
this algorithm can use a space exponential in the input, while an algorithm which
does not respect the order could be better for this measure.

One can imagine a “better“ way of dealing with the order, which uses less space
but slightly more time. Let (Enum·A,<) be an ordered enumeration problem and
let M be a machine which solves in polynomial total time the problem Enum·A.
We want to find the minimal element of A(x) larger than a given y for the order
<x. To do this, one only has to enumerate the whole set A(x) thanks to M and
use an auxiliary variable to store the smallest element larger than y.

2.2. COMPLEXITY MEASURES AND CLASSES 27

Then one recursively calls this algorithm on x and y set to the last generated
solution. It stops when there are no solutions larger than y. This algorithm
outputs the solution of A(x) in the order <x in a time which is the time of a run
of M on x multiplied by |A(x)|. On the other hand, one only uses two additional
variables in addition to the space M uses. Hence, if M works in polynomial space
and polynomial total time, this algorithm has the same space and time complexity.

Example 2.10.

Enum·Transversal
Input: a hypergraph
Output: all the transversals of the hypergraph

One can decide if a set of elements is a transversal in polynomial time, therefore
Enum·Transversal is in EnumP. It is known that one can enumerate the
transversals of a hypergraph in subexponential total time, that is to say a total
time no(logn) where n is a polynomial in the size of the input and the number of
solutions [FK96]. Several restrictions to this problem have also been proved to
be in TotalP, for instance if the hypergraphs are all k-uniform. The question
of proving whether the general Enum·Transversal problem is in TotalP has
consequences in boolean logic, database theory and artificial intelligence [EG95].

From any problem Enum·A we define the following characteristic decision
problem:

AllSolutionA
Input: an instance x and a set S included in A(x)
Output: accept if A(x) \ S = ∅, else reject

We can relate the complexity of this decision problem to the complexity of
Enum·A as in [KSS00].

Lemma 2.11. If Enum·A ∈ TotalP then AllSolutionA ∈ P.

Proof. Let M be a machine which solves Enum·A in time Q(|x|, |A(x)|) where Q
is a polynomial. Let (x, S) be an instance of AllSolutionA. One runs M for a
time Q(|x|, |S|). If M ends and outputs exactly the set of solutions S then accept,
else reject. This algorithm is polynomial in |x|, |S| and it solves AllSolutionA,
therefore AllSolutionA ∈ P.

This problem is the first example of the relations between decision and enu-
meration, which helps us to transfer classical decision results in enumeration. In
fact this lemma is used in [KSS00] to prove that the problem of enumerating all
maximal models of a Horn Formula is not in TotalP if P 6= NP. The converse of
this lemma is not known (nor believed) to be true.

28 CHAPTER 2. ENUMERATION

2.2.2 Incremental polynomial time

In the next subsections, we define classes which deal with the dynamic of the
enumeration and are thus at the heart of enumeration complexity.

Definition 2.12. A problem Enum·A (resp. Enum·(A,<)) is computable in
incremental polynomial time, written IncP (resp. IncPo) if there is a polynomial
Q(x, y) and a machine M which solves Enum·A (resp. Enum·(A,<)) such that
for all x and i, T (x, i+ 1)− T (x, i) ≤ Q(|x|, i).

This class corresponds to the problems whose solutions are easy to find at the
beginning but for which it becomes harder and harder to find new ones. Most of
the algorithms which are known so far for problems of this class work by increasing
the set of solutions by means of a polynomial time rule, until saturation.

Example 2.13. The problem of enumerating the circuits of a matroid has been
proved to be in IncP [KBE+05]. The proof is given for a model, where the matroid
is given as an oracle. As soon as we can compute in polynomial time if a set is
independent or not, like for representable matroids given by a matrix, the result
holds. In fact, the harder problem of enumerating all the circuits to which belongs
a given element is also in IncP. We study it in more details in Section 2.6.

Let Enum·A be an enumeration problem, we define the following corresponding
search problem:

AnotherSolutionA
Input: an instance x of A and a subset S of A(x)
Output: an element of A(x) \ S and a special value if A(x) = S

One extends this definition of AnotherSolution to an ordered enumeration
problem in the following way:

AnotherSolution(A,<)

Input: an instance x of A and a subset S of A(x)
Output: the minimal element of A(x) \ S for <x and a special value if A(x) = S

The classes IncP and IncPo may be defined only by using these Another-
Solution problems, a proof for the ordered case is given below.

Proposition 2.14. AnotherSolution(A,<) ∈ FP⇔ Enum·(A,<) ∈ IncPo

Proof. Assume AnotherSolution(A,<) is computable in polynomial time, we
describe an algorithm which solves Enum·(A,<) on the input x. Let S be the
empty set. One applies the algorithm solving AnotherSolution(A,<) to x and
to S. If it outputs a solution, we add it to S and call recursively this algorithm
on x and S. If not, the algorithm stops.

Since AnotherSolution(A,<) gives a minimal solution for <x, the described

enumeration algorithm respects the order. The delay between the ith and the

2.2. COMPLEXITY MEASURES AND CLASSES 29

i+ 1th solution is bounded by the execution time of the algorithm AnotherSo-
lution(A,<) which is polynomial in |x| and |S| the number of already produced
solutions.

Conversely, assume that Enum·(A,<) ∈ IncPo. On an instance (x,S) of
AnotherSolution(A,<) we want to find a minimal solution which is not in S
if it exists. Assume that there is a solution in A(x) \ S, one enumerates |S| + 1
solutions thanks to the IncPo algorithm, in time polynomial in |S| and |x|. The
first generated solution which is not in S is a minimal element of A(x)\S and one
outputs it. If S = A(x), the enumeration will end in time polynomial in |S| and
|x|. In this case, one outputs ”None” meaning there is no other solution.

2.2.3 Polynomial delay

For practical applications, one wants the delay to be bounded uniformly, that is it
must not depend on the number of already enumerated solutions. This property
is captured by the following classes.

Definition 2.15. A problem Enum·A (resp. Enum·(A,<)) is computable in
polynomial delay, written DelayP (resp. DelayPo), if there is a polynomial
Q(x, y) and a machine M which solves Enum·A (resp. Enum·(A,<)) and satisfies
for all x and all i, T (x, i+ 1)− T (x, i) ≤ Q(|x|).

One alternative to this definition is to ask for the delay to be polynomially
bounded in the size of one output instead of the instance. This choice may be
different in some cases (see an example in [Cou09]). We may also ask the space
to be bounded polynomially, which would forbid some methods we describe in the
next sections.

The problem Enum·MaxIS paired up with the lexicographic order is known
to be in DelayPo [JPY88]. In this paper, although the delay is polynomial, the
space used during the enumeration is exponential. Indeed the algorithm maintains
a priority queue, which stores a potentially exponential number of solutions, and
this justifies our choice of a RAM machine model.

On the other hand, there is an algorithm which solves the unordered problem
[TIAS77] in polynomial space. In fact, it is even memoryless meaning that during
the enumeration, it uses the last generated solution and no other information to
find the next solution. The following class tries to formalize this property, which
is shared by many other algorithms.

Definition 2.16. A problem Enum·A is computable in strong polynomial delay,
written SDelayP, if for every x there is a total order <x such that the following
problems are in FP:

1. given x, output the first element of A(x) for <x

2. given x and y ∈ A(x) output the next element of A(x) for <x or “None“ if
there is none

30 CHAPTER 2. ENUMERATION

If the set {<x}x∈Σ∗ is an enumeration order denoted by<, we say that (Enum·A,<)
is in the class SDelayPo.

Example 2.17. The enumeration of the minimal spanning trees or of the maximal
matchings of a weighted graph are in SDelayP (see [AF96, Uno97]). In fact, a
problem which can be solved by a traversal of an implicit tree of solutions, without
storing global information is in SDelayP. We will see such an example in Section
3.4.

Let A be a predicate such that ∃.A is in P and the associated search problem
is computable by self-reduction. Then, Enum·A is in SDelayP. For a precise
definition of this notion and an example of a problem not self-reducible, see [KV91].
We now explain this property for the problem SAT.

Let φ(x1, . . . , xn) be a formula and let SAT (φ(x1, . . . , xn)) be the set of sat-
isfying assignments of φ(x1, . . . , xn). The set SAT (φ(x1, . . . , xn)) is equal to
SAT (φ(0, x2, . . . , xn)) ∪ SAT (φ(1, x2, . . . , xn)). Both formulas φ(0, . . . , xn) and
φ(1, . . . , xn) can be transformed into two logically equivalent formulas ψ(x2, . . . , xn)
and χ(x2, . . . , xn), which depend on the n− 1 variables x2, . . . , xn. We have then
reduced the decision of SAT on the instance φ on the decision of SAT on two
instances with less variables. If one can decide if one of the two formulas has a
satisfying assignment, we can use the same procedure on it and eventually build
a satisfying assignment.

We write SAT(C) the problem SAT on the formulas in C. If SAT is in P, one
can find the first satisfying assignment for the lexicographic order of φ(x1, . . . , xn)
in polynomial time. By doing a depth-first traversal in the tree of the partial
assignments of variables, which let the formula satisfiable, one enumerates all
satisfying assignments in SDelayP.

Proposition 2.18 (Creignou and Herbrard [CH97]). The problem Enum·SAT(C)
is in SDelayP when C is one of the following classes:

1. Horn formulas

2. anti-Horn formulas

3. affine formulas

4. bijunctive formulas

Sketch of the proof: One proves this proposition by checking that the result of a
substitution of a truth value to a variable in a formula of one of these four types of
formula is equivalent to a formula of the same type. Since the decision problem on
these classes of formula is in P, one can enumerate all solutions in lexicographic
order by the method provided before.

The enumeration version of such problems have also been studied with the
constraint of giving only minimal or maximal solutions (for inclusion), which make
them hard most of the time [KSS00].

2.3. SEPARATION BETWEEN CLASSES 31

Finally we introduce the class of enumeration problems, such that we have
access to any solution in polynomial time.

JthSolutionA
Input: an integer i given in binary and x ∈ Σ∗

Output: the ith element of A(x) in some total order <x or a special value if
|A(x)| < i

Definition 2.19. A problem Enum·A is in the class QueryP if JthSolutionA
is in FP. If the set {<x}x∈Σ∗ of orders in the definition of JthSolutionA is an
enumeration order, denoted by <, we say that (Enum·A,<) ∈ QueryPo.

Example 2.20.

Enum·LinearSystem
Input: a n ×m matrix M and a vector y of size m, both over the finite field F
Output: the set of vectors y such that My = b

The problem Enum·LinearSystem is in QueryP. The solution of the equa-
tion My = b is a vector subspace and one can compute one of its basis (y1, . . . , yk)
in polynomial time. The set of solutions is the set of vectors equal to λ1y1 + · · ·+
λkyk for all (λ1, . . . , λk) ∈ Fk. One orders these solutions by the lexicographic
order on the words λ1 . . . λk. One finds the ith such word (representation of i in
base k) and computes the corresponding vector in polynomial time.

Most of the known examples of QueryP problems are satisfaction problems
for restricted logics or over models with good properties. For instance, one the
enumeration of the satisfying assigments of a first order formula over structures of
bounded degree is in QueryP [BDGO08]. This is also true for a monadic second-
order formula over trees and over graphs or matroids of bounded branch-width
([Cou09] and Section 6.4).

Finally, one can easily count the number of solutions of a problem in QueryP.
It is generally not the case for the enumeration problems outside this class.

Proposition 2.21. Let A be a polynomially balanced predicate decidable in poly-
nomial time. If Enum·A ∈ QueryP then].A ∈ FP.

Proof. First remark that |A(x)| ≤ 2Q(|x|) for some polynomial Q. Since Enum·A ∈
QueryP, one can decide if |A(x)| < i in polynomial time in |i| and |x|. Thus by a
dichotomic search, one finds the exact size of A(x), with Q(|x|) dichotomic steps,
which proves that the counting problem is in FP

2.3 Separation between classes

We prove in this section that most of the previously defined classes are different
under reasonable complexity assumptions. The only exception concerns the two
most natural classes, IncP and DelayP, which are not known to be different.

32 CHAPTER 2. ENUMERATION

First notice that, when the number of solutions of a problem is polynomially
bounded, if the problem is in TotalP it is also in QueryP! Therefore most of the
separation results will use problems with a potentially super polynomial number
of solutions. However, there are “hard” search problems with few solutions. For
instance the problem of finding a prime factor of an integer is not proved to be in
FP but its decision version is in P [AKS04]. The associated enumeration problem
has a very small number of solutions to enumerate (linear in the size of the input),
and thus it cannot be in TotalP without being in QueryP. It is a good candidate
to separate EnumP from TotalP without relying on the hardness of the related
decision problem.

2.3.1 Unordered enumeration problems

The first proposition illustrates the collapse of the enumeration complexity classes
when P = NP. Conversely, the next ones explore the consequences of the collapse
of enumeration classes on decision classes.

Proposition 2.22. If P = NP then EnumP = SDelayP.

Proof. Recall that every problem in NP is parsimoniously reducible to SAT. The
same reduction proves that Enum·SAT is complete for EnumP. We assume
that P = NP, therefore we can decide SAT in polynomial time. Since SAT
is self-reducible one can design an algorithm in SDelayP for Enum·SAT, thus
EnumP = SDelayP.

Proposition 2.23. P = NP if and only if TotalP = EnumP.

Proof. Assume that Enum·SAT is in TotalP, then by Lemma 2.11 AllSolutionSAT

is in P. Since SAT reduces to AllSolutionSAT, we have P = NP.
Conversely assume that P = NP, Proposition 2.22 implies that TotalP =

EnumP.

Proposition 2.24. If TotalP = IncP then P = coNP ∩NP.

Proof. Let L be a language in coNP ∩ NP: there is a predicate A such that
L = {x |A(x) 6= ∅} and a predicate B such that L̄ = {x |B(x) 6= ∅}. Let Q be
a polynomial such that y ∈ A(x) or y ∈ B(x) implies that |y| ≤ Q(|x|). For
simplicity, say that L is a language in {0, 1}∗.

Let Π(x, y]w) be the predicate which is true if and only if A(x, y)∨B(x, y) and
|w| ≤ Q(|x|), that is to say we take the union of A and B and do some padding.

The set Π(x) is never empty, since if x ∈ L there is a y such that A(x, y)
holds and if not there is a y such that B(x, y) holds. Because of the padding,
there are more than 2|w| = 2Q(|x|) elements in Π(x) for each y satisfying either A
or B. Therefore the naive exhaustive enumeration algorithm is polynomial in the
number of solutions, which proves that the enumeration problem Π is in TotalP.

Assume IncP = TotalP, we have an incremental algorithm for the prob-
lem Enum·Π. In particular, it gives, on any instance x, the first solution y]w

2.3. SEPARATION BETWEEN CLASSES 33

in polynomial time and we can decide wether y satisfies A(x, y) or B(x, y) in
polynomial time. This procedure decides if x ∈ L in polynomial time therefore
P = coNP ∩NP.

Contrarywise to the previous proposition, we only have an implication. To
prove an equivalence, one may try to strengthen the conclusion of the last propo-
sition to P = NP or to prove that P = coNP ∩ NP implies TotalP = IncP. It is
unlikely that the two above statements can be easily proved at the same time or
we would have the seemingly difficult theorem P = NP⇔ P = coNP ∩NP.

Remark 2.25. At this point the separation of DelayP and IncP seems elu-
sive. Remark however that the total time spent by a DelayP algorithm is linear
in the number of solutions whereas it is polynomial for an IncP algorithm. In
fact, if we generalize these classes to enumeration problems defined by predicates,
which are not necessarily polynomial time decidable, we can prove that they are
unconditionally different thanks to the time hierarchy theorem.

The enumeration of circuits of a matroid studied in [KBE+05] is in IncP and
does not seem to be in DelayP. It could be a good candidate to separate DelayP
and IncP.

Proposition 2.26. If #P 6= FP then QueryP (SDelayP.

Proof. A careful analysis of the algorithm of [Uno97] which enumerates the perfect
matchings of a graph reveals that this problem is in SDelayP. If QueryP =
SDelayP, the counting of the perfect matchings is in FP by proposition 2.21.
Since it is a #P-complete problem, we have proved that #P = FP.

Corollary 2.27. If P 6= coNP ∩NP, the following inclusions hold:

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP.

2.3.2 Ordered enumeration problems

Notice that all separation results for unordered problems hold also for ordered
problems. Nevertheless, we need a new proof of the collapse of the enumeration
classes when P = NP.

Proposition 2.28. If P = NP then EnumPo = SDelayPo.

Proof. Let Enum·(A,<) ∈ EnumPo, we define the predicate Π(x]w, y) which is
true when y is the successor of w for <x in A(x):

Π(x]w, y) = ∀z[A(x, y) ∧A(x,w) ∧ w <x y ∧ (A(x, z)⇒ (z <x w ∨ y ≤ z))]

Since the predicate A and the order <x are polynomial time decidable, the decision
problem ∃yΠ(x]w, y) is in ΣP

2 . Hence, it parsimoniously reduces to the complete
problem Σ2SAT. It means that the reduction preserves the set of y which satisfy
Π(x]w, y) (which is here a singleton).

34 CHAPTER 2. ENUMERATION

Assume now that P = NP, the polynomial hierarchy collapses and Σ2SAT is
decidable in polynomial time. The problem Σ2SAT is self-reducible for the same
reasons that SAT is. Therefore the search problem associated to Σ2SAT is in FP.
Since ∃yΠ(x]w, y) parsimoniously reduces to Σ2SAT, one can find y such that
Π(x]w, y) in polynomial time. We have proved that from a solution w of A(x), we
can find the next one according to <x in polynomial time. We can also find the
first for <x in the same way, thus Enum·(A,<) ∈ SDelayPo.

For some separation results we can also do better than in the unordered case.
For instance one can relax the hypothesis needed to prove IncP 6= TotalP.

Proposition 2.29. P = NP if and only if IncPo = TotalPo.

Proof. It is known that Enum·MaxIS ∈ DelayP. Hence the problem is in
TotalP and also in TotalPo when paired with any enumeration order <. The
problem of deciding if a subgraph is the first maximal independent set of a graph
in the anti-lexicographic order is NP-complete [JPY88]. If IncPo = TotalPo, the
enumeration of the maximal independent sets of a graph in the anti-lexicographic
order can be done in incremental time. Therefore we can find the first in polyno-
mial time and P = NP.

The converse holds because of Proposition 2.28.

We can also uses the results on Enum·MAXIS to get a new separation of
classes:

Proposition 2.30. P = NP if and only if SDelayPo = DelayPo.

Proof. The problem of enumerating all maximal independent sets of a graph in
the lexicographic order is in DelayPo [JPY88]. In the same article it is proved
that given a maximal independent set, finding the next in the lexicographic order
is NP-complete. Assume SDelayPo = DelayPo, then by definition of SDelayPo

the previous problem is also in P, thus P = NP.

The converse holds because of Proposition 2.28.

Corollary 2.31. Assume P 6= NP, we have the following inclusions:

QueryPo (SDelayPo (DelayPo ⊆ IncPo (TotalPo (EnumPo.

2.4 The power of ordering

Here we briefly study how an enumeration problem can be made difficult by the
order alone. The fundamental example is the problem Enum·MaxIS which is hard
for the reverse lexicographic order but easy for the lexicographic order. It suggests
restrictions to the kind of order allowed to define an enumeration problem.

2.4. THE POWER OF ORDERING 35

2.4.1 Hardness through a family of orders

We use the predicate SAT(x, y) which defines the NP-complete SAT problem.
The assignments y of a formula x are encoded in such a way that |y| ≤ |x|.
Let O1(x, y) be the predicate true for all (x, y) such that |y| ≤ |x|. The problem
Enum·O1 is trivial: it is in QueryP. We denote by SAT (x) the set Σ|x|\SAT (x).

Definition 2.32. Let <1
x be an order on Σ∗ for each x ∈ Σ∗ with the following

properties:

• the restriction of <1
x to the sets SAT (x), SAT (x) and Σ>|x| is the lexico-

graphic order

• any element of SAT (x) is greater than any element of SAT (x), which is
greater than any element of Σ>|x|

Since the three sets are a partition of Σ∗, <1
x is a total order on Σ∗. Given x,

y1 and y2, one can decide in polynomial time in which of the three sets –SAT (x),
SAT (x) and Σ>|x|– y1 and y2 are. One also computes the lexicographic order of
y1 and y2 in linear time. From these informations, one can compare y1 and y2

for <1
x in polynomial time. Therefore, the set {<1

x}x∈Σ∗ that we write <1 is an
enumeration order.

Proposition 2.33. If P 6= NP, the problem (O1, <
1) is not in IncPo.

Proof. For each x ∈ Σ∗, the first element of O1(x) for <1
x is the least lexicographic

element of SAT (x) if it is not empty. Assume Enum·(O1, <
1) is in IncPo, one can

find in polynomial time the first element of O1(x). One decides if it is in SAT (x)
in polynomial time, which is equivalent to decide the emptyness of A(x), that is
to say the problem SAT in polynomial time.

2.4.2 Hardness through one order

After reading the previous subsection, one may think that the definition of an
enumeration order is not restrictive enough. Indeed, the hardness may come from
the lack of uniformity, since we have one order for each instance of the problem.
Assume now that an enumeration order does not depend anymore on x, i.e. it is
only a total order on Σ∗ computable in polynomial time.

We now consider the predicate O2(x, y) which is true when y = x]w and |w| ≤
|x|. Again, the enumeration problem Enum·O2 is very easy: it is in QueryP. We
denote by S the set of words of the form y = x]w with |w| ≤ |x|.

Definition 2.34. The order <2 has the following properties:

• the restriction of <2 to Σ∗ \ S is the lexicographic order

• let y1 = x1]w1 and y2 = x2]w2 be two elements of S. If x1 6= x2 then
y1 <2 y2 if and only if x1 <lex x2

36 CHAPTER 2. ENUMERATION

• if x1 = x2, then y1 <2 y2 if and only if w1 <
1
x1 w2, where <1

x1 is the order
defined in the previous section.

• the elements of S are all smaller than the elements of Σ∗ \ S for <2

The order <2 is total and computable in polynomial time for the same rea-
sons that <1 is. The following proposition holds; its proof is similar to that of
Proposition 2.33.

Proposition 2.35. If P 6= NP, the ordered problem (O2, <
2) is not in IncPo .

2.4.3 Hardness through one enumerable order

The previous example shows that we have yet to find a restriction on enumeration
orders strong enough to avoid these artificial hard problems. We could ask the
order itself to be enumerable, meaning that given an element y we can find in
polynomial time its successor in the order. Note that <1 and <2 do not satisfy
this condition, while the lexicographic order does.

We now give one problem which is made more difficult by such an order. This
time a part of the hardness comes from the problem, since we cannot encode easily
a NP-complete problem in such an order.

Let O3(x, y) be the predicate which holds when:

• y = 0]w, |w| ≤ |x| and Sat(x,w)

• y = 1]w and |w| ≤ |x|

The idea is that O3(x) contains all the elements in SAT(x) and an exponential
number of trivial solutions.

Proposition 2.36. The problem Enum·O3 is in DelayP. On the other hand, if
P 6= NP, Enum·(O3, <lex) is not in IncPo.

Proof. There is a polynomial delay algorithm for the unordered problem Enum·O3.
For x ∈ Σ∗, one enumerates all w ∈ Σ∗ with |w| ≤ |x|. For each of those w, one
tests in polynomial time if SAT (x,w) holds, if yes it outputs 0]w, and it also
always outputs 1]w.

Assume Enum·(O3, <lex) ∈ IncPo, one can find in polynomial time the mini-
mal solution in lexicographic order of O3(x). If x is in SAT, this solution is 0]w
with SAT (x,w) and w is minimal in lexicographic order for this property. If x is
not in SAT, the first solution is 1]. Hence, one decides SAT in polynomial time
and P = NP.

We now give other less artificial problems which are known to be in DelayP
without order but not even in IncPo for a specific enumeration order.

2.5. OPERATIONS ON PREDICATES AND ENUMERATION 37

• The problem Enum·MaxIS is in DelayP, but once paired with the reverse
lexicographic order, it is not in IncPo if P 6= NP. Notice that, though one
polynomial delay algorithm for Enum·MaxIS in the lexicographic order is
known, it uses an exponential space.

• Let < be an enumeration order on words representing graphs, such that
for two graphs G1 and G2, G1 < G2 if G1 has less vertices than G2. The
problem Enum·(MaxIS, <) is not in IncPo if P 6= NP. Indeed, the problem
to find the size of a maximum independent set of a graph is NP-complete.

• A polynomial delay algorithm to enumerate all maximal acyclic subhyper-
graphs of a hypergraph is given in [DH09]. In the same article, it is also
proved that the problem of finding the first lexicographic maximal acyclic
subhypergraph is coNP-complete, therefore the enumeration problem is not
in IncPo if P 6= NP.

• See Section 2.6 for a problem on matroids which can be solved in incremental
time, but not for the enumeration order <w.

2.5 Operations on predicates and enumeration

In this section we study the behavior of the enumeration problems with regard to
simple set operations. The first result on union of predicates is of interest since
it allows to design algorithms with a good delay even when there is no orders on
the solutions.

2.5.1 Union of predicates

Definition 2.37. Let A(x, y) and B(x, y) be two polynomially balanced predi-
cates. The union of A and B, denoted by [A ∪ B], is defined by: for all x, y,
[A ∪B](x, y) holds if and only if A(x, y) holds or B(x, y) holds.

Proposition 2.38 (Parallel enumeration). Let Enum·A and Enum·B be two prob-
lems of EnumP, then the problem Enum·[A ∪ B] is also in EnumP. Moreover,
there is a polynomial Q such that, if MA is a RAM machine solving Enum·A with
delay f and MB is a RAM machine solving Enum·B with delay g, there is a RAM
machine solving Enum·[A ∪B] with delay f + g +Q.

Proof. LetMA andMB be two RAM machines, which solve Enum·A and Enum·B.
One builds a machine MA∪B which solves Enum·[A∪B] by running MA and MB

in parallel on the instance x.

At each step, MA∪B produces a new solution y of A(x) thanks to MA. It
then tests if y ∈ B(x) in polynomial time because B ∈ EnumP. If y /∈ B(x) it
outputs it, otherwise it is discarded and the next solution of B(x) given by MB

38 CHAPTER 2. ENUMERATION

is computed and outputed1. If there is no solution left in A(x) (resp. B(x)), it
finishes the enumeration thanks to MB (resp. MA).

Remark that if MA∪B has enumerated k elements of B(x) thanks to MB then it
has also found and discarded k elements of A(x)∩B(x) given by MA. Therefore if
MA∪B has outputed all B(x), it has usedMA to produced |B(x)| elements of A(x)∩
B(x), which must then satisfy B(x) = A(x) ∩ B(x). Therefore the enumeration
of the remaining elements of A(x) does not create any repetition. Moreover all
elements of A(x) ∩ B(x) are enumerated only by MB, thus the algorithm makes
no repetition.

The delay of MA∪B is bounded by the sum of the delays of MA and MB plus
a polynomial, because at each step of the algorithm we simulate MA and MB

enough time to let them produce one solution. The polynomial overhead comes
from the cost of running the two machines in parallel and of checking if a solution
is in B(x).

One says that a class C is stable under an operation f defined over C × C, if
for all a, b ∈ C, one has f(a, b) ∈ C.

Corollary 2.39. The classes TotalP, IncP, DelayP are stable under union.

We now give one simple application of this proposition to a classical problem.
One says that a formula is in disjunctive normal form if it is the disjunction of
clauses, where each clause is the conjunction of variables or negation of variables
called literals.

Enum·DNF
Input: a formula in disjunctive normal form
Output: all satisfying assignments of the formula

Proposition 2.40. The problem Enum·DNF is in DelayP.

Proof. A DNF formula is a disjunction of clauses. The enumeration of the models
of one clause is easy, since a clause fixes the value of each variable which appears in
it and any truth value of the other variables gives a satisfying assignment. Thus
one can enumerate the models of a clause with linear delay. Remark that the
disjunction of two clauses has for models the union of the models of the clauses.
Thus using Proposition 2.38 as many times as they are clauses, we can enumerate
the models of the disjunction of all clauses with a delay which is proportional
to the number of clauses times the size of a model plus a polynomial overhead
because of the parallelization.

We can improve the delay to a linear delay, by designing an algorithm specific
to Enum·DNF. We now adapt Proposition 2.38 to the case of ordered enumer-
ation problem. In fact, the result is even better, because one does not need the
hypothesis that the problems are in EnumP.

1note that it can be y itself

2.5. OPERATIONS ON PREDICATES AND ENUMERATION 39

Proposition 2.41. Let Enum·A and Enum·B be two enumeration problems, and
let < be an enumeration order. There is a polynomial Q such that, if MA is a RAM
machine solving Enum·(A,<) with delay f and MB is a RAM machine solving
Enum·(B,<) with delay g, there is a RAM machine solving Enum·([A ∪ B], <)
with delay f + g +Q.

Proof. The proof of this proposition is nothing but the description of a variant of
the merge procedure of the famous merge-sort algorithm.

Let MA and MB be two machines which solve Enum·(A,<) and Enum·(B,<),
we describe a machine MA∪B which solves Enum·([A ∪ B], <). It runs MA and
MB in parallel on the instance x and uses two variables yA and yB which serve as
buffers for solutions of MA and MB respectively.

The machine begins with the first solution produced by MA in yA and the first
solution produced by MB in yb. At the beginning of each step it compares yA and
yB.

• If they are equal it outputs their value once and puts in yA and yB the next
solution generated by respectively MA and MB.

• If yA < yB, it outputs yA and puts in yA the next solution generated by MA.

• If yB < yA, it outputs yB and puts in yB the next solution generated by
MB.

When at a point of the algorithm, let say w.l.o.g. MA has generated all its
solutions, one outputs all sollutions produced by MB and then stops.

This algorithm clearly gives every solution of [A∪B]. The sequence of solutions
in respectively yA and yB are increasing for <x by definition of MA and MB. Since
we always output first the smallest value between yA and yB, MA∪B outputs the
solution in strictly increasing order. It also proves that there is no repetition.

2.5.2 Subtraction of predicates

We study also the subtraction between two predicates in the spirit of the subtrac-
tive reduction forged for the counting problems [DHK05].

Definition 2.42. LetA(x, y) andB(x, y) be two polynomially balanced predicates
such that for all x, B(x) ⊆ A(x). The predicate [A \B](x, y) is defined by: for all
x, y, [A \B](x, y) holds if and only if y ∈ A(x) \B(x).

Proposition 2.43. If P 6= NP then the classes DelayP, IncP and TotalP are
not stable by subtraction.

Proof. The idea of the proof is that disjunctive formulas are the dual of conjunctive
formulas, whose models are hard to enumerate. We need the following problem:

Enum·ALL
Input: a formula in disjunctive normal form
Output: all assignments of the formula

40 CHAPTER 2. ENUMERATION

Let φ be a formula in conjunctive normal form, the formula ¬φ is equivalent to a
formula Ψ of the same size in disjunctive normal form. Furthermore, let us remark
that SAT (φ) = ALL(φ)\DNF (¬φ). The problems Enum·ALL and Enum·DNF
are in SDelayP. Their substraction is the problem Enum·SAT, which is EnumP-
complete for parsimonious reductions. Thus if the class SDelayP is stable under
substraction SDelayP = EnumP which implies P = NP. The same is true for
the classes above SDelayP.

Remark 2.44. Let Enum·(A,<) and Enum·(B,<) two ordered enumeration
problems with the same enumeration order, there are a few cases in which an
algorithm with good delay for Enum·(A,<) and Enum·(B,<) yields an algorithm
with good delay for Enum·([A \B], <):

1. when one of the problem has always a polynomial number of solutions

2. when B(x) is always a final segment of A(x)

3. when B(x) is not too dense in A(x), that is each initial segment I of A(x)
does not contain to much elements of B(x). For instance, if there is c > 0

and a polynomial Q such that for all I, |I \ B(x)| > |I|c
Q(|x|) , one can solve

Enum·([A \B], <) with polynomial delay if Enum·(A,<) and Enum·(B,<)
are in DelayPo.

2.5.3 Intersection of predicates

The third natural operation on sets, the intersection does not let the enumeration
classes stable either.

Definition 2.45. Let A(x, y) and B(x, y) be two polynomially balanced predi-
cates. The intersection of A and B, denoted by A ∩B, is defined by: for all x, y,
[A ∩B](x, y) holds if and only if A(x, y) holds and B(x, y) holds.

Proposition 2.46. If P 6= NP then the classes SDelayP, DelayP, IncP and
TotalP are not stable by intersection.

Proof. The enumeration problems Enum·HORN and Enum·AFFINE are both
in SDelayP. The problem Enum·[HORN ∩ AFFINE] is the problem of satis-
fiability of the conjunction of Horn and affine clauses, since the intersection of
the satisfying assignments of two formulas are the satisfying assignments of the
conjunction. This problem is NP-complete thanks to the classification done in
Schaeffer dichotomy theorem [CKS01]. Assume that SDelayP is stable under
intersection, then SDelayP = EnumP and thus P = NP.

2.6 An example: A-Circuit

Let us consider the following problem:

2.6. AN EXAMPLE: A-CIRCUIT 41

A-Circuit
Input: a matroid M and a set A of its elements
Output: accept if there is a circuit C of M such that A ⊆ C

This problem and its enumeration version, Enum·A-Circuit, are later used as
illustrations of the fixed parameter tractable algorithms developed in Chapter 6.
We now give the known complexity results for this problem, they mostly come from
[KBE+05]. Only matroids with an independence predicate decidable in polynomial
time are considered.

1. If |A| = 1 or 2, the problem is decidable in polynomial time. For the partic-
ular case of a vector matroid see [DH03], in general use a matroid separation
algorithm.

2. If |A| = 3, the question is open.

3. If |A| = k is fixed and the matroid is a cycle matroid then it is decidable in
polynomial time by reduction to the problem of finding k disjoint paths in
a graph [RS95].

4. If |A| is unbounded, even if the matroid is only a cycle matroid, the question
is NP-complete by reduction from the Hamiltonian Path problem.

Consider now the associated enumeration problem Enum·A-Circuit. Assume
that |A| = 1 and that the matroid is representable on a finite field or on Q. Then,
this problem is equivalent to enumerate all minimal solutions (for inclusion of
the support) of a linear system. If the field is F2, it is equivalent to produce all
the minimal (for the pointwise order) solutions of an affine formula, which is an
affine variation of the circumscription problem for propositional formula studied
in artificial intelligence [McC80]. The question of the complexity of this problem
is asked in [KSS00]. At this time, it was not even known to be in IncP, but it
was later proved in [KBE+05] for all matroids with an independence predicate
decidable in polynomial time.

We would like to have an algorithm with polynomial delay rather than incre-
mental. It is the case when |A| = k is fixed and the matroid is a cycle matroid
[RT75]. Our aim is to design a polynomial delay algorithm for a class of matroids
broader than the cycle matroids and/or for unbounded |A|. It is only possible
for a subclass of the vector matroids when |A| is unbounded since the decision
problem is then NP-complete. We give below a polynomial delay algorithm for a
very restricted class of representable matroids. Furthermore, in Chapter 6, a few
interesting classes of matroids are presented on which the decision problem and
the delay of the enumeration one are linear.

First remark that it is much easier to enumerate free families (and even bases)
rather than circuits.

Proposition 2.47 (Folklore). Let M be a matroid with ground set V = {v1, . . . , vn}
and a dependency predicate decidable in polynomial time. Let A ⊆ V of size k, the

42 CHAPTER 2. ENUMERATION

enumeration of the free families of M containing A can be done with polynomial
delay.

Proof. Without loss of generality, one can say that the elements ofA are {v1, . . . , vk}.
It is easy to check that Algorithm 1 enumerates the free families of M containing
the set A.

Algorithm 1: Enumeration of the free families containing a fixed set

Data: A matroid M with ground set {v1, . . . , vn} and an integer k
Result: The free families of M containing {v1, . . . , vk}
begin

F ←− A ∪ {vk+1}
i←− k + 1
while |F | ≥ k do

if i ≥ n then
t←− largest index of the vectors in F
F ←− F \ {vt}
i←− t+ 1

else
if F ∪ vi is independent then

F ←− F ∪ {vi}
Output(F ∪ {v})

i←− i+ 1

end

Let us consider representable matroids over a field F2: they are given by a set
of vector V in a vector space E over the field F2. The elements of V are noted
{v1, . . . , vn}, they are implicitely ordered by their indices.

Lemma 2.48. Let F ⊆ V a free family of vectors and v =
∑
f∈F

f then F ∪ {v} is

a minimal dependent set.

Proof. Assume F ∪{v} is not minimal, then there is w ∈ F such that F \{w}∪{v}
is dependent. It is easy to generate w from (F \{w})∪{v}, hence this set generates
the same vector space as the family F . Since it is of the same size as F , it cannot
be dependent.

From now on, we work with V a vector subspace of E. This is a very “dense“
matroid, if its of dimension d, it has 2d elements. If F is a free family of V , then

v =
∑
f∈F

f is also in V since it is a vector space. Thus the set F ∪ {v} is a circuit

of V . Conversely, if an element of a circuit is removed, one obtains a free family,
where elements sum up to v over F2. We say that F and F ∪ {v} are associated.

2.6. AN EXAMPLE: A-CIRCUIT 43

The strategy to enumerate the circuits containing the fixed set A is thus to
enumerate the free families containing A by means of Algorithm 1. But it is not
enough to generate every solution, the algorithm must also avoid the repetitions.

A circuit C is generated by the free families C \ {vi} for all vi ∈ C. One
must choose among these families to output the circuit C only once. In the next
algorithm, one chooses C \ {vi} such that i > j for all vj ∈ C \ {vi}. The
procedures first free family and next free family are given by Algorithm
1 and do what their name suggest.

Algorithm 2: Enumeration of the circuits of a vector subspace

Data: A vector subspace V = {v1, . . . , vn} and an integer k
Result: The circuits of V containing {v1, . . . , vk}
begin

F ←− first free family(V, k)
while F 6= ∅ do

if v =
∑
f∈F

f has a biggest index than the elements of F then

Output(F ∪ {v})

F ←− next free family(V, k)
end

Proposition 2.49. Algorithm 2 solves the problem Enum·A-Circuit restricted
to vector subspaces over F2 with incremental delay and polynomial space.

Proof. Algorithm 2 follows the proposed strategy. Let F1, . . . , Fl be the succesive
values taken by F during the run of Algorithm 2. It is the list of free families
which contains A.

Let C be a circuit containing A. Remark that, since |C| ≤ n, by a previous
remark, it is associated to at most n free families containing A. Moreover, we
output a circuit C at step i when the sum of elements of Fi is of index larger than
the elements of Fi. Because of the order on free families induced by Algorithm 1,
the other free families associated to C appear later in the enumeration.

Thanks to these properties, we can prove that the delay of the algorithm is
incremental. Assume that Algorithm 2 has just produced the kth solution and
that it was generated from Fi. The set of free families {F1, . . . , F(k+1)n} is of
size (k + 1)n, thus there must be at least k + 1 different circuits associated to
these families. Since Algorithm 2 outputs a circuit the first time it encounters an
associated free family, when it encounters F(k+1)n it must have produced at least
k + 1 solutions.

Finally, the delay between the kth and the (k+1)th solution is bounded by the
time to generate {F1, . . . , F(k+1)n} which is polynomial in n and k. We have thus
proved that Enum·A-Circuit is in IncP when we restrict the input matroids to
the class of vector subspaces over F2.

44 CHAPTER 2. ENUMERATION

This result may seem disappointing since we already know that Enum·A-Circuit
for any representable matroids and |A| = 1 is in IncP. We have generalized it to
every size of |A| but for very few representable matroids.

First, we could easily extend the result to V a vector subspace of dimension
d over any finite field F of size k. Given a free family F , there are (k − 1)|F |

vectors v such that F ∪ {v} is dependent. It is bounded by kn which is the size
of V . Therefore one can find all v such that F ∪ {v} is a circuit in polynomial
time. Finally, one decides which circuits to output by a condition on the order of
v relatively to F to avoid repetitions as in the previous algorithm.

Second, if we are willing to use an exponential space, we can improve the
delay of the algorithm. This gives an example of a space-time tradeoff, obtained
by amortizing the delay.

Proposition 2.50. The problem Enum·A-Circuit restricted to vector subspaces
over F2 is in DelayP.

Proof. One uses a queue, in which one stores the solutions produced by Algorithm
2. More precisely: run Algorithm 2, each time it outputs a solution push it into
the queue. Every n free families built by Algorithm 2, pop the first element out of
the queue to output it. When Algorithm 2 stops, output the remaining elements
of the queue.

We have seen that, when Algorithm 2 has computed kn free families, it has
produced at least k solutions. This proves that the queue is never empty before
Algorithm 2 stops. Therefore the delay is bounded by n times the delay between
the construction of two free families, which is polynomial in n.

Remark 2.51. Assume you have an enumeration algorithm in polynomial delay
but each solution is repeated in the enumeration. On the other hand, the number
of repetitions is bounded by a polynomial in the input. If one uses the same
technique as in the previous proposition, with a binary search tree instead of a
queue, the algorithm would become a polynomial delay one. Here we have a way
to distinguish the first time we output a solution, therefore we only need a queue,
but in both cases we use potentially an exponential space.

Now that we have a result for Enum·A-Circuit for vector spaces, we want
to generalize it to representable matroids built from vector spaces. For instance,
Enum·A-Circuit for direct sum of vector spaces is in DelayP, we just do the
enumeration independently in every vector space. In particular, if E1 and E2

are subspaces of the vector space E and E1 ∩ E2 = {0}, then we can solve
Enum·A-Circuit on E1∪E2. The question is: what happens if E1∩E2 6= {0}? In
the following proposition, we try to characterize the circuits of E1 ∪E2 to answer
this question.

Proposition 2.52. Let E1 and E2 be two vector spaces and let B = E1∩E2. The
circuits of the matroid represented by E1 ∪ E2 are of the following types:

2.6. AN EXAMPLE: A-CIRCUIT 45

1. a circuit of E1

2. a circuit of E2

3. equal to C1 ∪ C2 and there is a b ∈ B such that C1 ∪ {b} is a circuit of E1

and C2 ∪ {b} is a circuit of E2

4. equal to C1∪C2∪C3 and there are b1, b2 ∈ B such that C1∪{b1} is a circuit
of E1, C2 ∪ {b2} is a circuit of E2 and {b1, b2} ∪ C3 is a circuit of B.

Proof. Let C be a circuit of E1 ∪ E2. We partition C into C1 = C ∩ (E1 \ B),
C2 = C ∩ (E2 \B) and C3 = C ∩B. There is a linear combination of the elements
of C equal to 0 and by grouping the elements according to the partition, we have
c1 + c2 + c3 = 0 where ci ∈ Ci. Notice that for i = 1, 2, 3, ci can be equal to zero
but only if Ci is empty, because C is a circuit. By definition, c3 is in B and c2 is
in E2. Therefore c2 + c3 is also in E2 = E2 ∪ B. Since c1 = −c2 − c3, we have
c1 ∈ E2 which implies that c1 ∈ B. By symmetry, c2 is also in B.

If c1 = 0, then C1 is empty and C is a circuit of E1. We also have that if
c2 = 0, then C2 is empty and C is a circuit of E2. If we assume that c3 = 0 and
that c1 6= 0, then c1 = −c2 and because of the previous remark, c1 ∈ B. Therefore
there are linear combinations of elements of C1 ∪ {c1} and C2 ∪ {c2} which are
equal to zero. These two sets have thus to be circuits, because if it was not the
case it would contradict the fact that C is a circuit.

Let now consider the case where c1, c2, c3 are all different from zero. Remark
that C3∪{c1, c2} is a circuit, because we have a linear combination of its elements
equal to 0 and that if it is not minimal, then C is not a circuit. Moreover, we have
proved that c1, c2 ∈ B hence C3 ∪ {c1, c2} is a circuit of B. For obvious reasons,
C1 ∪ {c1} is a circuit of E1 and C2 ∪ {c2} is a circuit of E2, which achieves the
proof.

Corollary 2.53. Let M be a F2-matroid represented by E1∪E2 such that E1∩E2

is of dimension 1 (equal to the space {0, b}). The circuits of M are the disjoint
union of the following sets:

1. the circuits of E1

2. the circuits of E2

3. the circuits C1 ∪ C2 such that C1 ∪ {b} is a circuit of E1 and C2 ∪ {b} is a
circuit of E2

Proof. Since B is of dimension 1, the fourth case of Proposition 2.52 never hap-
pens. Therefore a circuit is one of the three first types of Proposition 2.52.

Conversely a circuit of E1 or E2 is always a circuit of E1 ∪ E2. Assume we
have C1 ∪{b} a circuit of E1 and C2 ∪{b} a circuit of E2. The sum of elements of
C1 and the sum of elements of C2 are equal to b. Therefore the sum of elements of

46 CHAPTER 2. ENUMERATION

C1∪C2 is equal to 0. Moreover, if the sum of elements of a strict subset of C1∪C2

is equal to 0, then a strict subset of either C1 or C2 has its sum of elements equal
to b. It contradicts the fact that C1 ∪ {b} is a circuit of E1 or that C2 ∪ {b} is a
circuit of E2.

We have proved here that E1∪E2 represents the parallel connection of E1 and
E2 along the element b. Indeed, the previous corollary is basically the definition
of the parallel connection that one finds in Chapter 6 with applications to matroid
decomposition.

Proposition 2.54. The problem Enum·A−Circuit is in DelayP over F2-matroids
of the form E1 ∪ E2, where E1 and E2 are vector spaces and dimE1 ∩ E2 = 1.

Proof. Let A ⊆ E1 ∪ E2, we want to enumerate the set of circuits which extend
A. Let 0 and b be the two elements of E1 ∩E2 and let A1 = A∩E1, A2 = A∩E2.
The algorithm to enumerate the circuits of E1 ∪ E2 does these three successive
steps:

1. it enumerates the circuits of E1 which contains A

2. it enumerates the circuits of E2 which contains A

3. if b /∈ A, it enumerates the circuits of E1 which contain A1 ∪ {b} and for
each such circuit C1 ∪ {b}, it enumerate the circuits C2 ∪ {b} of E2 which
contain A2 ∪ {b} and return C1 ∪ C2

Because of the previous proposition, each circuit is generated in one of the
three steps. Moreover, the sets of circuits enumerated in each of the three steps
are disjoint, hence there is no repetition. Since the enumeration of circuits in
a vector space can be done in polynomial delay, this algorithm has the same
polynomial delay.

Open question: is Enum·A-Circuit in DelayP over the spaces of the form
E1∪E2 such that dim(E1∩E2) = k ? If true, one can even imagine a decomposition
of any vector matroid into union of vector spaces.

Chapter 3

Enumeration of Monomials

3.1 Introduction

In this chapter, we revisit the famous problem of polynomial interpolation, that is
to say finding the monomials of a polynomial from its values, with an emphasis on
the delay of the enumeration. The question of polynomial interpolation is a good
framework for studying enumeration problems since it subsumes many interesting
questions. To solve this problem we have to introduce probabilistic enumeration
and that yields new interesting questions on probabilistic complexity classes.

It has long been known that a finite number of evaluation points is enough to
interpolate a polynomial and efficient procedures (both deterministic and proba-
bilistic) have been studied by several authors [BO88, Zip90, KLL00, GS09]. The
complexity depends mostly on the number of monomials of the polynomial and
on an a priori bound on this number which may be exponential in the number of
variables. The deterministic methods rely on prime numbers as evaluation points,
with the drawback that they may be very large. The probabilistic methods cru-
cially use the Schwarz-Zippel lemma, which is also a tool in this chapter, and
efficient solving of particular linear systems.

As a consequence of a result about random efficient identity testing [KS01],
Klivans and Spielman give an interpolation algorithm, which happens to have an
incremental delay. In this vein, the present chapter studies the problem of gener-
ating the monomials of a polynomial with the best possible delay. In particular we
consider natural classes of polynomials such as multilinear polynomials, for which
we prove that interpolation can be done with polynomial delay. Similar restric-
tions have been studied in other works about Polynomial Identity testing
for a quantum model [AMAM09], for depth 3 circuits which thus define almost
linear polynomials [KS08] and for multilinear polynomials defined by a depth 4
circuit [KMSV10] (for a survey on this problem see [Sax09]). Moreover, a lot of
interesting polynomials are multilinear like the Determinant, the Pfaffian, the Per-
manent, the elementary symmetric polynomials or anything which may be defined
by a syntactically multilinear arithmetic circuit.

47

48 CHAPTER 3. ENUMERATION OF MONOMIALS

In Section 3.3 we present an algorithm which works for polynomials such that
no two of their monomials use the same set of variables. It is structured as in
[KS01] but is simpler and has better delay, though polynomially related. In Section
3.4 we propose a second algorithm which works for multilinear polynomials. It
has a delay polynomial in the number of variables, which makes it exponentially
better than known algorithms so far. It is also easily parallelizable. In addition,
both algorithms enjoy a global complexity as good or better than the algorithms
of the literature and use only small evaluation points making them suitable to
work over finite fields.

In the first sections, we give algorithms in the black box model (presented
in Chapter 1). They are efficient, but they do not take into account the cost
of evaluations of the polynomial (considered to be in unit time). In Section 3.5,
we consider polynomials which can be evaluated in polynomial time. Over these
polynomials, the different interpolation algorithms correspond to three complexity
classes for enumeration, namely TotalPP, IncPP, DelayPP which are proba-
bilistic variants of the classes introduced in Chapter 2. We use our probabilistic
algorithms on polynomials encoding well-known combinatorial problems in their
monomials. It proves that some problems such as the enumeration of the spanning
trees of a graph are in the classes we have just defined. This idea allows us also
to propose new algorithms for two hypergraph problems in Chapter 4.

We generalize the techniques of the previous sections in Section 3.6 to build
an incremental interpolation algorithm for fixed degree polynomials. We give the
idea of the algorithm of [KS01] for comparison and we explain why it is good for
high degree polynomials whereas our algorithm is better for low degree. We also
compare our two algorithms with several classical ones and show that they are
good with regard to parameters like number of calls to the black box or size of
the evaluation points (see Table 3.6.3).

In Section 3.7 we propose several methods to improve the complexity of the
previous algorithms. They are related to different parameters of the problem,
namely the degree of the polynomial, the field and the error bound. We also
explain how to derandomize our algorithms on a class of polynomials as soon as
one can derandomize the Polynomial Identity Testing problem on the same
class.

In Section 3.8 we present four easy to compute polynomials which encode hard
combinatorial questions in their monomials. Thanks to them, we prove that some
decision and search problems are hard to solve, even for low degree polynomials.
For instance the problem of finding a specified monomial in a degree 2 polynomial
is proved hard by encoding a restricted version of the Hamiltonian path problem in
a polynomial given by the Matrix-Tree theorem (see [Aig07]). As a consequence,
there is no polynomial delay interpolation algorithm for degree 2 polynomials
similar to the one for degree 1 because it would solve the latter problem and
would imply RP = NP.

A part of this chapter has been presented at MFCS 2010 [Str10].

3.2. FINDING ONE MONOMIAL AT A TIME 49

3.1.1 Preliminaries

In this chapter we interpret the problem of interpolating a polynomial given by
a black box as an enumeration problem. It means that we try to find all the
monomials of a polynomial given by the number of its variables and an oracle
which allows to evaluate the polynomial on any point in unit time. This problem
is denoted by Enum·Poly but will be solved in this chapter only on restricted
classes of polynomials.

Most of the algorithms we are going to consider are probabilistic. We denote
by ε their error bound, where ε is a small positive real. Since ε is sometimes given
as input, it can be thought as a small rational.

In all this chapter, the multivariate polynomials are taken in Q[X1, . . . , Xn]
and they have a degree d and a total degree D. In Sec. 3.4 we assume that the
polynomial is multilinear i.e. d = 1 and D is thus bounded by n. In most of this
chapter d is considered to be a fixed constant and as such it almost never appears
in the complexity of the algorithms.

We assume that the maximum of the bitsize of the coefficients appearing in
a polynomial is O(n) to simplify the statement of some results. In the examples
of Sec. 3.5 it is even O(1). When analyzing the delay of an algorithm solving
Enum·Poly, we are interested in both the number of calls to the black box and
the time spent between two generated monomials. We are also interested in the
size of the integers used in the calls to the oracle, since in real cases the complexity
of the evaluation depends on it.

Definition 3.1. The support of a monomial is the set of indices of variables which
appear in the monomial.

Let L be a set of indices of variables, then fL is the homomorphism of Q[X1, . . . , Xn]
defined by: {

fL(Xi) = Xi if i ∈ L
fL(Xi) = 0 otherwise

From now on, we denote fL(P) by PL. It is the polynomial obtained by substi-
tuting 0 to every variable of index not in L, that is to say all the monomials of
P which have their support in L. We call ~XL the multilinear term of support L,
which is the product of all Xi with i in L.

Example 3.2. Let P be the polynomial 2X2
1 − X4X5X

3
6 + 3X1X3X7 + X2

2X1.
The support of 3X1X3X7 is L = {1, 3, 7} and PL = 2X2

1 + 3X1X3X7.

3.2 Finding one monomial at a time

The first problem we want to solve is to decide if a polynomial given by a black box
is the zero polynomial a.k.a. Polynomial Identity Testing. We are especially
interested in the corresponding search problem, i.e. giving explicitly one term and

50 CHAPTER 3. ENUMERATION OF MONOMIALS

its coefficient. Indeed, we show in Sec. 3.3 how to turn any algorithm solving this
problem into an incremental interpolation algorithm.

For any t evaluation points, one may build a polynomial with t monomials
which vanishes at every point (see [Zip90]). Therefore, if we do not have any a
priori bound on t, we must evaluate the polynomial on at least (d+1)n n-tuples of
integers to determine it. Since such an exponential complexity is not satisfying, we
introduce probabilistic algorithms, which nonetheless have a good and manageable
bound on the error.

Lemma 3.3 (Schwarz-Zippel [Sch80]). Let P be a non zero polynomial with n
variables of total degree D, if x1, . . . , xn are randomly chosen in a set of integers
S of size D

ε then the probability that P (x1, . . . , xn) = 0 is bounded by ε.

A classical probabilistic algorithm to decide if a polynomial P of total degree
bounded by D is identically zero can be derived from this lemma.

Algorithm 3: The procedure not zero(P, ε)

Data: A polynomial P with n variables, its total degree D and the error
bound ε

begin

pick x1, . . . , xn randomly in [Dε]
if P (x1, . . . , xn) = 0 then

return False
else

return True

end

Remark that the algorithm never gives a false answer when the polynomial is
zero. The probability of error when the polynomial is non zero is bounded by ε
thanks to Lemma 3.3. The problem Polynomial Identity Testing for explicit
polynomials computable in polynomial time is thus in RP.

This procedure makes exactly one call to the black box on points of size log(Dε).
The error rate may then be made exponentially smaller by increasing the size of the
points. There is an other way to achieve the same reduction of error. Repeat the
previous algorithm k times for ε = 1

2 , that is to say the points are randomly chosen
in [2D]. If all runs return zero, then the algorithm decides that the polynomial
is zero else it decides it is not zero. Since the random choices are independent in
each run, the probability of error of this algorithm is bounded by 2−k. Hence, to
achieve an error bound of ε, we have to set k = log(ε−1). We always use this latter
variant in this chapter and we denote it also by not zero(P, ε). It uses slightly
more random bits but it only involves numbers less than 2D.

To solve the search problem we use the following lemma.

Lemma 3.4. Let P be a polynomial without constant term and whose monomials
have distinct supports and L a minimal set (for inclusion) of variables such that

3.2. FINDING ONE MONOMIAL AT A TIME 51

PL is not identically zero. Then PL is a monomial of support L.

In order to use the lemma, up to Section 3.4 all polynomials have monomials
with distinct supports and no constant term. This class of polynomials contains
the multilinear polynomials but is much larger. Moreover being without constant
term is not restrictive since we can always replace a polynomial by the same
polynomial minus its constant term that we compute beforehand by a single oracle
call to P (0, . . . , 0).

3.2.1 The algorithm

We now give an algorithm which finds, in randomized polynomial time, a monomial
of a polynomial P , thanks to Lemma 3.4 and the procedure not zero. In this
algorithm, L is a set of indices of variables and i an integer used to denote the
index of the current variable.

Algorithm 4: The procedure find monomial(P, ε)

Data: A polynomial P with n variables, its total degree D and the error
bound ε

Result: A monomial of P
begin

L←− {1, . . . , n}
if not zero(P , ε

n+1) then

for i = 1 to n do
if not zero(PL\{i},

ε
n+1) then

L←− L \ {i}
return The monomial of support L

else
return “Zero”

end

Once the algorithm has found the support L of a monomial, that we write
λ ~X~e, it must find λ and ~e. The evaluation of PL on (1, . . . , 1) returns λ. For each
i ∈ L, the evaluation of PL on Xi = 2 and for j 6= i, Xj = 1 returns λ2ei . From

these n calls to the black box, one can find ~e in linear time and thus output λ ~X~e.

We analyze this algorithm, assuming first that the procedure not zero never
makes a mistake and that P is not the zero polynomial. In this case, the algorithm
does not answer “Zero” at the beginning. Therefore PL is not zero at the end of
the algorithm, because an element is removed from L only if this condition is
respected. Since removing any other element from L would make PL zero by
construction, the set L is minimal for the property of PL being non zero. Then
by Lemma 3.4 we know that PL is a monomial of P , which allows us to output it
as previously explained.

52 CHAPTER 3. ENUMERATION OF MONOMIALS

Errors only appear in the procedure not zero with probability ε
n+1 . Since we

use this procedure n + 1 times we can bound the total probability of error by
ε. The total complexity of this algorithm is O(n log(nε)) since each of the n calls
to the procedure not zero makes O(log(nε)) calls to the oracle in time O(1). We
summarize the properties of this algorithm in the next proposition.

Proposition 3.5. Given a polynomial P as a black box, whose monomials have
distinct supports, Algorithm 4 finds, with probability 1 − ε, a monomial of P by
making O(n log(nε)) calls to the black box on entries of size log(2D).

3.3 An incremental algorithm for polynomials with
monomials of distinct supports

We build an algorithm which enumerates the monomials of a polynomial incre-
mentally once we know how to find a monomial of a polynomial in polynomial
time. The idea is to substract the monomial to the polynomial and recurse. The
procedure find monomial defined in Proposition 3.5 is used to find the monomial.

We need a procedure subtract(P , Q) which acts as a black box for the polyno-
mial P −Q when P is given as a black box and Q as an explicit set of monomials.
Let D be the total degree of Q, C is a bound on the size of its coefficients and i
is the number of its monomials. One evaluates the polynomial subtract(P , Q) on
points of size m as follows:

1. compute the value of each monomial of Q in time O(Dmax(C,m))

2. add the values of the i monomials in time O(iDmax(C,m))

3. call the black box to compute P on the same points and return this value
minus the one we have computed for Q

Algorithm 5: Incremental computation of the monomials of P

Data: A polynomial P with n variables and the error bound ε
Result: The set of monomials of P
begin

Q←− 0
while not zero(subtract(P ,Q), ε

2n+1) do
M ←− find monomial(subtract(P ,Q), ε

2n+1)
Output(M)
Q←− Q+M

end

Theorem 3.6. Let P be a polynomial whose monomials have distinct supports
with n variables, t monomials and a total degree D. Algorithm 5 computes the set

3.4. A POLYNOMIAL DELAY ALGORITHM 53

of monomials of P with probability 1 − ε. The delay between the ith and i + 1th

monomials is bounded by O(iDn2(n + log(ε−1))) in time and O(n(n + log(ε−1)))
calls to the oracle. The algorithm performs O(tn(n+ log(ε−1))) calls to the oracle
on points of size log(2D).

Proof. Correctness. We analyze this algorithm under the assumption that the
procedures not zero and find monomial do not make mistakes.

We have the following invariant of the while loop : Q is a subset of the
monomials of P . It is true at the beginning because Q is zero. Assume that
Q satisfies this property at a certain point of the while loop, since we know that
not zero(subtract(P ,Q)), P − Q is not zero and is then a non empty subset of
the monomials of P . The outcome of find monomial(subtract(P ,Q)) is thus a
monomial of P which is not in Q, therefore Q plus this monomial still satisfies
the invariant. Remark that we have also proved that the number of monomials of
Q is increasing by one at each step of the while loop. The algorithm must then
terminate after t steps and when it does not zero(subtract(P ,Q)) gives a negative
answer meaning that Q = P .

Probability of error. The probability of failure is bounded by the sum of the
probabilities of error coming from not zero and find monomial. These procedures
are both called t times with an error bounded by ε

2n+1 . There are 2n different
supports, hence there is at most 2n monomials in P . The total probability of
error is bounded by 2t

2n+1 ε ≤ ε.
Complexity. The procedure not zero is called t times and uses the oracle n +
log(ε−1) times, whereas find monomial is called t times but uses n(n + log(ε−1))
oracle calls, which adds up to t(n + 1)(n + log(ε−1)) calls to the oracle. In both
cases the evaluation points are of size O(log(D)).

The delay between two solutions is the time to execute find monomial. It is
dominated by the execution of subtract(P,Q) at each oracle call on points of size
log(2D). The algorithm calls subtract(P,Q) n(n+log(ε−1)) times and each of these
calls needs a time O(iDmax(C, log(D))). We assume here that d = O(2n) and C =
O(n) thus max(C, log(D)) = O(n). Hence the delay is O(iDn2(n+log(ε−1))).

The complexity could be improved by using a smarter way to evaluate Q in
subtract(P , Q), like fast or iterated multiplication. One other possible improve-
ment would be to do all computations modulo a random prime as it is done in the
IP protocol for the permanent [LFK92]. The idea of using a small finite field is
developped in Sec. 3.7.

3.4 A polynomial delay algorithm for multilinear poly-
nomials

In this section we first solve the problem of finding the degree of a polynomial
with regard to a set of variables.

54 CHAPTER 3. ENUMERATION OF MONOMIALS

Definition 3.7. Let n be an integer and S ⊆ [n]. Let dS(~X~e) =
∑

i∈S ei be

the degree of the term ~X~e with regard to S. We write dS(P) for the degree of a
polynomial P with regard to S, it is the maximum of the degrees of its monomials
with regard to S.

Remark that d{i}(P) is the degree of Xi in P , while d[n](P) is the total degree
of P . We present a method to efficiently find the degree of a polynomial with
regard to any set of variables. It transforms the multivariate polynomial into an
univariate one, which is then interpolated. To achieve this, one uses a polynomial
number of calls to the black box on small points. As a corollary, one gives an
efficient algorithm for the following problem, when the polynomial is multilinear.

Monomial-Factor
Input: a polynomial given as a black box and a term ~X~e

Output: accept if ~X~e divides a monomial in the polynomial

We also give a second algorithm, which solves this problem with only one call
to the black box but which uses an exponentially larger point in the call and a
third one specialized to circuits. We then design an algorithm, which enumerates
the monomials of a multilinear polynomial with polynomial delay. This algorithm
has the interesting property of being easily parallelizable, which is obviously not
the case of the incremental one.

3.4.1 Small values

Let P (~X) be a n variables polynomial over Q, and let (S1, S2) be a partition of [n].
We can see P as a polynomial with variables (Xi)i∈S1 over the ring Q[(Xi)i∈S2].
In fact, the total degree of P as a polynomial over this ring is equal to dS1(P).
We introduce a new variable Xn+1, the polynomial P̃ is the polynomial P where
Xn+1.Xi is substituted to Xi when i ∈ S1. We have the equality d{n+1}(P̃) =
dS1(P).

Proposition 3.8. Let P (~X) be a non zero polynomial with n variables, a total
degree D and let S be a subset of [n]. There is an algorithm which computes
dS(P) with probability greater than 2

3 in time polynomial in n, D and the size of
the coefficients of P .

Proof. We define the polynomial P̃ with n+1 variables from P and S, as explained

previously. It is equal to
d∑
i=0

Xi
n+1Qi(~X) where Qd is a non zero polynomial.

Here d is both dS(P) and the degree of P̃ seen as a univariate polynomial over
Q[X1, . . . , Xn].

Now choose randomly in [3D] a value xi for each Xi such that i 6= n+ 1. The
polynomial P̃ (x1, . . . , xn, Xn+1) is a univariate polynomial, and the coefficient of
Xd
n+1 is Qd(~x). By Lemma 3.3, the probability that Qd(~x) is zero is bounded by

1
3 .

3.4. A POLYNOMIAL DELAY ALGORITHM 55

The polynomial P̃ (x1, . . . , xn, Xn+1) can be interpolated from its value on the
integers 1, . . . , D, because it is of degree less or equal to dS(P) ≤ D. The value
of P̃ (x1, . . . , xn, xn+1) is equal to P (x′1, . . . , x

′
n) where x′i = xn+1xi if i ∈ S and

xi otherwise. The time to interpolate P̃ (x1, . . . , xn, Xn+1) with s a bound on the
size of P̃ (x1, . . . , xn, xn+1) for 0 ≤ xn+1 ≤ D is O(D2 log(s)). Remark that s is
polynomial in the size of the coefficients of P and in D.

Finally, the interpolation of P̃ (x1, . . . , xn, Xn+1) gives its degree, which is equal
to dS(P) with probability greater than 2

3 .

We now give a solution to the problem Monomial-Factor for terms of the
form ~XS in a multilinear polynomial as a corollary. In fact to obtain a better
complexity, we do not use directly Proposition 3.8, but rather the idea of its
proof.

Corollary 3.9. Let P (~X) be a multilinear polynomial with n variables, a total
degree D and let S be a subset of [n]. There is an algorithm which solves the prob-
lem Monomial-Factor on the polynomial P and the term ~XS with probability
1 − ε. It does |S| log(ε) calls to the black box on points of size log |S| and uses a
time O(log(ε)|S|2(n+D log(D))).

Proof. The polynomial P (~X) can be written ~XSP1(~X) + P2(~X), where ~XS does
not divide P2(~X). Since P is multilinear, one of its monomials is divided by ~XS

if and only if dS(P) = |S|.
We do a simpler substitution than in the previous proof: one substitutes Xn+1

to Xi when i ∈ S1. Let us remark that P1 does not depend on variables of indices
in S, since ~XSP1 is multilinear. Therefore P1 is not zero after the substitution if
and only if it was not zero before substitution.

One then chooses randomly a value in [2D] for each Xi with i /∈ S and in-
terpolates the obtained univariate polynomial. The bound on the total degree
of the polynomial is |S|, therefore we need |S| calls to the black box on points
of size log |S|. The time used is O(|S|2s), where s is a bound on the size of the
values of the univariate polynomial on 1, . . . , |S|. The polynomial P has at most
2n monomials, its coefficients are of size O(n) and the value of a term on a point
less than 2D is less than (2D)D, therefore s is O(n+D log(D)).

Finally to bring the probability of error from 1
2 to ε one repeat the procedure

log(ε) times.

We could generalize this corollary to terms (~XS)d in a polynomial of degree d
without changing the proof. We will use this idea in Sec. 3.6.

3.4.2 Large values

We prove here directly a proposition similar to the corollary of the previous sub-
section. If needed, we could adapt it to give an algorithm which decides the degree
of a polynomial with regard to a set.

56 CHAPTER 3. ENUMERATION OF MONOMIALS

Note that in this case we need an a priori bound on the coefficents of the
polynomial, but it is not so demanding since in most applications those coefficients
are constant. We also assume that the coefficents are in Z to simplify the proof.

Proposition 3.10. Let P (~X) be a multilinear polynomial with n variables, a total
degree D, its coefficients of size at most C and let S be a subset of [n]. There is
an algorithm which solves the problem Monomial-Factor on the polynomial P
and the term ~XS with probability 1− ε. It does one call to the black box on a point
of size O(n+D log(Dε)) and uses a time O(|S|(n+D log(Dε))).

Proof. We write P = ~XSP1(~X) + P2(~X) and we want to decide if P1(~X) is the

zero polynomial. We let α be the integer 22(n+C+D log(2D
ε

)) and do a call to the
oracle on the values (xi)i∈[n]:{

xi = α if i ∈ S
xi is randomly chosen in [2D

ε] otherwise

The value of a variable whose index is not in S is bounded by 2D
ε , there-

fore a monomial of P2 (which contains at most |S| − 1 variables of index in S)
has its contribution to P (x1, . . . , xn) bounded by 2C(2D

ε)Dα|S|−1. Since P2 has
at most 2n monomials, its total contribution is bounded in absolute value by

2n+C+D log(2D
ε

)α|S|−1 which is equal to α|S|−
1
2 . If P1(x1, . . . , xn) is zero, this also

bounds the absolute value of P (x1, . . . , xn).
Assume now that P1(x1, . . . , xn) is not zero, it is at least 1 since it is defined

on Z and evaluated on integers. Moreover ~xS is equal to α|S|, thus the absolute
value of ~xL2P1(x1, . . . , xn) has α|S| for lower bound. By the triangle inequality

|P (x1, . . . , xn)| >
∣∣|~xSP1(x1, . . . , xn)| − |P2(x1, . . . , xn)|

∣∣
|P (x1, . . . , xn)| > α|S| − α|S|−

1
2 > α|S|−

1
2

We can then decide if P1(x1, . . . , xn) is zero by comparison of P (x1, . . . , xn) to

α|S|−
1
2 . Remark that P1(x1, . . . , xn) may be zero even if P1 is not zero. Nonetheless

P1 only depends on variables which are in S and are thus randomly taken in
[2D
ε]. By Lemma 3.3, the probability that the polynomial P1 is not zero although

P1(x1, . . . , xn) has value zero is bounded by ε.
The algorithm which solves Monomial-Factor, only does one call to the

oracle, then computes α|S| and compares it to the result in time linear in the size
of α|S|.

3.4.3 Circuits

In this section, we give a solution to the problem Monomial-Factor in a different
model. We assume here that a polynomial is given by a multilinear arithmetic
circuit C of size s. We say that a circuit is multilinear1 if the polynomial computed

1It is a semantic condition, which cannot be easily verified. One often works with circuits such
that the polynomials computed at each of their node is multilinear. They are called syntactically
multilinear.

3.4. A POLYNOMIAL DELAY ALGORITHM 57

at the output node is multilinear. We want to solve Monomial-Factor with
input C and a set S representing the term ~XS . Thanks to a transformation of
C into its homogeneous components with regard to S, we obtain an arithmetic
circuit which represents a polynomial different from zero if and only if the answer
to Monomial-Factor is positive.

Proposition 3.11. Let C be a multilinear arithmetic circuit of size c, with total
degree D and let S be a set of size s. There is an algorithm which solves the
problem Monomial-Factor with probability 1− ε in time O(s2c log(Dε−1)).

Proof. For each vertex v of C, we write P iv for the sum of the monomials ~X~e

computed by C at the vertex v such that dS(~X~e) = i. For each vertex v, we
introduce the vertices v0, . . . , vs labeled as v is. We build a new circuit C ′ on
these vertices (and some others) such that the polynomial computed by vi is P iv.
To do that we have to define how the vertices are connected according to their
type (variable, constant, + or ×).

• Let u be an input node. If it is labeled by a constant or a variable of index
not in S, then u0 is labeled by this constant or variable. If it is a variable
of index in S, then u1 is labeled by this variable. All other variables ui are
labeled by 0.

• Let u be a sum node with inputs v and w. We have P iu = P iv +P iw, therefore
the circuit C ′ has the edges (ui, vi) and (ui, wi) for all i ≤ s.

• Let u be a product node with inputs v and w. We have P iu =
∑
j+k=i

P jv ∗ P kw.

We need some new sum vertices to implement the sum above by a binary
tree of length at most O(log(s)) and of size O(s). We say that this binary

tree has u
(j,k)
i as leaves for all (j, k) such that i = j + k and ui as root. The

vertices u
(j,k)
i are product vertices, while the vertices ui are sum vertices.

The circuit C ′ has the edges (u
(j,k)
i , vk) and (u

(j,k)
i , wj) for all i and all (j, k)

such that i = j + k.

The circuit C ′ is of size O(s2c). Let v be the output gate of C and let P be
the polynomial computed at v by C. By an easy induction, we can prove that C ′

computes at vs the polynomial P sv . Since P is multilinear, the polynomial P sv is
different from zero if and only if ~XS divides a monomial of P .

Therefore, to decide the problem Monomial-Factor, we must solve the prob-
lem Polynomial Identity Testing on a circuit of size O(s2c). It can be done
thanks to Lemma 3.3, by evaluation of C ′ on random points taken in [Dε−1]. The
time complexity of this algorithm is O(s2c log(Dε−1)).

The construction which is given in the proof is used in the considerations about
derandomization of Section 3.7. Moreover, it can be a more efficient way than the
one of Corollary 3.9 to solve the problem Monomial-Factor when the input is
a circuit.

58 CHAPTER 3. ENUMERATION OF MONOMIALS

3.4.4 The algorithm

Let P be a multilinear polynomial with n variables and a total degree D. Let L1

and L2 be two disjoint sets of indices of variables, we want to determine if there
is a monomial of P , whose support contains L2 and is contained in L1 ∪ L2.

Let us consider the polynomial PL1∪L2 , its monomials are the monomials of P
such that their supports are included in L1 ∪ L2. Obviously P has a monomial
whose support contains L2 and is contained in L1∪L2 if and only if (PL1∪L2 ,

~XL2)
∈ Monomial-Factor. Let us call not zero improved(L1, L2, P, ε) the algorithm
given by Corollary 3.9, which solves this question in polynomial time with proba-
bility 1− ε.

We now describe a binary tree such that there is a bijection between the leaves
of the tree and the monomials of P . The nodes of this tree are pairs of lists (L1, L2)
such that there exists a monomial of support L in P with L2 ⊆ L ⊆ L1 ∪ L2.
Consider a node labeled by (L1, L2), we note i the smallest element of L1, it has
for left child (L1 \ {i}, L2) and for right child (L1 \ {i}, L2 ∪{i}) if they exist. The
root of this tree is ([n], ∅) and the leaves are of the form (∅, L2). A leaf (∅, L2) is
in bijection with the monomial of support L2.

To enumerate the monomials of P , Algorithm 6 does a depth first search in this
tree using not zero improved and when it visits a leaf, it outputs the corresponding
monomial thanks to the procedure coefficient(P , L) that we now describe. Let
L be the support of a monomial, we want to find its coefficient. One uses the
same procedure as in Corollary 3.9 (substitution, interpolation) and outputs the
coefficient of the monomial of the highest degree. Indeed, after the substitution
of Corollary 3.9, we obtain the univariate polynomial P̃L whose monomial of de-
gree |L| is the image of the monomial of support L in P and has thus the same
coefficient.

Algorithm 6: A depth first search of the support of monomials of P (re-
cursive description)

Data: A multilinear polynomial P with n variables and the error bound ε
Result: All monomials of P
begin

Monomial(L1, L2, i) =
if i = n+ 1 then

Output(coefficient(P,L2))
else

if not zero improved(L1 \ {i}, L2, P,
ε

2nn) then
Monomial(L1 \ {i}, L2, i+ 1)

if not zero improved(L1 \ {i}, L2 ∪ {i}, P, ε
2nn) then

Monomial(L1 \ {i}, L2 ∪ {i}, i+ 1)

in Monomial([n],∅, 1)
end

3.5. COMPLEXITY CLASSES FOR RANDOMIZED ENUMERATION 59

Theorem 3.12. Let P be a multilinear polynomial with n variables, t monomials
and total degree D. Algorithm 6 computes the set of monomials of P with proba-
bility 1 − ε. The delay between the ith and i + 1th monomials is bounded in time
by O(D2n2 log(n)(n + log(ε−1))) and by O(nD(n + log(ε−1))) oracle calls. The
whole algorithm performs O(tnD(n + log(ε−1))) calls to the oracle on points of
size O(log(D)).

Proof. Between the visit of two leaves, the procedure not zero improved is called at
most n times and the procedure coefficient once. Both of them have an equivalent
complexity cost. By Corollary 3.9, we know that one call to not zero improved
on a term of support of size at most D with an error parameter ε

n2n uses a time
O(D2n log(n)(n+ log(ε−1))) and O(D(n+ log(ε−1))) calls to the oracle on points
of size log(D).

Since we call the procedures not zero improved and coefficient less than nt
times during the algorithm, the error is bounded by nt ε

n2n < ε.

There is a possible trade-off in the way not zero improved and coefficient are
implemented: if one knows a bound on the size of the coefficients of the polynomial,
then the algorithm of Proposition 3.10 can be used. The number of calls in the
algorithm is less than tn which is close to the optimal 2t.

Remark 3.13. When a polynomial is monotone (coefficients all positive or all
negative) and is evaluated on positive points, the result is zero if and only if it is the
zero polynomial. Algorithms 5 and 6 may be modified to work deterministically
for monotone polynomials. The term (n + log(ε−1)) in the time complexity and
number of calls of both algorithms disappears, since there are no more repetitions
of the procedures not zero or not zero improved to exponentially decrease the
error. For more on derandomization, see Section 3.7.

3.5 Complexity classes for randomized enumeration

In this section the results about interpolation in the black box formalism are
transposed into more classical complexity results. We are interested in enumer-
ation problems defined by predicates A(x, y) such that, for each x, there is a
polynomial Px whose monomials are in bijection with A(x). If Px is efficiently
computable, an interpolation algorithm gives an effective way of enumerating its
monomials and thus to solve Enum·A.

Example 3.14. We associate to each graph G the determinant of its adjacency
matrix MG. The monomials of this multilinear polynomial are in bijection with the
cycle covers of G. Hence the problem of enumerating the monomials of det(MG)
is equivalent to enumerating the cycle covers of G.

The specialization of different interpolation algorithms to efficiently computable
polynomials naturally correspond to the probabilistic counterparts of TotalP,

60 CHAPTER 3. ENUMERATION OF MONOMIALS

IncP and DelayP. We present several problems related to a polynomial like in
Example 3.14 to illustrate how easily the interpolation methods described in this
chapter produce enumeration algorithms for combinatorial problems.

In all the following definitions, we assume that a predicate which defines an
enumeration problem is decidable in polynomial time. In other words, all defined
classes are included in EnumP.

Definition 3.15. A problem Enum·A is computable in probabilistic polynomial
total time, written TotalPP, if there is a polynomial Q(x, y) and a machine
M which solves Enum·A with probability greater than 2

3 and satisfies for all x,
T (x, |M(x)|) < Q(|x|, |M(x)|).

The class TotalPP is very similar to the class BPP for decision problems.
For both classes, the choice of 2

3 is arbitrary, everything greater than 1
2 would do.

To achieve this, repeat a polynomial number of times an algorithm working in
total polynomial time and return the set of solutions generated in the majority of
runs. The probability of error has decreased exponentially, to prove this classical
result, one has to use Chernoff’s bound, which is stated and proved in [AB09].

A refinment [KLL00] of Zippel’s algorithm [Zip90] solves Enum·Poly in a time
polynomial in the number of monomials. If one uses this algorithm to interpolate
the polynomial of Example 3.14 associated to a graph G, one can output the cycle
covers of G. Since the evaluation of a Determinant can be done in polynomial time,
Zippel’s algorithm proves that the enumeration of the cycle covers of a graph is
in TotalPP.

If one knows the number of monomials of a polynomial (or if this number can be
approximated within a polynomial factor), then both [KS01] and [GS09] provide
a deterministic algorithm which solves Enum·Poly. While it seems to provide
TotalP algorithms, even in the case of polynomials represented by circuits, the
computation of the number of monomials is a #P-complete problem.

Definition 3.16. A problem Enum·A is computable in probabilistic incremental
time, written IncPP, if there is a polynomial Q(x, y) and a machine M which
solves Enum·A with probability greater than 2

3 and satisfies for all x, T (x, i+1)−
T (x, i) ≤ Q(|x|, i).

We describe here a way to improve the error bound of IncPP algorithms, but
it would work equally well on DelayPP ones. Note that in both cases we need an
exponential space and there is a slight time overhead. Moreover, one really uses
the fact that the problems are in EnumP.

Proposition 3.17. If Enum·A is in IncPP then there is a polynomial Q and a
machine M which for all ε computes the solution of Enum·A with probability 1− ε
and satisfies for all x, T (x, i+ 1)− T (x, i) ≤ Q(|x|, i) log(ε−1).

Proof. Since Enum·A is in IncPP, there is a machine M which computes the
solution of Enum·A with probability 2

3 and a delay bounded by Q(|x|, i). Since

3.5. COMPLEXITY CLASSES FOR RANDOMIZED ENUMERATION 61

A(x, y) may be tested in polynomial time, we can assume that every output of M
is a correct solution: one checks A(x, y) before outputting y and stops if A(x, y)
does not hold.

We now simulate k runs of the machine M on input x in parallel. Let S1 and
S2 be two sets of elements of A(x). We use S1 as a list of the solutions already
outputted by the algorithm and S2 as a buffer of solutions found but not yet
outputted. At the beginning of the algorithm, S1 and S2 are empty.

In each of the run of M , when a solution should be outputted, the algorithm
tests if it is in S1 and if not add it to the set S2. These operations can be done
in polynomial time even if S1 and S2 are exponential, if we implement these sets
with a binary search tree.

Assume the algorithm has just outputted the ith solution. It let the k runs
be simulated for another Q(|x|, i) steps each before outputting an element of S2.
This element is removed from S2 and added to S1. If S2 is empty, the algorithm
stops. This algorithm clearly works in incremental polynomial time and if one
of the runs finds all solutions, it also finds all solutions. Hence, the probability

of finding all solutions is more than 1 − 1
3

k
. If we set k = d log(ε−1)

log(3) e, we have a
probability of 1− ε, which completes the proof.

Remark 3.18. Assume the order in which the solutions of Enum·A are generated
by M does not depend on the alea and is computable in polynomial time. Then one
can use the algorithm to enumerate the solutions of a union of ordered problems
(Proposition 2.41), to achieve the same reduction of error. In that case, the space
overhead is not exponential but only polynomial.

The class IncPP may also be related to the problems AnotherSolution.
We adapt Proposition 2.14 to the class IncPP. A search problem has a solution
in probabilistic polynomial time, if we have an algorithm which computes, with
probability 2

3 , a solution in time polynomial in |x|.

Proposition 3.19. There is an algorithm which computes with probability 2
3 a

solution of AnotherSolutionA in polynomial time if and only if Enum·A ∈
IncPP.

Proof. Assume AnotherSolutionA is computable in probabilistic polynomial
time, we want to enumerate the solution of Enum·A on the input x. The number
of solutions of Enum·A is bounded by 2Q(|x|) with Q a polynomial. We repeat the
algorithm which solves AnotherSolutionA at most Q(|x|) times. Each time, we
test if the produced solution is correct, it can be done in polynomial time because
Enum·A ∈ EnumP. If it is not the case we stop. This algorithm returns either a
solution or “None” with probability of error bounded by 1

3·2Q(|x|) .

We apply this algorithm to x and the empty set, we add the found solution to
the set of solutions and we go on like this until we have found all solutions. The
delay between the ith and the i+ 1th solutions is bounded by the execution time
of the algorithm AnotherSolution which is polynomial in |x| and i the size of

62 CHAPTER 3. ENUMERATION OF MONOMIALS

the set of produced solutions. Moreover the probability of error is bounded by
1
3 < |A(x)| × 1

3∗2Q(|x|) . This proves that Enum·A is in IncPP.
Conversely if Enum·A ∈ IncPP, on an instance (x,S) of AnotherSolu-

tionA we want to find a solution which is not in S. One enumerates |S| + 1
solutions by the IncPP algorithm, in time polynomial in |S| and |x|. If one of
these solutions is not in S, it is the output of the algorithm. If S is the set of
all solutions, the enumeration will end in time polynomial in S and x and the
algorithm outputs “None”.

Since Zippel’s algorithm finds all monomials in its last step –even for multilin-
ear polynomials– it seems hard to turn it into an incremental algorithm. On the
other hand Algorithm 5 whose design has been inspired by Proposition 3.19 does
the interpolation in incremental delay.

Example 3.20. To a graph G, we associate the polynomial PerfMatch(G), whose
monomials represent the perfect matchings of G. We write C the set of perfect
matching of G.

PerfMatch(G) =
∑
C∈C

∏
(i,j)∈C

Xi,j

For graphs with a “Pfaffian” orientation, such as the planar graphs, this poly-
nomial is related to a Pfaffian and is then efficiently computable. Moreover all
the coefficients of this polynomial are positive, therefore we can use Algorithm 5
to interpolate it deterministically with incremental delay. We have proved that
the enumeration of perfect matching of planar graphs is in IncP. However, such
algorithms already exist [Uno97] and are more efficient, since they are specifically
designed for this purpose.

Definition 3.21. A problem Enum·A is computable in probabilistic polynomial
delay DelayPP if there is a polynomial Q(x, y) and a machine M which solves
Enum·A with probability greater than 2

3 and satisfies for all x, T (x, i + 1) −
T (x, i) ≤ Q(|x|).

Example 3.22. We have seen in Chapter 1 the Matrix-Tree theorem. It proves
that a polynomial whose monomials are in bijection with the spanning trees of
a graph is equal to a Determinant and thus is computable in polynomial time.
Since this polynomial is also monotone, we can use Algorithm 6 to prove that the
enumeration of the spanning trees of a graph is in DelayP.

Open question: Is there any inclusion between a probabilistic enumeration
complexity class and a deterministic one?

3.6 Higher degree polynomials

In this section we sketch the method of Klivans and Spielman, which enables us
to interpolate a polynomial in incremental delay with a polynomial dependency

3.6. HIGHER DEGREE POLYNOMIALS 63

in the degree. We also give a method derived from the ideas of both Algorithms 5
and 6 to interpolate a polynomial with incremental delay, which is good only for
polynomials of small, fixed degree.

3.6.1 KS algorithm

In this part we explain an elaborate result on Identity Testing [KS01], which
is used to interpolate sparse polynomials. The key of the method is a clever
transformation of a multivariate polynomial into a univariate polynomial.

Theorem 3.23 (Theorem 5 of [KS01]). There exist a randomized polynomial time
algorithm which maps the zero polynomial to itself and any non zero polynomial
P with n variables and total degree at most D to a non zero univariate polynomial
P ′ of degree at most D4n6 with probability 2

3 .

The idea of the proof is to map a variable Xi to hzi where h is a new variable
and the zi’s are well chosen linear forms. Each monomial of P is thus mapped
in P ′ to h to the power of a sum of the linear forms zi. A generalized isolation
lemma, proves that among these sums of linear forms evaluated on random points,
there is one which is minimum with high probability.

Therefore the monomial of lowest degree in P ′ comes with probability 2
3 from

a unique monomial of P , denoted by λ ~X~e. One interpolates the polynomial P ′

in polynomial time to find λhl the lowest degree monomial. This gives λ but one
still needs to find ~e.

One builds a new polynomial P ′′, where one substitutes pih
zi to Xi where pi

is the ith prime. One evaluates the linear form zi on the same points as to find λ,
therefore the lowest degree monomial of P ′′ is λ

∏
peii h

zi . One then interpolates

P ′′, recovers ~e and returns the whole monomial λ ~X~e.

Theorem 3.24 (Adapted from Theorem 12 of [KS01]). There is a randomized
polynomial time algorithm which given a black box access to a non zero polynomial
P with n variables and total degree D returns a monomial of P with probability 2

3
in a time polynomial in n, D and with O(n6D4) calls to the oracle.

Using this procedure to implement find monomial in Algorithm 3.6, we obtain
an incremental interpolation algorithm for any polynomial.

3.6.2 Interpolation of fixed degree polynomials

We describe in this subsection another algorithm which finds one monomial of
any polynomial. However its dependency in the degree is exponential. It could be
useful to interpolate a family of polynomials with a fixed degree. It is based on a
generalization of the ideas used to design not zero improved and Algorithm 5.

Proposition 3.25. Let P be a polynomial with n variables of degree d and of total
degree D. There is an algorithm, which returns a set L of cardinal l, maximal such

64 CHAPTER 3. ENUMERATION OF MONOMIALS

that (~XL)d divides a monomial of P with probability greater than 1 − ε. It uses
ldn calls to the oracle on points of size less than log(Dnε−1).

Proof. By the same method as Corollary 3.9, we can solve Monomial-Factor
for the polynomial P and the term (~XL)d. We call the procedure solving this
problem exist monomial(P ,L,ε). Recall that it works with probability ε by choos-
ing random values in [Dε−1] for the variables not in L. The other variables are
mapped into one variable and the obtained univariate polynomial of degree ld is
interpolated. To this aim, the algorithm evaluates it on every integer of [ld], so it
calls the oracle ld times. The points on which P is evaluated are either in [ld] or
are randomly chosen in [Dε−1]. They are less than Dε−1, since ld ≤ D and ε < 1.

Algorithm 7: The procedure max monomial(P, ε)

Data: A multilinear polynomial P with n variables, degree d and the error
bound ε

Result: A list of indices L
begin

L←− ∅
for i = 1 to n do

if exist monomial(P ,L ∪ {i}, ε
n+1) then

L←− L ∪ {i}
return L

end

Algorithm 7 finds a set L maximal for the property that (~XL)d divides a
monomial of P . It works in the same way Algorithm 4 does. In total, it does ldn
calls to the oracle and the randomly chosen points are of size log(Dnε−1).

After one run of max monomial, we have L such that P = (XL)dP1 + P2.
Since P is of degree d and that L is maximal for the property that (XL)d divides
a monomial of P , P1 is of degree d−1 at most. If we find a way to evaluate P1, it is
then easy to apply max monomial recursively and to eventually find a monomial
of P .

Proposition 3.26. Let P be an n variables polynomial of degree d. Assume that
P = (XL)dP1 + P2 where P1 is not zero and P2 is of degree less than d. There
is an algorithm, denoted by restriction(P,L), which acts as a black box computing
P1. To do one evaluation of P1 on points of size less than s, it does ld calls to P
on points of size less than max(s, log(ld)).

Proof. W.l.o.g. say that L is the set [l], the polynomial P1 depends only on the
variables Xl+1, . . . , Xn. One want to compute P1 on the values xl+1, . . . , xn, whose
size is bounded by s. Let H(Y) be the polynomial P , where Y is substituted to
Xi if i ∈ [l], otherwise Xi = xi. We have H(Y) = Y ldP1(~x) + P2(~x, Y) where

3.6. HIGHER DEGREE POLYNOMIALS 65

P2(~x, Y) is an univariate polynomial of degree less than ld. The coefficient of Y ld

in H(Y) is equal to the evaluation of P1 on the desired values. To compute it, one
has only to interpolate H(Y), with ld calls to the oracle on points of size bounded
by log(ld) and s.

Algorithm 8: A recursive algorithm finding one monomial of P

Data: A polynomial P with n variables, a degree d and the error bound ε
Result: A monomial of P
begin

Monomial(Q, i) =
if i = 0 then

Return(Q(0))
else

L← max monomial(Q, εn) ;
Return L;
Monomial(restriction(Q,L), i− 1) ;

in Monomial(P, d) ;
end

Theorem 3.27. Let P be a polynomial with n variables of degree d and of total
degree D. Algorithm 8 returns the sets Ld, . . . , L1 and the integer λ such that

λ
d∏
i=1

(~XLi)i is a monomial of P , with probability 1− ε. It performs O(nDd) calls

to the oracle on points of size log(n
2D
ε).

Proof. Let Qd, . . . , Q1 be the sequence of polynomials on which the procedure
Monomial of Algorithm 8 is recursively called. We denote by li the size of Li.
By a simple induction, using Prop 3.25 and Prop. 3.26, we have that Qi is of
degree i and we note its number of variable ni. The correction of the algorithm
derives from the construction of procedures max monomial and restriction, that
is Proposition 3.25 and 3.26.

We now bound the number of oracle calls this algorithm performs. Again, by
an induction using the complexity of restriction given in Prop. 3.26, we see that

one evaluation of Qi requires

d∏
j=i+1

jlj calls to P . The points used are of size less

than log(n2Dε−1) for all i.

In Algorithm 8, the procedure max monomial computes Li from Qi which, by
Prop. 3.25, requires inili calls to the oracle giving Qi. By the previous remark,

these calls to the oracle giving Qi are in fact ni

d∏
j=i

jlj calls to P .

66 CHAPTER 3. ENUMERATION OF MONOMIALS

It holds that

d∑
j=i

jlj ≤ D because the term

d∏
j=i

(~XLj)j divides a monomial of P

and thus its total degree is less than the total degree of P . Therefore the maximum

of
d∏
j=i

jlj is obtained if all terms of the sum have the same value, i.e. ljj = D
d−i+1 .

Therefore

d∏
j=i

jlj ≤
(

D

d− i+ 1

)d−i+1

. Since n ≤ ni, one obtains that the number

of calls to P when executing max monomial on Qi is bounded by n
(

D
d−i+1

)d−i+1
.

The total number of calls to P in the algorithm is the sum of calls done by
max monomial on each polynomial Qi for 1 ≤ i ≤ d. Hence it is bounded by
d∑
i=1

n

(
D

d− i+ 1

)d−i+1

≤ dnDd = O(nDd).

One can improve the analysis of Algorithm 8. For instance, its complexity
depends on the number of degrees at which the variables of the polynomial appear
and not on the degree itself. It means that, if we want to find a monomial of a
polynomial whose variables are either at the power one or hundred, the previous
algorithm does O(nD2) calls and not O(nD100).

Algorithm 8 finds a monomial of a polynomial of any degree and can thus
be used to implement find monomial in Algorithm 5 to obtain an interpolation
algorithm. However, we have to bound its probability of error by ε

(d+1)n , and
we use then rather large evaluation points. To compare it fairly to the other
algorithms of this chapter, we should use repetitions to decrease the error in the
implementation of exist monomial. In this case the number of calls is multiplied
by n but the evaluation points are of size O(nD) only.

3.6.3 Comparison of the complexity of several interpolation meth-
ods

The complexity of KS algorithm and of the interpolation algorithm obtained from
Algorithm 8 come essentially from the number of calls they need to build a new a
monomial. Indeed, recall that both algorithms find a monomial of P −Q, where
Q is the sum of the monomials of P found by the algorithm at this point. Since Q
is given explicitely and may be exponential in size, its evaluation dominates any
other part of these algorithms.

To find a monomial of a polynomial with n variables, a degree d and a total
degree D , the KS algorithm performs n7D4 calls to the oracle, while Algorithm 8
performs O(n2Dd) calls. Since D < nd, Algorithm 8 has a better delay than the
KS algorithm for polynomial of degree d less than 9.

Open question: is it possible to turn Algorithm 8 into a fixed parameter
algorithm? That is to reduce the number of calls to O(naDbf(d)) with a and b

3.7. MODEST IMPROVEMENTS 67

small but f increasing exponentially fast or worst. In this case, the interpolation
algorithm obtained would be better than KS for any fixed d.

We now compare Algorithm 6 to classical algorithms restricted to multilinear
polynomials. In the table, T is a bound on t the number of monomials that Ben-Or
Tiwari and Zippel algorithms need to know before interpolation. In the row la-
beled Enumeration is written the kind of enumeration algorithm the interpolation
method gives when the polynomial is polynomially computable.

Ben-Or Tiwari [BO88] Zippel [Zip90] KS [KS01] Algorithm 6

Algorithm type Deterministic Probabilistic Probabilistic Probabilistic

Number of calls 2T tnD tn7D4 tnD(n+ log(ε−1))

Total time Quadratic in T Quadratic in t Quadratic in t Linear in t

Enumeration Exponential TotalPP IncPP DelayPP

Size of points T log(n) log(nT 2ε−1) log(nDε−1) log(D)

Figure 3.1: Comparison of interpolation algorithms on multilinear polynomials

Assume one have to interpolate a polynomial, we would like to use the most
efficient algorithm to do the interpolation. Since the choice of the best interpola-
tion algorithm depends on the degree of the polynomial, one needs a way to find
its degree quickly and with good probability.

Proposition 3.28. Let P be a polynomial with n variables and of total degree D.
We can find the degree of P with probability ε in time polynomial in n, D, the size
of the coefficients of P and log(ε−1).

Proof. For each i, we use the Algorithm of Proposition 3.8 to find the degree of
Xi in P with probability 2

3 . One repeats this algorithm O(log(nε−1)) and takes
the majority of the results: it is the degree of the variable Xi with probability of
error less than εn−1 by the Chernoff’s bound. One returns the maximum of the
found degrees, the probability that there is an error in the degree of P is less than
the sum of the errors, that is ε.

The general problem of finding the degree of a polynomial is an interesting and
hard question. If the polynomial is given by a circuit, the interpolation technique
of [GS09] enables to solve it in a time polynomial in the size of the circuit and the
number of monomials.

3.7 Modest improvements

In this part we give several methods to improve the complexity of the algorithms
of this chapter, especially Algorithm 5. A worthwile goal is to transform this
incremental algorithm into a polynomial delay one.

Open question: on what class of polynomials could we store Q, the poly-
nomials containing the already produced monomials, in a way such that we can

68 CHAPTER 3. ENUMERATION OF MONOMIALS

evaluate it in polynomial time? Could modular computation help to solve this
problem?

3.7.1 Finite fields

Over a finite field F, the Schwarz-Zippel lemma holds, but to make it interesting
we must find a set of elements of F of cardinal greater than D the total degree of
the tested polynomial.

Both studied algorithms use evaluation points in [2D] to interpolate polyno-
mials of total degree D. Therefore they can be extended to work for polynomials
over fields with 2D elements or more. It is good in comparison with other classi-
cal algorithms, for instance the one of [Zip90], which needs exponentially bigger
points.

Assume now that we want to interpolate a polynomial P over Z and that its
coefficients are small, less than its total degree D. Remark that it is the case in
every example given in 3.5, where all polynomials have coefficients 1 or −1. There
is a prime p between D and 2D, and we consider P modulo p: it has the same
monomials as P .

All computations are then done in the finite field Fp. It is especially useful
to speed up the computation of substract in Algorithm 5. Indeed, one needs to
evaluate a polynomial given explicitely, and arithmetic operations are quicker in
a small finite field. In particular, the result of the evaluation of a monomial in Fp,
is always of size O(log(D)), while its value in Z is of size O(D log(D)).

Moreoever, if we replace a black box call by an actual computation, like in 3.5,
it may be more efficient to do this computation over a finite field. For instance,
the computation of a determinant can be done in O(n2,376) arithmetic operations
[CW90, KV05], which are done in time O(log(D)) over Fp.

3.7.2 A method to decrease the degree

We have seen that the complexity of Algorithm 8 is highly dependent on the degree
of the interpolated polynomial. We propose here a simple technique to decrease
the degree of the polynomial by one, which makes Algorithm 8 competitive for
degree 10 polynomials.

Let P be a polynomial of degree d. One uses a procedure similar to the one
of Algorithm 4 on it. It finds, with probability 1 − ε, a minimal set L such that
PL is not zero, with n log(ε−1) calls to the oracle. In this case, it does not give a
monomial but we can write PL(~X) = ~XLQ(~X) and Q is of degree d− 1.

We may simulate an oracle call to Q(~X) by a call to the oracle giving PL and
a division by the value of ~XL as long as no Xi is choosen to be 0. Moreover
the monomials of Q are in bijection with those of PL by multiplication by ~XL.
Therefore to find a monomial of P we only have to find a monomial of Q.

Algorithm 8 does not evaluate the polynomial to 0, hence we can run it on
Q, that we simulate with a low overhead in time, and one call to P for each

3.7. MODEST IMPROVEMENTS 69

evaluation. Since the polynomial Q have degree d− 1, the computation of one of
its monomials requires only nDd−1 calls to the oracle plus the n calls used to find
L.

3.7.3 Reduction of error and number of monomials

In both Algorithm 5 and 6, one imposes an exponentially low error to the base
procedure, which is expensive. We now show how to improve the situation in
Algorithm 5, but the same technique works for the other one. The error bound
of the procedure find monomial is ε

2n+1 in Algorithm 5 because we call it t times,
and t is bounded by 2n.

If we know t a priori, an error bound of ε
t would be sufficient, but we cannot

hope so. There is nonetheless a way to bound the error only by something which
is of the same order as t and which thus may be less than 2n.

We add a variable i to count the number of calls to find monomial in Algorithm
5. We write K =

∑∞
j=1

1
j2

and replace find monomial(subtract(P ,Q), ε
2n+1) by

find monomial(subtract(P ,Q), ε
Ki2

).

Since there is t calls of find monomial, the error bound of the whole algorithm
is bounded by

∑t
i=1

ε
Ki2

which is less than ε
K

∑∞
i=0

1
i2

= ε. Therefore the modified
algorithm still have a probability 1− ε to correctly interpolate the polynomial.

The first advantage is obviously that the factor n + log(ε−1) in the delay,
the total time and the number of calls to the oracle of Algorithm 5 becomes
log(t) + log(ε−1). It is better when log(t) is a o(n).

Assume now that one want to broaden the class of polynomial, that one can
interpolate with an incremental delay. One needs another implementation of the
procedure find monomial(P, ε). If we use this new implementation of Algorithm
5, find monomial has only to be polynomial in ε−1 rather than in log(ε−1).

3.7.4 Derandomization

Currently, a lot of efforts are done to find deterministic algorithms solving the
Polynomial Identity Testing problem (PIT) for classes of circuits. We would
like to transfer those results to the enumeration of the monomials of a polynomial.
It is a generalization of the remark that if the polynomials are monotone then both
Algorithms 5 and 6 can be made deterministic.

First remark that if we are able to solve Enum·Poly in polynomial total time
over a class of polynomial, then we can also solve PIT in deterministic polynomial
time. Therefore we cannot hope to derandomize algorithms for Enum·Poly on
larger classes of polynomials than PIT.

The good news is that we can derandomize the algorithms of this chapter
on any class of circuits on which there is a deterministic algorithm for PIT. In
Algorithm 5, the only randomized step is the call to the procedure not zero which
solves PIT. Therefore a determinisitic implementation of this algorithm makes
Algorithm 5 deterministic.

70 CHAPTER 3. ENUMERATION OF MONOMIALS

We cannot obtain the same result for Algorithm 6 over any classes of polyno-
mial. Indeed, we need to use the solution to Monomial-Factor on multilinear
circuits. Even if it relies on solving PIT, it does so on a modified circuit, which
could eventually not be in the class on which PIT is derandomized. However we
can adapt the best derandomization so far over circuit of bounded depth, since
the transformation does not change the depth.

Here the nodes of the circuits have unbounded fan-in but a limited depth. A
ΣΠΣΠ(k) is a circuit of depth 4, such that the top gate is a sum gate of fan-in at
most k.

Theorem 3.29 ([KMSV10]). Let k, n, s be integers. There is an explicit set H
of size polynomial in n, s and exponential in k that can be constructed in a time
linear in its size such that the following holds. Let P be a non-zero polynomial
computed by a multilinear ΣΠΣΠ(k) circuit of size s on n variables. Then there
is some α ∈ H such that P (α) = 0.

Corollary 3.30. The problem Enum·Poly restricted to multilinear polynomials
represented by ΣΠΣΠ(k) circuits is in DelayP.

Proof. In Algorithm 6, the only randomized procedure is the one solving Monomial-
Factor. Proposition 3.11 gives a construction which reduces Monomial-Factor
to polynomial identity testing. Moreover, remark that the transformation does not
increase the number of alternating gates, when we allow an unbounded fanin. In-
deed, the product gates are replaced by several product gates and the binary tree
to sum them can be merged into the sum gates of the next level. Moreover, the
fanin of the top gate is not increased, because it is a sum gate. Therefore, the
construction transforms a ΣΠΣΠ(k) circuit into a ΣΠΣΠ(k) circuit. We have
thus a polynomial time deterministic algorithm for Monomial-Factor and that
concludes the proof.

3.8 Hard questions for easy to compute polynomials

In this section, we assume that all polynomials are given by circuits. We describe
four (families of) polynomials, representable by circuits. Their sizes and formal
degree are polynomial in the number of their variables therefore the represented
polynomials can be evaluated in polynomial time. We prove that we can encode
hard combinatorial questions in these polynomials such as the Monomial Factor
problem or one of the two following problems:

Non-Zero-Monomial
Input: a polynomial given as a circuit and a term ~X~e

Output: accept if ~X~e has a coefficient different from zero in the polynomial

Monomial-Coefficient
Input: a polynomial given as a circuit and a term ~X~e

Output: return the coefficient of ~X~e in the polynomial

3.8. HARD QUESTIONS FOR EASY TO COMPUTE POLYNOMIALS 71

Proposition 3.31. If the problem Monomial-Factor on a class of polynomials
can be solved in probabilistic polynomial time (in the number of variables and the
total degree of the polynomial), then Non-Zero-Monomial can also be solved in
probabilistic polynomial time.

Proof. Let P be a polynomial of total degree D with n variables and ~X~e a term.
Let k be the total degre of ~X~e, we denote by Pk the sum of monomials of P of
total degree k. Let us remark that (P, ~X~e) ∈ Non-Zero-Monomial if and only
if (Pk, ~X

~e) ∈Monomial-Factor.
To prove the proposition, one has only to show that one can evaluate Pk from

a polynomial number of calls to P . To do this, we use the method of Proposition
3.8. One subsitutes to each variable Xi of P the product XiXn+1 to obtain the
polynomial P̃ . One then interpolates the univariate polynomial P̃ (~x,Xn+1) where
~x is the point on which one wants to evaluate Pk. The coefficient of the term Xk

n+1

is Pk(~x). We have obtained it with D calls to P and in polynomial time in n and
D.

The converse does not seems to hold, that is Monomial-Factor may be
harder than Non-Zero-Monomial. The problem Monomial-Coefficient is
the search version of Non-Zero-Monomial and is thus also harder. Therefore,
the best result we can achieve is to prove that Non-Zero-Monomial is a hard
problem on a family of polynomials.

Moreover Monomial-Factor is exactly the problem solved for multilinear
polynomials by the procedure not zero improved and Monomial-Coefficient
the problem solved by coefficient. In what follows, we prove that these problems
are not likely to be solvable in probabilistic polynomial time, even restricted to
polynomials representable by small circuits of small formal degree.

As a consequence, Algorithm 6, which is based on repeatedly solving Monomial-
Factor, cannot be generalized to polynomials of degree 2 unless RP = NP.
Therefore new methods must be devised to find a polynomial delay algorithm for
higher degree polynomials.

3.8.1 Polynomials of unbounded degree

We define here the polynomial Q with n2 + n variables and degree n, which has
been introduced by Valiant (see [VZG87]):

Q(X,Y) =

n∏
i=1

(

n∑
j=1

Xi,jYj)

If we see Q as a polynomial in the variables Yj only, the term T =

n∏
j=1

Yj has

∑
σ∈Σn

n∏
i=1

Xi,σ(i) for coefficient, which is the Permanent in the variables Xi,j .

72 CHAPTER 3. ENUMERATION OF MONOMIALS

Proposition 3.32. The problem Monomial-Coefficient is #P-hard.

Proof. One can reduce the problem Monomial-Coefficient in polynomial time
to the computation of the Permanent. Assume one wants to compute the Per-
manent of the n2 values xi,j . One builds the polynomial Q(~x, ~Y) where xi,j has
been subtituted to Xi,j . This polynomial can be given by a circuit of polynomial

size in n. Thus the coefficent of T in Q(~x, ~Y) is the Permanent of the xi,j ’s and

it is also the solution of Monomial-Coefficient when given Q(~x, ~Y) and T
as input. Since the computation of the Permanent is #P-complete, the problem
Monomial-Coefficient is #P hard.

3.8.2 Degree 3 polynomials

We now prove a hardness result for degree 3 polynomials and the problem Non-
Zero-Monomial. We improve it in the next subsection but the result presented
here is still interesting because the polynomial we use has a much simpler form.

Proposition 3.33. The problem Non-Zero-Monomial restricted to degree 3
polynomials is NP-hard.

Proof. Let C be a collection of three-elements subsets of [n] (3-uniform hyper-
graphs). We construct a polynomial from C, on the variables (Xi)i∈[n], as follows.

To each subset C ′ of C we associate the monomial χ(C ′) =
∏

{i,j,k}∈C′
XiXjXk. Let

QC be the polynomial: ∑
C′⊆C

χ(C ′)

It can be represented by a circuit polynomial in the size of C, since it is equal to:∏
{i,j,k}∈C

(XiXjXk + 1)

The degree of QC is the maximal number of occurrences of an integer in ele-
ments of C. If each integer of [n] appears in at most three elements of C, QC is
of degree 3 and the problem of finding an exact cover of C is still NP-complete
[GJ79].

By definition of χ, a subset C ′ is an exact cover of [n] if and only if χ(C ′) =∏
i∈[n]Xi. Therefore to decide if C ′ has an exact cover, we only have to de-

cide if
∏
i∈[n]Xi has a coefficient different from zero. It proves that Non-Zero-

Monomial is NP-hard over circuits representing degree 3 polynomials.

3.8.3 Degree 2 polynomials

Here we give hardness result for the problems Monomial-Factor and Non-
Zero-Monomial restricted to degree 2 polynomials. Again the second result is
stronger but the first one is based on a simple polynomial and does not rely on
sophisticated theorems.

3.8. HARD QUESTIONS FOR EASY TO COMPUTE POLYNOMIALS 73

Proposition 3.34. The problem Monomial-Factor restricted to degree 2 poly-
nomials is NP-hard.

Proof. Let φ be a 2-CNF formula, it is a conjunction of n clauses Ci and each of
them is the disjunction of two litterals, which are either a variable or the negation
of a variable. We note V the set of variables of φ and v ∈ Ci if v is one of the
litteral of Ci. We build the polynomial Qφ from φ. It has n variables Xi which
represent the clauses Ci and one special variable Y .

Qφ(~X, Y) =
∏
v∈V

((Y
∏
¬v∈Cj

Xj) + (
∏
v∈Ci

Xi)) (3.1)

Any empty product in the equation is 1.
Remark that each clause has at most two litterals, thus any variable Xi appears

in at most two factors of the outermost product. Therefore the polynomial is of
degree 2 in the variables Xi. We rewrite Qφ by expanding the product over V . In
the next equation, the function d can be seen as a distribution of truth values or
as a choice in each factor of Qφ of the left or right part of the sum. The integer
α(d) is the number of j such that d(j) = 0 and β(d, i) is the number of litterals
in Ci made true by d.

Qφ(~X, Y) =
∑
d∈2|V |

Y α(d)
∏
i

X
β(d,i)
i

We write Qφ(~X, Y) =

|V |∑
k=1

Y kQk(~X). Equation 3.1 allows us to build a circuit

of size and formal degree polynomial in φ, which represents Qφ. By homogeneiza-
tion, as in Proposition 3.11, one builds from the circuit representing Qφ, a circuit

k2 times larger which represents Qk(~X).
Finally, a monomial comes from a truth value assignment which satisfies φ if

and only if T =
n∏
i=1

Xi divides the monomial. In addition, a monomial represents

an assignment of Hamming weight k if and only if it is in Qk. The problem
Monomial-Factor for the polynomial Qk and the term T is hence equivalent to
the problem of deciding if φ has a satisfying assignment of Hamming weight equal
to k. This latter problem is NP-complete over 2-CNF formulas [FG06]. Therefore,
Monomial-Factor is NP-hard over degree 2 polynomials.

Proposition 3.35. The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof. LetG be a directed graphs on n vertices, the Laplace matrix L(G) is defined

by L(G)i,j = −Xi,j when (i, j) ∈ E(G), L(G)i,i =
∑

(i,j)∈E(G)

Xi,j and 0 otherwise.

Let Ts be the set of spanning trees of G, rooted in s and such that all edges of a

74 CHAPTER 3. ENUMERATION OF MONOMIALS

spanning tree is oriented away from s. Let L(G)s,t be the minor of L(G) where
the row s and the column t have been deleted.

The Matrix-Tree theorem (see [Aig07] for more details) is the following equal-
ity:

det(L(G)s,t)(−1)s+t =
∑
T∈Ts

∏
(i,j)∈T

Xi,j

We substitute to Xi,j the product of variables YiZj in det(L(G)s,t) which makes
it a polynomial in 2n variables. This polynomial is derived from a Determinant
and can thus be computed in polynomial time. Every monomial represents a
spanning tree whose maximum outdegree is the degree of the monomial. We
assume that every vertex of G has indegree and outdegree less or equal to 2
therefore det(L(G)s,t) is of degree 2.

Remark now that a spanning tree, all of whose vertices have outdegree and
indegree less or equal to 1 is an Hamiltonian path. Therefore G has an Hamiltonian
path beginning by s and finishing by a vertex v if and only if det(L(G)s,t) contains
the monomial YsZv

∏
i/∈{s,v} YiZi. To decide wether G has an Hamiltonian path,

one has only to solve Non-Zero-Monomial on the polynomial det(L(G)s,t) and
the term YsZv

∏
i/∈{s,v} YiZi, for all pairs (s, v) which are in polynomial number.

The Hamiltonian path problem restricted to directed graphs of outdegree and
indegree at most 2 is NP-complete [Ple79]. Therefore Non-Zero-Monomial is
NP-hard over degree 2 polynomials.

Remark 3.36. Assume there is a polynomial delay algorithm solving Enum·Poly
over degree 2 polynomials in a way similar to Algorithm 6. It would solve Non-
Zero-Monomial for black box polynomials in probabilistic polynomial time. If
the polynomial can be evaluated in polynomial time, like in the previous proposi-
tion, then one has a RP algorithm to decide Non-Zero-Monomial. Therefore,
such an algorithm would imply RP = NP.

The previous hardness results suggest that, if there is an algorithm in polyno-
mial delay which solves Enum·Poly over degree 2 polynomials, it cannot produce
the monomials in any order. A related question is asked in [Kay10]: what is the
complexity of computing the leading monomial of a depth three circuit?

3.8.4 Hardness regardless of the degree

If one considers only the degree of the polynomials, then the strongest result is
Proposition 3.35. Nonetheless the polynomials used to prove the others results
have a very simple form: a formula with three alternations of operands. They can
be represented by circuits with gates of unbounded fanin and depth 3, whereas the
last is a determinant which can “efficiently“ simulate a large class of polynomials
representable by a polynomial size circuit (see [Tod, MP08]).

The first three results can thus be seen as a proof of hardness of some problems
over low degree poynomials represented by depth 3 circuits. One may wonder if
these problems are still hard for depth 2 circuits, without degree restriction. For

3.8. HARD QUESTIONS FOR EASY TO COMPUTE POLYNOMIALS 75

instance, Polynomial Identity Testing is solvable in deterministic polynomial
time on circuits of depth 2.

A polynomial defined by a polynomial ΣΠ circuit (a layer of × gates followed
by a + gate) has only a polynomial number of monomial, therefore it can be
interpolated in polynomial time. From this, one solves the problems Non-Zero-
Monomial, Monomial-Coefficient and Monomial-Factor.

Proposition 3.37. The problem Non-Zero-Monomial is in P over depth 2
circuits.

Proof. We only have to deal with the case of a polynomial P represented by a
ΠΣ circuit (a layer of + gates followed by a × gate) with n variables X1, . . . , Xn.

We have P =
k∏
i=1

Ti where Ti is a sum of variables with small positive coefficients.

We reduce Non-Zero-Monomial to the problem of deciding if there is a perfect
matching in a graph. To P and the term ~X~e, we associate the bipartite graph
G = (V,E) defined by:

1. V = {u1, . . . , uk} ∪ {vlj |j ∈ [n] and l ≤ ej}

2. E = {(ui, vlj)|Xj has a non-zero coefficient in Ti}

A vertex ui represents the linear form Ti, while the vertices v1
j . . . , v

ej
j represent

the variable Xj (ej is its degree in ~X~e). There is an edge (ui, v
l
j) if Xj has a

coefficient different from zero in Ti. A perfect matching M of G correspond to the
choice of one variable Xα(i) for each Ti. If we expand the product in the definition
of P , we obtain the term

∏
iXα(i). Since all terms obtained by expansion have

positive coefficients, they do not cancel and
∏
iXα(i) has a coefficient different from

zero in P . All vertices vlj are saturated by M , because it is a perfect matching. It

means that
∏
iXα(i) = ~X~e.

Conversely, and for the same reasons, the term ~X~e has a non zero cefficient in
P , if there is a perfect matching in G. This proves that Non-Zero-Monomial is
reducible to the problem of finding a perfect matching in a bipartite graph, which
is in P.

We now see that a slight generalization of the class of considered polynomials
makes the problem Non-Zero-Monomial hard.

Proposition 3.38. The problem Non-Zero-Monomial is NP-hard over the

polynomials of the form

k∏
i=1

Ti where Ti is a sum of variables with coefficients

−1, 0, 1, 2, 3.

Proof. Let M be a n × n matrix with coefficients in −1, 0, 1, 2, 3. We define the
polynomial PM to be the product of the Ti =

∑
j∈[n]Mi,jXj for all i ∈ [n]. The

76 CHAPTER 3. ENUMERATION OF MONOMIALS

coefficient of the term
∏n
i=1Xi in PM is the Permanent of the matrix M . To

decide if a matrix with coefficient in −1, 0, 1, 2, 3 has a permanent 0 is NP-hard
[Val79]. Thus Non-Zero-Monomial is also NP-hard.

Finally, the evaluation of the Permanent is #P-complete for Turing reduction,
even for matrices with coefficients in {0, 1}, which yields the next proposition.

Proposition 3.39. The problem Monomial-Coefficient is #P-complete over
depth 2 circuits.

Chapter 4

Polynomials and Hypergraphs

In this chapter we solve two problems related to acyclicity and hypergraphs thanks
to a generalization of the Matrix Tree theorem [BR91] and to the various algo-
rithms on polynomials presented in Chapter 3. In all this chapter, acyclicity means
Berge-acyclicity unless it is explicitely stated otherwise. The last section of this
chapter is part of a joint work with David Duris accepted at WALCOM 2011
[DS11].

4.1 Introduction to the Pfaffian Tree theorem

We present a family of polynomials ZH , where each ZH is associated to a 3-
uniform hypergraph H. The monomials of ZH are in bijection with the spanning
hypertrees of H, whose set is denoted by T (H).

Definition 4.1.

ZH =
∑

T∈T (H)

ε(T)
∏

e∈E(T)

we

where ε(T) ∈ {−1, 1}.

The function ε(T) has a precise definition, see [MV02], but it is not used here.
This polynomial has exactly one variable we for each hyperedge e of H. We also
write w{i,j,k} the variable associated to the hyperedge which contains the vertices
i, j and k.

Definition 4.2. Let H be a 3-uniform hypergraph, Λ(H) is the Laplacian matrix

defined by Λ(H)i,j =
∑
i 6=k,j

εijkw{i,j,k}.

εi,j,k is 0 when {ijk} /∈ E(H), otherwise εijk ∈ {−1, 1}.

The coefficient εijk is equal to 1 when i < j < k or any other cyclic permutation
and is equal to −1 when i < k < j or any other cyclic permutation. Thus εijk is
computable in polynomial time in the size of i, j and k. We may relate to ZH ,

77

78 CHAPTER 4. POLYNOMIALS AND HYPERGRAPHS

the Pfaffian of the Laplacian matrix which is of interest since it is computable
in polynomial time. The following theorem is inspired by a similar theorem for
graphs, called the Matrix-Tree theorem.

Theorem 4.3 (Pfaffian-Hypertree (cf. [MV02])). Let Λ(i) be the minor of Λ(G)
where the column and the line of index i have been removed.

ZH = (−1)i−1Pf(Λ(i))

For H a hypergraph with n vertices and m hyperedges, ZH is a multilinear
polynomial with m variables, and the size of its coefficients is one. Moreover, it
is of total degre n−1

2 because a spanning hypertree of a 3-uniform hypergraph has
n−1

2 hyperedges.
This theorem allows to build a simple RP algorithm to the following problem

(cf. [CMSS08]).

Spanning Hypertree
Input: a hypergraph H
Output: is there a spanning hypertree of H

4.2 Enumeration of the spanning hypertrees

The notion of spanning tree of a graph admits several interesting generalizations
to a hypergraph. The most well-known notions of acyclicity are Berge, γ, β and α-
acyclicity. For the three notions γ, β and α-acyclicity and 3-uniform hypergraphs,
Spanning Hypertree is NP-complete [Dur09]. On the other hand, Spanning
Hypertree is NP-complete for Berge-acyclicity and 4-uniform hypergraphs but
not when restricted to 3-uniform hypergraphs. Indeed, one can adapt Lovász
matching algorithm in linear polymatroids [Lov80] to solve Spanning Hyper-
tree for 3-uniform hypergraphs. This algorithm is very complicated and not
designed for this particular case hence it seems hard to extend it into an efficient
enumeration algorithm of the spanning hypertrees. Nonetheless it is easy to give
a randomized enumeration algorithm by using Algorithm 6 of the last chapter.

Proposition 4.4. The problem Enum·Spanning Hypertree for 3-uniform hy-
pergraphs is in DelayPP. More precisely, there is an algorithm solving the prob-
lem with delay O(mn3.7(n log(n)+log(ε−1))) where m is the number of hyperedges,
n is the number of vertices and ε is a bound on the probability of error.

Proof. Let H be a hypergraph with n vertices, the degree of ZH is n−1
2 (or 0).

There is always a prime number p between n−1
2 and n, we consider ZH as a

polynomial over Fp.
We execute Algorithm 6 on the polynomial ZH . We evaluate first the time

taken by the the calls to the oracle, here the computation of the polynomial ZH .
The first step to compute ZH is to build the (n − 1) ∗ (n − 1) matrix Λ(i) and

4.3. PARALLELISM 79

is negligible with regard to the time to compute its Pfaffian. One needs the
same time as to compute a Determinant that is to say (nη)1+o(1) field operations
[KV05] where η is a parameter related to ω, the exponent of matrix multiplication.
Currently, we know that ω < 2.376 and η < 2.7. A field operation has a complexity
O(log(n)), therefore the evaluation of ZH on any points of Fp has a complexity
(nη)1+o(1).

By Theorem 3.12 there are O(mn(m + log(ε−1))) oracle calls between two
solutions. By the remark of Section 3.7 on the error bound, we can improve it
to O(mn(log(t) + log(1

ε))) where t is the number of spanning hypertrees that is
bounded by nn. In conclusion, the contribution to the delay of the evaluations of
ZH is O((mnη+1(n+ log(ε−1)))1+o(1)).

One must take into account the cost of the univariate interpolation that the
procedure not zero improved realizes. Since ZH is defined over a finite field, the
size of the evaluations of the polynomial are O(log(n)). Furthermore, its total
degree is n−1

2 , hence the time to do the interpolation is O(n2 log(n)). The contri-
bution to the delay is negligible, since for one interpolation, there are n evaluations
of ZH , each of them taking more time than the interpolation.

Since the size of a 3-uniform hypergraph is typically m = O(n3), the delay is
quite good, less than cubic. We could yet improve the complexity of the described
algorithm, by using a probabilistic algorithm to compute the Determinant.

We can consider the “3-Pfaffian” hypergraphs (cf. [GdM10]). They are a
generalization of the graphs with a “Pfaffian” orientation, like in the algorithm
to count perfect matchings in planar graph [Kas61]. Their associated polynomial
Z(H) is monotone, thus the previous algorithm can be made deterministic on this
class.

4.3 Parallelism

The computation of the determinant and the Algorithm 6 are parallelizable. We
can then think that the previous enumeration algorithm is parallelizable, but there
are no definition of parallelism for enumeration. We now propose (without being
too formal about the model of parallel computation) two possible ways of defining
parallelism in enumeration algorithm. We then explain how good the previous
algorithm is with regard to these notions.

Total time The first notion is related to the total time and the number of
solutions.

Definition 4.5. A problem Enum·A can be solved in parallel polynomial total
time if there is an algorithm which, on an instance x, uses a total time polynomial
in |x| and a number of processors polynomial in |A(x)|.

Algorithm 6 is obviously solvable in probabilistic parallel polynomial total time
since, at each recursive call, we can use two processors to compute them at the

80 CHAPTER 4. POLYNOMIALS AND HYPERGRAPHS

same time. In fact, one simply does a parallel traversal of the tree described in
Sec 3.4. The enumeration of spanning hypertree has thus a parallel total time
bounded by a polynomial in the number of hyperedges denoted by m. This time
is the product of the depth of the tree which is equal to m and of the cost of doing
one step in the tree which is also polynomial in m.

Delay The second notion is related to the delay.

Definition 4.6. A problem Enum·A can be solved with a highly parallel delay if
there is an algorithm solving Enum·A on an instance x with a delay log(|x|)O(1)

and it uses |x|O(1) processors.

Note that a lot of interesting enumeration problems have a corresponding
decision problem, which is P -complete like Enum·HornSat. They cannot have
a highly parallel delay algorithm or every problem in P would be in NC, which is
widely believed to be false.

The previous problem may not have a highly parallel delay. However, one can
decrease substantially its delay by using a polynomial number of processors. First,
the step of reduction of the error is only a repetition of the same algorithm, which
can be trivially done in parallel. Second, the evaluation of the polynomial ZH
is the computation of a determinant and is thus in NC. The transformation on
the variables of the determinant to obtain ZH are only a few multiplications and
additions, which can be done in NC also. Finally, the univariate interpolation is
done through the resolution of a linear system which can be done in NC. Therefore
only the depth first search in the tree is inherently sequential. The parallel delay
of the algorithm, when given a polynomial number of processors to be executed
on, is O(m1+o(1)) (almost linear).

Inspired by the definition of the class SDelayP, we can imagine a somewhat
nicer way to parametrize the delay by a complexity classe.

Definition 4.7. A problem Enum·A has a C delay if for every instance x there
is a total order <x on A(x) such that the following problems are in C:

1. given x, output the first element of A(x) for <x

2. given x and y ∈ A(x) output the next element of A(x) for <x or a special
value if there is none

To define a class of problem with a “parallelizable delay”, one replaces C by
its favorite parallel complexity class, for instance NC.

4.4 Maximal spanning hypertree

We are interested in the following problem:

Maximal Acyclic Subhypergraph

4.4. MAXIMAL SPANNING HYPERTREE 81

Input: a hypergraph H and an integer n

Output : is there a subhypergraph of H of size n, i.e. with n hyperegdes?

Restricted to graphs, the problem is trivial since there is always a spanning
tree, while for 4-uniform hypergraphs it is already NP-complete. Moreover, for
the three other notions of acyclicity (γ, β and α) it is NP-complete even for 3-
uniform hypergraphs [DS11]. We study here the last case –3-uniform hypergraphs
and Berge acyclicity– and gives an efficient randomized algorithm to solve it. The
strategy is to relate this question to one on spanning hypertrees that we can solve
thanks to the Pfaffian Hypertree theorem and Proposition 3.8.

Proposition 4.8. Let Hn be the complete 3-uniform hypergraph over n elements
and H one of its acyclic subhypergraphs. We can extend H into a spanning acyclic
subhypergraph of Hn, Hn+1 or Hn+2.

Proof. Let H be an acyclic hypergraph, let C0, . . . , Ct be its connected components
and v0, . . . , vt be vertices such that vi ∈ Ci. The hypergraph H ′ is the union of the
hyperedges of H and of {v2i, v2i+1, v2i+2} for 0 ≤ i ≤ dn−t2 e. If vt+1 appears, it is
a new vertex and H ′ is a subhypergraph of Hn+1, otherwise it is a subhypergraph
of Hn. Since we have connected by a path all connected components of H which
is acyclic, H ′ is both acyclic and connected: it is a hypertree.

Let now H be a subhypertree on the vertices 1, . . . , k of the hypergraph Hn.
The hypergraph H ′′ is the union of the hyperedges of H and the hyperedges
(2i + k, 2i + k + 1, 2i + k + 2) for 0 ≤ i ≤ n−k

2 . Again we may introduce a new
vertex labeled n + 1, which makes H ′′ a subhypergraph of Hn+1 instead of Hn.
The edges added to H form a path which covers all points not in H, therefore H ′′

spans either Hn or Hn+1. Since this path has only one point in common with H
which is acyclic, H ′′ is also acyclic.

Combining the two constructions proves the result.

Theorem 4.9. The problem Maximal Acyclic Subhypergraph is in RP.

Proof. Let H be a hypergraph on n vertices and k an integer, we want to decide
if there is an acyclic subhypergraph of size k in H. Consider the polynomial
Z(Hn), its monomials are in bijection with the spanning hypertrees of the complete
hypergraph Hn. We note S the set of indices of variables of Z(Hn) which represent
the edges of H.

By Proposition 4.8, an acyclic hypergraph H ′ can be extended into a span-
ning hypertree, say w.l.o.g. of Hn, which is hence represented by a monomial of
Z(Hn). This monomial have a total degree with regard to S equal to the size of
H ′. Conversely, when a monomial of Z(Hn) is of degree l with regard to S, it
means that the restriction of the corresponding hypertree to S, which is an acyclic
hypergraph, is of size l. Therefore the maximum of the degrees of Z(Hn), Z(Hn+1)
and Z(Hn+2) with regard to S is the maximal size of an acyclic subhypergraph of
H.

82 CHAPTER 4. POLYNOMIALS AND HYPERGRAPHS

We now use the algorithm of Proposition 3.8 to find the total degrees of Z(Hn),
Z(Hn+1) and Z(Hn+1) with regard to S. Those polynomials have n variables, total
degree less than n and coefficients bounded in size by 1, hence the algorithm is
in time polynomial in n and uses less than n evaluations on points of size less
than log n2. Thanks to Theorem 4.3, the evaluations can also be done in time
polynomial in n, thus we find the degrees in polynomial time with probability 1

2 .
If the maximum of the degree is more or equal to k, we are sure that there is an
acyclic subhypergraph of size k, and if not there is none with probability 1

2 , which
proves that the problem is in RP.

Remark 4.10. The algorithm which is proposed here is in fact in RNC, the class
of problem solved by randomized NC algorithms. Indeed, both the evaluation of
the polynomial and the interpolation in the algorithm of Proposition 3.8 can be
done in NC, as it is explained in the previous section.

The problem Maximal Acyclic Subhypergraph can naturally be seen as
a problem parametrized by the size of the acyclic hypergraph one looks for. A
hypergraph is Berge-acyclic if and only if there is an order on the edges such that
for all edges E, the union of all edges greater than E has an intersection with E of
size less than one. One may express the fact that a hypergraph represented by an
incidence structure, equipped with an order, satisfies this condition by means of a
Π1 formula. This means that Maximal Berge-Acyclic Subhypergraph is in
the class W[1] (for the definition of parametrized complexity and of the class W[1]
see [FG06]). Open question: is Maximal Berge-Acyclic Subhypergraph
W[1]-complete or FPT?

Part II

Logic

83

Chapter 5

Monadic Second-Order Logic

In this chapter, we present the logic MSO over several structures and give some
illustrations of its expressive power. We also give some background informations
on graph and matroid decompositions. We present several parameters such as the
tree-width or the branch-width. One of the main interest of these parameters is
that, if we fix them many NP-complete problems become solvable in polynomial
time. In particular, the model-checking of MSO is easy for bounded tree-width.
For a very complete view on these subjects (and many others) see the book Graph
Structure and Monadic Second-Order Logic by Courcelle [Cou] and also the Phd
thesis of Kanté [Kan08].

5.1 Terms and trees

Recall that a tree is an acyclic graph. One considers rooted trees which have a
distinguished vertex called the root. The vertices of a tree are called nodes, those
of degree 1 are called leaves, whereas the others are called inner nodes. A labeled
tree is a tree together with a function from the nodes of this tree to a set S, which
most of the time is finite or is a set of words on a finite alphabet.

A functional signature is a pair (F,A), where F is a finite set of function
symbols of positive arity and A is a finite set of constants. We denote by T (F,A)
the set of terms built over (F,A). Note that a term can be seen as a ranked tree
of bounded degree: each internal node is labeled by an element of F , each leaf by
an element of A. In this thesis all the terms/trees are binary.

The terms of T (F,A) are represented by a relational structure whose domain
is the set of nodes of the term. The structure has the binary relations lchild(x, y)
and rchild(x, y) which are true when y is the left child, respectively the right child,
of x. We also have one unary relation for each symbol in F and A, denoted by
label(s) = e, which holds when e is the label of the node s.

We recall the definition of monadic second-order logic, here given over terms,
i.e. the atoms are made from the relations of the structure which represents a
term. The particularity of this logic is to use two types of variables. A first order

85

86 CHAPTER 5. MONADIC SECOND-ORDER LOGIC

variable (in lower case) represents an element of the domain, whereas a second-
order variables (in upper case) represents a subset of elements of the domain.

Definition 5.1. One builds atomic formulas from first and second-order variables
and from the relations =, ∈, rchild(x, y), lchild(x, y) and label(s) = e for all e
of A ∪ F . The set of Monadic Second Order formulas, denoted by MSO, is
the closure of these atomic formulas by the usual quantifiers ∃, ∀ and the logical
connectives ∧, ∨ and ¬.

The equality is the equality over the elements of the domain, but we extend it
to sets, since it is definable by a simple formula. The relation x ∈ X means that
the element denoted by x is a member of the set denoted by X. We also use freely
6= and ⊆ over elements and sets since they are easily definable in MSO. We can
express by a FO formula the fact to be the root or a leaf:

root(s) ≡ ∀x¬(lchild(x, s) ∨ rchild(x, s))

leaf(s) ≡ ∀x¬(lchild(s, x) ∨ rchild(s, x))

The structure we have described is not necessarily a binary tree. However,
one can express this fact by a MSO formula, which states that the structure is
connected (see the formula given in the preliminaries), has no cycles and each
node is of degree 3 at most.

One can decide if an MSO formula holds over a term by building an appropri-
ate tree automaton and running it on the term. This yields the following classical
theorem.

Theorem 5.2 (Thatcher and Wright [TW68]). The model-checking of MSO for-
mulas over terms is solvable by a fixed parameter linear algorithm, the parameter
is the sum of the size of the formula and the size of the functional signature on
which the terms are defined.

5.2 Decomposition: the different notions of width

Since many NP-hard problems defined on graphs become easy on trees, a lot of
effort have been put into understanding how a graph can be represented by a tree.
There exist a lot of decomposition of graphs into trees, with an associated notion
of width, which characterizes how far the graph is from being a tree. We describe
here several of this decompositions, among them the branch-width is of special
interest for the next chapter.

5.2.1 Tree-width

The tree-width that we now present is the first width notion that has been defined.
Along with the path-width, it is the first concept introduced by Robertson and
Seymour in their graph minor project [RS83, RS86].

Let G = (V,E) be a graph, we say that T is a tree decomposition of G if:

5.2. DECOMPOSITION: THE DIFFERENT NOTIONS OF WIDTH 87

1. each node of T is labeled by a subset of V

2. for every edge (u, v) ∈ E, there is a node of T labeled by a set V ′ such that
u and v are in V ′

3. for every element u ∈ V , the set of nodes of T whose label contains u is
connected

The width of the tree decomposition is the maximum size of the sets labeling
T minus one. The tree-width of the graph is the minimum of the width over all
its tree decompositions. If one additionaly requires the tree T to be a path, one
defines path decomposition and path-width.

1

2

3

4
5

6

7

1

2

2

3 7 3 75

3 54

5 6 7

Figure 5.1: a graph and one of its tree-decomposition of width 2

Example 5.3. In Figure 5.1, we give an example of a graph and of one of its tree
decomposition of width 2. The graphs of tree-width 1 are the trees (or the forests
when they are not connected). Therefore the decomposition given in Figure 5.1 is
optimal.

At most, the tree-width of a graph on n vertices is n−1. This value is attained
for the complete graph on n vertices.

The problem of finding the tree-width of a graph is NP-hard [ACP87]. How-
ever, they are plenty of polynomial time algorithms to find a good tree decompo-
sition of a graph if the tree-width is less than a fixed k.

Theorem 5.4 ([Bod93]). There exists an algorithm which finds an optimal tree
decomposition of a graph in time f(k)n, where n is the size of the graph, k its
tree-width and f a computable function.

One alternative to decompositions like tree-width is the use of algebraic oper-
ation to define a class of graphs. Let us give an example of a set of simple graph
operations, that we will extend to matroids in the next chapter. A graph with
two distinguished vertices, named respectively s-vertex and t-vertex, is called a
2-terminal graph. We define two operations on 2-terminal graphs:

88 CHAPTER 5. MONADIC SECOND-ORDER LOGIC

1. let G1//G2 be the 2-terminal graph obtained by identifying the s and t-
vertices of G1 with the ones of G2.

2. let G1 •G2 the 2-terminal graph obtained by identifying the t-vertex of G1

with the s-vertex of G2. The s vertex of G1 • G2 is the s-vertex of G1 and
its t-vertex is the one of G2.

Series-parallel graphs are represented by the terms on the function //, • and
the constant a which represents a graph with the two distinguished vertices s
and t, and the edge (s, t). The series-parallel graphs are exactly the graphs of
tree-width 2.

5.2.2 Branch-width

In this part we define the branch-width, thanks to the general notion of con-
nectivity function, which allows to define several decompositions. We follow the
presentation of [Gro08].

Let S be a finite set and κ : 2S → N. The function κ is symmetric if κ(B) =
κ(S \B) for all B ⊆ S. The function κ is submodular if for all B,C ⊆ S

κ(B) + κ(C) ≥ κ(B ∪ C) + κ(B ∩ C).

If κ is symmetric and submodular, it is a connectivity function.
A branch decomposition of (S, κ) is a pair (T, l) where T is a binary tree and

l is a one to one labeling of the leaves of T by the elements of S. We define the
mapping l̃, from the vertices of the graph to the sets of S recursively:

l̃(t) =

{
{l(t)} if t is a leaf

l̃(t1) ∪ l̃(t2) if t is an inner node with children t1, t2

The width of the branch decomposition of (S, κ) is defined by

width(T, l̃) = max
{
κ(l̃(t))|t ∈ V (T)

}
The branch-width of (S, κ) is the minimum of the width over all branch de-

compositions. Thanks to a result of Iwata, Fleischer and Fujishige [IFF01] about
minimalization of a submodular function, we know that we can find an almost
optimal branch decomposition with a fixed parameter tractable algorithm.

Theorem 5.5 (Oum and Seymour [OS06]). Let κ be a polynomial time computable
connectivity function, symmetric, submodular and such that κ({v}) ≤ 1. For all
k ≥ 0, there is a polynomial-time algorithm which outputs a branch decomposition
of (S, κ) of width at most 3k if bw(S, κ) ≤ k. If bw(S, κ) > k, the algorithm
outputs a certificate of this fact.

We introduce two notions of graph decomposition, which are branch decom-
positions of the sets of edges and of the set of vertices.

5.2. DECOMPOSITION: THE DIFFERENT NOTIONS OF WIDTH 89

Definition 5.6 (Branch-width of a graph). Let G = (V,E) be a graph. Let X
be a set of edges, we note TX the sets of vertices incident to an edge of X. For
all X ⊆ E, we let η(X) = |{TX ∩ TE\X}|. The branch-width of G, denoted by
bw(G), is the branch-width of (E, η).

1

2

3

4
5

6

7

12 27

23

34 45

35

67 56

57

Figure 5.2: a branch-decomposition of width 2 of the graph of Example 5.1

The branch-width of a graph is closely related to tree-width: they are always
within a constant factor of each other.

Theorem 5.7 ([RS91]). Let G be a graph, if bw(G) > 1 then we have the inequal-
ities:

bw(G)− 1 ≤ tw(G) ≤ b3
2
bw(G)c − 1.

We will also introduce the branch-width of matroids in this chapter, which is
closely related to the branch-width of graphs, but also to the the rank-width of
graphs, that we now define.

Definition 5.8 (Rank-width). Let G = (V,E) be a graph. Let X a set of vertices

and X its complementary. The matrix (AG)XX is the adjacency matrix restricted
to the rows indexed by elements of X and the columns indexed by the elements
of X̄. For all X ⊆ V , we let ρ = rk((AG)XX). The rank-width of G, denoted by
rw(G), is the branch-width of (V, ρ).

Note that both functions are symmetric and submodular. We now give a
theorem which shows that these widths are closely related.

Theorem 5.9 ([Oum08]). For a graph G, I(G) is the incidence graph built from
G. Then rw(I(G)) is equal to bw(G) − 1 or bw(G) unless the maximum degree
of G is 0 or 1. If the maximum degree of G is 0 or 1, then rw(I(G)) ≤ 1 and
bw(G) = 0.

5.2.3 Clique-width

We describe the clique-width of a graph (introduced in [CER93]), which is a nice
example of a decomposition measure given by a graph grammar. The definition is
taken from [CO00]. Let L be a set of labels, a labeled graph is a pair (G, γ) where
γ is a function from V to L. Let us consider the following set of graph operations:

90 CHAPTER 5. MONADIC SECOND-ORDER LOGIC

1

2

3

4
5

6

7

1 2 3 4

5

6 7

(AG)
{3,4,6,7}
{1,2,5} =

 0 0 0 0
1 0 0 1
1 1 1 1

Figure 5.3: a rank-decomposition of width 2 of the graph of Example 5.1

• The disjoint union of two labeled graphs is denoted by ⊕.

• For all a, b ∈ L, let ρa→b be the function which renames every vertex labeled
by a into b.

• For all a, b ∈ L, let ηa,b be the function which adds all edges between the
vertices labeled a and those labeled b.

The set of the functions foredefined is noted FL. For all a ∈ L, let Ga be the
graph with one vertex labeled by a and CL = {Ga|a ∈ L}. The set T (FL, CL) is
a set of terms and it can also be seen as the set of labeled graphs it defines.

Definition 5.10. The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n], C[n]). A term of T (F[n], C[n])
is called a n-expression.

The class of graphs with a bounded clique-width is more general than the
class of graphs with a bounded tree-width. Indeed, the next theorem states that
the clique-width can be bounded by the tree-width. On the other hand, the
converse is not true: the complete graphs have clique-width 2, while their tree-
width is unbounded. The problem of finding the clique-width of a graph is NP-
complete [FRRS06]. Moreover, there is no known polynomial-time algorithm for
the recognition of graphs of clique-width at most k for k > 3.

Theorem 5.11 ([CR05]). Let G be a graph, then cw(G) ≤ 3 · 2tw(G)−1.

On the other hand, the clique-width and the rank-width are equivalent. In
fact one can compute the rank-width to approximate the clique-width.

Theorem 5.12 ([OS06]). Let G be a graph, then rw(G) ≤ cw(G) ≤ 2rw(G)+1− 1.

5.3. THE LOGIC MSO ON GRAPHS 91

5.3 The logic MSO on graphs

There are several versions of the MSO logic over graphs. More precisely, there
are different ways of representing a graph by a structure and thus several MSO
logic associated to these structures.

In the introduction, we say that a graph is represented by a structure whose
domain is the set of its vertices and a binary relation E such that E(x, y) holds if
(x, y) is an edge. The MSO logic over this structure is sometimes called MS1.

Let G = (V,E) be a graph. We represent it by the structure (V ∪ E, inc)
where inc = {(u, e)|u ∈ V, e ∈ E and u ∈ e}. One can represent any structure
by such an incidence structure where each tuple of a relation is represented by
a point of the domain. We write MS2 for the MSO logic interpreted over this
representation of graphs.

One can define more graph properties in MS2 than in MS1. For instance, the
property that a graph has a perfect matching is easy to express in MS2. One
writes ∃Xφ(X) where φ(X) holds if X is a set of edges and a perfect matching.
However, there is no such MS1 formula [Cou].

The following theorem relate the notion of graph decomposition to the problem
of the model checking of MSO. For a proof of the theorem and to find background
and references to numerous similar results one may look in one of [HOSG08, Gro08,
Cou].

Theorem 5.13. There exist two functions f and g such that:

1. The model-checking problem for MS1 is decidable in time n3f(t, l), where t
is the clique-width of the graph and l the size of the formula.

2. The model-checking problem for MS2 is decidable in time ng(t, l), where t
is the tree-width of the graph and l the size of the formula.

5.4 The logic MSO on higher order structures

5.4.1 Hypergraphs

We describe here the MSO logic adapted to hypergraph. A hypergraph H is
represented by the relational structure (V,E) where V is the set of vertices of H
and E(X) is a second-order predicate which holds when X is a hyperedge. It is
somewhat similar to the logic MS2. However, it is less general since we cannot
quantify over edges.

We can express the fact that a hypergraph is a clutter, that is no edge is a
subset of another edge:

∀X∀Y (E(x) ∧ E(Y)⇒ ((X ⊆ Y)⇒ (X = Y))

92 CHAPTER 5. MONADIC SECOND-ORDER LOGIC

5.4.2 Matroids

Since matroids are hypergraphs, which enjoy some properties, they can be repre-
sented by the same structure as hypergraph. The relation E is noted indep and
indep(X) means that X is an independent set. We could equivalently represents
a matroid by the hypergraph of its circuits, bases, flats ...

TheMSO logic over the structures representing matroids is denoted byMSOM .
Most important objects of matroids are definable in MSOM , for instance X is a
circuit if and only if it satisfies:

circuit(X) ≡ ¬indep(X) ∧ ∀Y (Y * X ∨X = Y ∨ indep(Y))

We give now some examples of properties expressible in MSOM . For more
details and examples, one may read [Hli03]. We can express that a matroid is
connected, meaning that every pair of elements is in a circuit, a notion similar to
2-connectivity in graphs:

∀x, y ∃X x ∈ X ∧ y ∈ X ∧ circuit(X)

Matroid axioms given in Chapter 1 for the cicuits are also expressible in
MSOM :

• ¬Circuit(∅)

• ∀C1, C2(Circuit(C1) ∧ Circuit(C2) ∧ C1 ⊆ C2)→ C1 = C2

• ∀C1, C2, e(Circuit(C1) ∧ Circuit(C2) ∧ C1 6= C2 ∧ C1(e) ∧ C2(e))→
(∃CCircuit(C) ∧ C ⊆ C1 ∪ C2 ∧ ¬C(e))

One defines the notion of minor of a matroid by using the restriction presented
in the introduction and an operation of contraction. For any matroid N , one can
write a formula ψN of MSOM which is true on a matroid M if and only if N is
a minor of the matroid M (see [Hli03]). Therefore all classes of matroids defined
by excluded minors, such as the binary matroids, are also definable by an MSOM
formula.

One can express some properties about a graph by a formula over its cycle
matroid. For instance, one can check that a graph is Hamiltonian if and only if it
has a cycle containing a spanning tree. This can be stated by the next formula,
where basis(X) is a formula which holds if and only if X is a basis:

∃C circuit(C) ∧ ∃x basis(C \ {x})

In fact, it has been proven in [Hli06] that any sentence about a loopless 3-
connected graph G in MS2 can be expressed as a sentence about its cycle matroid
in MSOM . This property can be generalized to any graph, by considering the
cycle matroid of G] K3 which is a disjoint union of G and K3 with all edges
between the two graphs.

5.4. THE LOGIC MSO ON HIGHER ORDER STRUCTURES 93

Matroid branch-width Let M be a finite matroid with ground set S and let
B be a set of elements of M . We define the connectivity function by

κ(B) = rank(B) + rank(S \B)− rank(S).

The function κ is symmetric by construction and submodular because the rank
function is submodular. It generalizes the branch-width of graphs in the following
way:

Theorem 5.14 ([HMJ07, MT07]). The branch-width of a 2-connected graph G is
equal to the branch-width of its cycle matroid.

The classes of matroids of fixed low branch-width have been well studied.
The matroid of branch-width 1 are direct sums of loops and coloops while the
matroids of branch-width 2 is the class of direct sums of series-parallel networks.
These classes can all be defined by exclusion of a few minors [RS91, HOSW02],
whose list is explicitely known.

It is interesting to note that the notion of tree-width is hard to generalize to
matroids. However, Hliněnỳ and Whittle have proposed a definition and proved in
[HW06] that a matroid is of bounded branch-width if and only if it is of bounded
tree-width.

Theorem [OS06] holds in the case of the branch-width of matroids. Therefore
one can find a near optimal branch decomposition in a time f(k)P (n), where n
is the size of the matroid, k its branch-width, f a computable function and P
a polynomial. However, in the case of representable matroids over a fixed finite
field, we have the following better result.

Theorem 5.15 ([HO08]). Let k be a fixed integer and let F be a fixed finite field.
We assume that a vector matroid M of size n is given as an input. There is
an algorithm which outputs in time O(n3) (parametrized by k and |F|), a branch-
decomposition of the matroid M of width at most k, or confirms that bw(M) > k.

The rank-decomposition of a graph is the branch-decomposition of some binary
matroid. Thus, we can use the previous theorem to compute an exact rank-
decomposition of a graph in cubic time for a fixed rank-width. Moreover, from
this theorem and the inequality given by Theorem 5.12, we derive the following
corollary. It is the only known way to obtain an approximate k-expression of a
graph.

Corollary 5.16. For a given k, there is an algorithm that, with input a graph G,
either concludes that cw(G) > k or outputs a 2k+2 − 1-expression of G in time
polynomial in the size of the graph.

Finally, one can decide MSOM over matroids of fixed branch-width repre-
sentable over finite fields. The first objective of the next chapter will be to give
an alternate proof of this result. Please remark that this result holds only for
matroids representable over finite fields. Over matroids representable over Q of
branch-width 3, the model-checking of MSOM is NP-hard [HW06].

94 CHAPTER 5. MONADIC SECOND-ORDER LOGIC

Theorem 5.17 ([HW06]). Let k be a fixed integer and let F be a fixed finite field
and let φ ∈ MSOM . We assume that a vector matroid M of size n is given as
an input. There is an algorithm which decides wether M |= φ in time O(n3) with
parameters k, |F| and |φ|.

Chapter 6

Monadic Second-Order
Model-checking on
Decomposable Matroids

6.1 Introduction

The model-checking of monadic second-order formulas is a natural and extensively
studied problem that is relevant to many fields of computer science such as verifica-
tion or database theory. This problem is hard in general (since MSO can express
NP-complete properties like 3-colorability) but it has been proved tractable on
various structures. For example, it is decidable in linear time on trees [TW68]
thanks to automata techniques. It also remains linear time decidable [Cou91] on
the widely studied class of graphs of bounded tree-width. Since then, a lot of sim-
ilar results have been found, either with similar notions of width, like clique-width
and rank-width, or for extensions of MSO, for instance by counting predicates
(see [Gro08, HOSG08]).

In this chapter, we study the model-checking of monadic second order sen-
tences on matroids and especially on representable matroids, which are a natural
generalization of both graphs and matrices. Natural notions of decomposition such
as tree-width or branch-width can be adapted in this context. It is also interesting
to note that tree-width and branch-width on matroids are generalizations of the
same notions on graphs. That is to say, the width of the cycle matroid is the same
as the width of the graph, if it is simple and connected [Hli06], therefore all the-
orems on matroids can be specialized to graphs. The monadic second-order logic
on matroids, denoted by MSOM , enables to express many interesting matroids
properties (see [Hli03] and the references therein) such as the connectivity or the
representability over F2 or F3.

Recently, the model-checking of MSO formulas on representable matroids of
bounded branch-width has been studied and it has been proved to be decidable in
a time linear in the size of the matroid [Hli06]. This result has been subsequently

95

96 CHAPTER 6. DECOMPOSABLE MATROIDS

extended in [Kra09] to a broader but more abstract class of matroids. The first
contribution of this chapter is to introduce an alternative method to study these
matroids, by an appropriate decomposition into labeled trees, called enhanced
trees and a translation of MSOM into MSO. For this purpose, we introduce
the notion of signature over decomposed matroids which appears to be a useful
general tool to study several classes of matroids. Signatures can be seen as the
states of a nondeterministic bottom-up automaton which checks the dependence
of a set of a matroid represented by a set of leaves of an enhanced tree.

As a corollary of this method, we give a new proof of the linear time model-
checking of MSOM formulas on representable matroids of bounded branch-width,
and also an enumeration algorithm of all tuples satisfying a MSOM query with
a linear delay. We apply this result to the problem A-Circuit that we have
presented in Chapter 2. We obtain better algorithms for this problem and its
enumeration version, in the case of F-matroids of bounded branch-width. We also
remark that the generalized spectrum (sizes of the sets satisfying a formula with
free set variables) of a MSOM formula is semi-linear over the class of F-matroids
of bounded branch-width.

From this starting result, we derive a general way to build matroid grammars,
inspired by the parse tree of [Hli06]. We first introduce a grammar for matrices,
which is similar to the one for representable matroids introduced in [Hli06]. We
show why it is more appropriate to see this grammar as a matrix rather than
a matroid one. Thanks to the connection with enhanced trees, we easily prove
that it describes the representable matroids of bounded branch-width. We then
build the class of matroid Tk by means of series-parallel operations. As a decom-
position measure, it appears to be distinct from the notion of branch-width. We
give some useful insights about the structures of matroids in Tk and its relations
with the branch-width. Using the same approach as for the matroids of bounded
branch-width, we build a MSO formula expressing the dependence relation over
terms representing a matroid of Tk. We prove that the model-checking of MSOM
formulas is decidable in linear time on them. To our knowledge, it is the first such
result that applies to non necessarily representable matroids.

6.2 Matroid decomposition

6.2.1 Matroid branch-width

Let M be a finite matroid with ground set S and let B be a set of elements of M .
Recall that the connectivity function in a matroid is defined by

κ(B) = rank(B) + rank(S \B)− rank(S).

The function κ is symmetric by construction and submodular because the rank
function is submodular. This connectivity fonction gives us a notion of branch-
decomposition and branch-width, as explained in the Chapter 5.

6.2. MATROID DECOMPOSITION 97

X =

1 1 0 0 1 1
0 1 0 1 1 0
1 1 1 0 0 0
0 1 0 0 0 0

s

s1 s22

s3 s4

1
1

1
1

1
0

0
0

0
0

1
1

0
0

1
01

0

0
1

0
0

0
1

Figure 6.1: A matrix X and one of its branch decomposition of width 1

In this chapter, we restrict our study of branch-width to representable ma-
troids. It means that M is given as a matrix A over a field F. In this case,
the rank in the matroid M is the same as the rank function in linear algebra.
Moreover, the rank of a family of column vectors B is the dimension of the vector
subspace it generates, denoted by < B >.

It holds:

dim(< S >) = dim(< B > ∪ < S \B >).

Therefore, by expanding the union, we get:

dim(< S >) = dim(< B >) + dim(< S \B >)− dim(< B > ∩ < S \B >).

We replace dim(< S >) by this expression in the definition of κ to obtain:

κ(B) = dim(< B > ∩ < S \B >).

Let (T, l) be a branch decomposition of width t of M and let s be a node of T .
In this article, we note Ts the subtree of T rooted in s and Es the vector subspace
generated by l̃(s), that is to say the set of leaves of Ts. Let Ecs be the subspace
generated by S \ l̃(s) i.e. the leaves which do not belong to Ts. Let Bs be the
subspace Es∩Ecs, it is the boundary between what is described inside and outside
of Ts.

Remark 6.1. We have seen that κ(l̃(s)) = dim(Es∩Ecs) which is equal by defini-
tion to dim(Bs). If t is the width of the branch decomposition (T, l), for all nodes
s of T , dimBs ≤ t.

Example 6.2. To illustrate this notion, we compute Es1 and Ecs1 to find Bs1 in
the tree of Fig. 6.1. Notice that, when s is a leaf, the subspace Es is generated
by the single vector l(s). Therefore Bs = Es ∩ Ecs is either equal to Es or trivial,
i.e. equal to the zero vector, as in the case of the left child of s3 in Fig. 6.1.

98 CHAPTER 6. DECOMPOSABLE MATROIDS

Es1 =<

1
1
1
1

 ,

0
0
1
0

 ,

1
0
1
0

 >; Ecs1 =<

1
0
0
0

 ,

0
1
0
0

 >; Bs1 =<

1
0
0
0

 >

A near optimal branch-decomposition tree may be found for any submodular
function, thanks to Theorem 5.5 given in the previous chapter. In the case of
a F-matroid, we recall that there is an algorithm which finds an exact branch-
decomposition:

Theorem 6.3 (Hliněný and Oum [HO08]). Let k be a fixed integer and let F be
a fixed finite field. We assume that a vector matroid M of size n is given as an
input. There is an algorithm which outputs in time O(n3) (parametrized by k and
|F|), a branch-decomposition of the matroid M of width at most k, or confirms
that bw(M) > k.

6.2.2 Enhanced branch decomposition Tree

From now on, all matroids will be representable over a fixed finite field F. The
results of the next part are false if F is not finite, see [Hli06]. As we do not know
how to decide in polynomial time if a matroid is representable, when we say it
is, we assume that it has been given as a matrix. Furthermore, to simplify the
presentation, we assume that the matroids have no loops, but this condition could
easily be lifted.

Let t be a fixed parameter representing the maximal branch-width of the con-
sidered matroids. Let M be a matroid represented by the matrix A over F and
(T, l) a branch decomposition of width at most t. We will often not distinguish a
leaf v of T from the column vector l(v) it represents. Let E be the vector space
generated by the column vectors of A, we suppose that its dimension is the same
as the length of the columns of A and we denote it by n.

We now build, for each node s, a matrix Cs. The construction is bottom-up,
that is from leaves to root. The column vectors of this matrix are elements of E
and they are partitioned in three parts which are bases of subspaces of E. If s is
a leaf, Cs is a base vector of the subspace Bs. If s has two children s1 and s2,
the matrix Cs is divided in three parts (C1|C2|C3) where C1, C2 and C3 are bases
of Bs1 , Bs2 and Bs respectively. By induction hypothesis, one already knows the
bases of Bs1 and Bs2 used to build Cs1 and Cs2 and we choose them for C1 and
C2. We then choose any base of Bs for C3.

Matrices Cs are of size n ∗ t1, with t1 ≤ 3t, because of Remark 6.1 on the
dimension of boundary subspaces. A characteristic matrix at s is obtained by
selecting a maximal independent set of rows of Cs. It can be done by Gaussian
elimination in cubic time. The result is a matrix Ns = (N1|N2|N3) of dimension
t2 ∗ t1 with t2 ≤ 3t.

The vectors in Ns still represent the bases of Bs1 , Bs2 and Bs in the same order
but they only carry the dependence information. In fact, any linear dependence
relation between the columns of Cs is a linear dependence relation between the

6.3. DECISION ON AN ENHANCED TREE 99

same columns of Ns with the same coefficients, and conversely. Note that the
characteristic matrix at a node is not unique. It depends on the choice of bases
used to represent the Bs subspaces and on the rows which have been removed by
Gaussian elimination.

Definition 6.4 (Enhanced branch decomposition tree). Let M be a F-matroid
and (T, l) one of its branch decomposition of width t. Let T̃ be the tree T labeled
at each node by a characteristic matrix obtained by the previous construction. We
say that T̃ is an enhanced branch decomposition tree of M of width t (enhanced
tree for short).

Each label can be represented by a word of size polynomial in t. This is the
reason why the matrix N has been chosen instead of C which is of size linear in
the matroid. Indeed, the labels later appear in a formula whose size has to depend
only in t. Note also that the leaves of the enhanced tree are in bijection with the
elements of the matroid, by the same function l as for the branch decomposition
tree.

Remark that, given a matrix of size n ∗ m and a branch decomposition tree
of width t, one can transform this tree into an enhanced tree in cubic time. The
transformation of C into N only takes a linear time. To build a matrix C we have
to build a base of the boundary space Bs for each node s of the tree. This can
be done in quadratic time if the matrix A we are working with has been given in
the normal form (Id|X). If it is not given in such a way, it is always possible to
compute such a normal form in cubic time.

Example 6.5. Figure 6.2 represents an enhanced tree constructed from the branch
decomposition tree of Figure 6.1. Some of the intermediate computations needed
to find it are also given for illustration. One may check that each label Ns of
the tree is obtained by Gaussian elimination from Cs. Remark that, as it is a
decomposition of branch-width 1, the subspaces Bs are of dimension 1 and are
thus represented here by one vector.

6.3 Decision on an enhanced tree

6.3.1 Signature

We show how dependent sets of a matroid of bounded branch-width can be char-
acterized using its enhanced tree. This will later allow us to define the dependence
predicate by a formula in MSO.

We define the signature, an object which characterizes a set of a matroid with
respect to a given enhanced tree. More precisely, we want to represent, for a node
s of an enhanced tree, the elements of Bs which can can be generated by a given
set of elements of the matroid. We choose to represent one element of Bs, instead
of all its elements or one of its basis. This will lead to shorter formulas in Sec.6.3.2
and the proofs are almost the same in the three cases.

100 CHAPTER 6. DECOMPOSABLE MATROIDS

s

s1 s22

s3 s41 1

11

1 111
0

1
1

1 1
1 0

0
1

0
1

0

0

0

1 1

1 11

Bs3 =<

0
0
1
0

 > Cs3 =

0 0 0
0 0 0
0 1 1
0 0 0

Bs4 =<

1
0
0
0

 > Cs4 =

1 0 1
1 1 0
0 0 0
0 0 0

Bs1 =<

1
0
0
0

 > Cs1 =

0 1 1
0 0 0
1 1 0
0 0 0

 Bs2 =<

1
0
0
0

 > Cs2 =

1 1 1
0 0 0
0 0 0
0 0 0

Figure 6.2: An enhanced tree built from the branch decomposition tree of Figure
6.1.

Definition 6.6 (Signature). A signature is a finite sequence of elements of F,
denoted by λ = (λ1, . . . , λl) or by ∅ when it is of length 0.

Definition 6.7 (Signatures of a set). Let A be a matrix representing a matroid
and T one of its enhanced tree. Let s be a node of T and let X be a subset of the
leaves of Ts which are seen as columns of A. Let v be an element of Bs, obtained
by a nontrivial1 linear combination of elements of X. Let c1, . . . , cl denote the
column vectors of the third part of Cs. They form a base of Bs. Thus there is

a signature λ = (λ1, . . . , λl) such that v =
l∑

i=1

λici. We say that X admits the

signature λ at s. The set X also always admits the signature ∅ at s.

The size l of a signature at a node s is the dimension of Bs, thus it is at most
t, the width of the branch decomposition used to build T . Notice also that a set
admits a lot of different signatures, in fact they form a vector subspace of Fl.

Example 6.8. We illustrate the previous definition in the case of a leaf s.
Case 1: the set X is empty, therefore there is no combination of its elements and
the only signature it admits at s is ∅.
Case 2: the set X = {x} and the label of s is the matrix (0). The space Bs is the
zero vector and there is no nontrivial combination of x equals to 0, therefore the
only signature X admits at s is ∅.
Case 3: the set X = {x} and the label of s is the matrix (α) with α 6= 0. The
set Bs is hence generated by x and the set X admits the signatures (λ) for all
λ 6= 0 ∈ F and ∅.

1at least one of the coefficient of the linear combination is not zero

6.3. DECISION ON AN ENHANCED TREE 101

We now define a relation which describes how the signature a node admits is
related to the signatures its children admit.

Definition 6.9. Let N be a matrix over F divided in three parts (N1|N2|N3), and
let λ, µ, δ be three signatures over F. The submatrix Ni has li columns, and its
jth vector is denoted by N j

i . The relation R(N,λ, µ, δ) is true if:

• λ = µ = δ = ∅ or

• λ and at least one of µ, δ are not ∅ and the following equation holds

l1∑
i=1

µiN
i
1 +

l2∑
j=1

δjN
j
2 =

l3∑
k=1

λkN
k
3 (6.1)

If a signature is ∅, the corresponding sum in Eq. 6.1 is replaced by 0.

Lemma 6.10. Let T be an enhanced tree, s one of its nodes with children s1, s2

and N the label of s. Let X1 and X2 be two sets of leaves chosen amongst the
leaves of Ts1 and Ts2 respectively. If X1 admits µ at s1, X2 admits δ at s2 and
R(N,λ, µ, δ) holds then X = X1 ∪X2 admits λ at s.

Proof. The case λ = µ = δ = ∅ is obvious. By construction of N , we know that
N1, N2 and N3 represent the bases C1, C2 and C3 of Bs1 , Bs2 and Bs respectively,
meaning that they satisfy the same linear dependence relations. Then Equation
6.1 implies

l1∑
i=1

µiC
i
1 +

l2∑
j=1

δjC
j
2 =

l3∑
k=1

λkC
k
3

We assume without loss of generality that X1 admits a signature µ 6= ∅. Therefe-

ore, there is a nontrivial linear combination of elements of X1 equals to

l1∑
i=1

µiC
i
1.

The set X2 admits the signature δ, thus there is a linear combination of elements

of X2 equal to

l2∑
j=1

δjC
j
2 . By summing the two linear combinations, we obtain a

nontrivial linear combination of elements of X1 ∪X2 equal to

l1∑
i=1

µiC
i
1 +

l2∑
j=1

δjC
j
2

which is equal to

l3∑
k=1

λkC
k
3 by the previous equality.

Lemma 6.11. Let T be an enhanced tree, s one of its nodes with children s1, s2

and N the label of s. Let X1 and X2 be two sets of leaves chosen amongst the
leaves of Ts1 and Ts2 respectively. If X = X1 ∪X2 admits λ at s, then there are
two signatures µ and δ such that R(N,λ, µ, δ) holds, X1 admits µ at s1 and X2

admits δ at s2.

102 CHAPTER 6. DECOMPOSABLE MATROIDS

Proof. If λ = ∅, then the choice of µ = δ = ∅ proves the lemma. Assume now
that X admits λ 6= ∅, hence there is a nontrivial linear combination of elements

in X equal to v =

l3∑
k=1

λkC
k
3 . We can divide the linear combination of elements in

X into a sum of element in X1 equal to v1 and a sum of elements in X2 equal to
v2 with v = v1 + v2. At least one of those combinations is nontrivial, we assume
it is the one equal to v1.

Since v1 = v − v2 and v ∈ Bs, we have v1 ∈ < Es2 ∪ Bs >. Moreover
Bs ⊆ Ecs ⊆ Ecs1 and Es2 ⊆ Ecs1 then v1 ∈ Ecs1 . Hence we have proven that
v1 is in Es1 ∩ Ecs1 = Bs1 . The vectors Ci1 are a base of Bs1 , so that there is

µ = (µ1, . . . , µl1) 6= ∅ such that v1 =

l1∑
i=1

µiC
i
1. It means that X1 admits the

signature µ at s1. Since X2 plays a symmetric role, the same demonstration

proves that it admits the signature δ = (δ1, . . . , δl2) at s2 such that v2 =

l2∑
j=1

δjC
j
2 .

Finally we have

l1∑
i=1

µiC
i
1 +

l2∑
j=1

δjC
j
2 =

l3∑
k=1

λkC
k
3 and we can replace the columns

of Ci by those of Ni, which proves that R(N,λ, µ, δ) holds.

We then derive a global result on enhanced trees and signatures.

Lemma 6.12. Let A be a matrix representing a matroid, T one of its enhanced
tree and X a set of columns of A. The set X admits the signature λ at u if and
only if there exists a signature λs for each node s of the tree T such that:

1. for every node s labeled by N with children s1 and s2, R(N,λs, λs1 , λs2)
holds.

2. for every leaf s, λs 6= ∅ only if s is in X and s is labeled by the matrix (α)
with α 6= 0.

3. λu = λ.

Proof. The proof is by induction on the height of s in T . If u is a leaf of T , the
equivalence is true because of the second condition and Example 6.8.

Assume now that u is an internal node labeled by N and with children s1 and
s2. The induction hypothesis and the conditions 1 and 3 enable us to use the
Lemmas 6.10 and 6.11 to prove both sides of the equivalence.

The following theorem is the key to the next part, it shows that testing de-
pendence of a set can be done by checking local constraints on signatures.

6.3. DECISION ON AN ENHANCED TREE 103

Theorem 6.13 (Characterization of dependence). Let A be a matrix representing
a matroid M , T one of its enhanced tree and X a set of columns of A. The set X
is dependent if and only if there exists a signature λs for each node s of the tree
T such that:

1. for every node s labeled by N with children s1 and s2, R(N,λs, λs1 , λs2)
holds.

2. for every leaf s, λs 6= ∅ only if s is in X and s is labeled by the matrix (α)
with α 6= 0.

3. the signature at the root is (0, . . . , 0)

Proof. If a set X admits the signature (0, . . . , 0) at the root, it means that there is
a nontrivial linear combination of its elements equal to 0. It is therefore equivalent
for X to be a dependent set of M and to admit signature (0, . . . , 0) at the root of
T . The proof of the theorem follows from this remark and Lemma 6.12 applied at
the root.

6.3.2 From matroids to trees

The aim of this section is to translate MSOM formulas over a matroid into MSO
formulas over its enhanced tree. These two formalisms have been presented in
Chapter 5. The main difficulty is to express the predicate indep in MSO. To
achieve that, we use Theorem 6.13 which reduces this property to an easily check-
able condition on a signature at each node of the enhanced tree. This can be seen
as finding an accepting run of a non deterministic automaton whose states are
signatures.

The formula is defined for enhanced trees of width less than t over a field F of
size k. We have to encode in MSO a signature λ of size at most t at each node of
an enhanced tree. These signatures are represented by the set ~X of set variables
Xλ indexed by all signatures λ of size at most t. The number of such variables is
bounded by (k + 1)t, a constant because both the field and the branch-width are
fixed.

The relation Xλ(s) holds if and only if λ is the signature at s. The following
formula states that there is one and only one value for the signature at each s.

Ω(~X) ≡ ∀s
∨
λ

Xλ(s)
∧
λ′ 6=λ
¬Xλ′(s)

104 CHAPTER 6. DECOMPOSABLE MATROIDS

Discussion: We could have defined the signature of a set as the union of
all the signature it admits, it would have then be unique. But in this case,
we would have dealt with 2k

t
possible signatures which is still bounded if

k and t are fixed, but is much larger and further decreases the practical
interest of the algorithm we provide.
If we want to be more efficient and use less variables, we may encode in
binary the value of each element λi ∈ F of the signature λ. We only need
log(k)t variables to do so and it also spares us the formula Ω but it would
obfuscate the presentation.

The formula dep(Y) that represents the negation of the relation indep is now
built in three steps corresponding to the three conditions of Theorem 6.13.

1. The formula Ψ1 ensures that the relation R holds at every internal node. It
is a conjunction on all possible characteristic matrices N and all signatures
λ, thus there are less than (k + 1)9t2+3t terms in this conjunction, which is
a constant.

Ψ1(~X) ≡ ∀s¬leaf(s)⇒ [∃s1 s2 lchild(s, s1) ∧ rchild(s, s2)∧
λ1,λ2,λ,N

((label(s) = N ∧Xλ1(s1) ∧Xλ2(s2) ∧Xλ(s))⇒ R(N,λ, λ1, λ2))]

2. We define the formula Ψ2(Y, ~X) which means that a leaf with a signature
different from ∅ is in Y and has a label different from the matrix (0).

Ψ2(Y, ~X) ≡ ∀s (leaf(s) ∧ ¬X∅(s))⇒ (Y (s) ∧ label(s) 6= (0))

3. Ψ3(~X) states that the signature at the root is (0, . . . , 0).

Ψ3(~X) ≡ ∃s root(s) ∧X(0,...,0)(s)

Thanks to Theorem 6.13 we know that the following formula is true on an
enhanced tree T of a matroid M if and only if Y is a set of leaves of T in bijection
with a dependent set of M .

dep(Y) ≡ ∃ ~X Ω(~X) ∧Ψ1(~X) ∧Ψ2(Y, ~X) ∧Ψ3(~X)

Recall that we note l the bijection between the leaves of an enhanced tree and
the elements of the matroid they represent. We define by induction a formula
F (φ(~x)) of MSO from the formula φ(~x) ∈MSOM , by relativization to the leaves.

6.3. DECISION ON AN ENHANCED TREE 105

• if φ(~x) is the relation x = y or x ∈ X, F (φ(~x)) is the same relation

• if φ(~x) is the relation indep(X), F (φ(~x)) is the negation of the formula
dep(X) we have just defined

• if φ(~x) is the formula ψ(~x)∧χ(~x), F (φ(~x)) is the formula F (ψ(~x))∧F (χ(~x))

• if φ(~x) is the formula ∃yψ(y), F (φ(~x)) is the formula ∃y(leaf(y)∧F (ψ(y)))

• if φ(~x) is the formula ∃Y ψ(Y), F (φ(~x)) is the formula ∃Y [∀y(y ∈ Y ⇒
leaf(y)) ∧ F (ψ(Y))]

Moreover, for every free first-order variable y and every free second-order vari-
able Y , we take the conjunction of the relativized formula above with:

• leaf(y)

• ∀y(y ∈ Y ⇒ leaf(y))

We can now state the main theorem:

Theorem 6.14. Let M be a matroid of branch-width less than t, T one of its
enhanced tree and φ(~x) a MSOM formula with free variables ~x, we have

(M,~a) |= φ(~x)⇔ (T, l(~a)) |= F (φ(~x))

Proof. The demonstration is done by induction, every case is trivial except the
translation of the predicate indep whose correctness is given by Theorem 6.13.

Suppose we have a formula φ of MSOM and a representable matroid M of
branch-width t. We know that we can find a branch-width decomposition of width
less than 3t in cubic time [HO08]. Furthermore, we can build from it an enhanced
tree of M in cubic time. By Theorem 6.14, we know that we need only to decide
the formula F (φ) on the enhanced tree to decide φ on M , which is done in linear
time by Theorem 5.2. We have, as a corollary, the main result of [Hli06].

Corollary 6.15 (Hliněný). The model-checking problem of MSOM formulas is
decidable in time f(t, k, l)×n3 over the set of F-matroids given by a matrix, where
n is the number of elements in the matroid, t is its branch-width, k is the size of
F, l is the size of the formula and f is a computable function.

Since we can decide dependence in a represented matroid of bounded branch-
width in linear time by only using one of its enhanced tree, the enhanced trees are
a way to describe completely a matroid and then to represent it. Moreover, this
representation is compact, since the size of an enhanced tree is O(t2×n), where n
is the size of the ground set of the matroid, while the matrix which usually defines
it, is of size O(n2).

106 CHAPTER 6. DECOMPOSABLE MATROIDS

6.4 Extensions and applications

In this section, we present applications and generalizations of the result of the
previous section, by an extension of the model or of the language. In particular,
we use it to give a new algorithm for the problem Enum·A − Circuit studied in
chapter 2.

6.4.1 Logic extension

Colored matroids We can work with colored matroids, meaning that we add a
finite number of unary predicates to the language which are interpreted by subsets
of the ground set. Theorem 6.14 still holds for colored matroids except that we
now have colored trees, on which the decision problem for MSO is still in linear
time.

The problem A-Circuit studied in Chapter 2 is easily expressible in MSOM
over a colored matroid with one color, i.e. a unary second-order predicate denoted
by A:

A− Circuit(X) ≡ A ⊆ X ∧ Circuit(X).

Thus A-Circuit is decidable in polynomial time for matroids of branch-width t.
It is an example of a NP-complete problem over matroids which is made tractable
for bounded branch-width.

Counting MSO The second generalization is to add to the language a finite
number of second-order predicates Modp,q(X) which mean that X is of size p
modulo q. We obtain the logic called CMSOM for counting monadic second-order.
In this logic, we can express the fact that a set is a circuit of even cardinality, which
is not possible in MSOM . Theorem 6.14 also holds for CMSOM except that the
translated formula is now in CMSO. This is interesting since the model-checking
of CMSO is solvable in linear time over trees [Cou92].

We could also adapt Theorem 6.14 to MSOM problems with optimization
constraints, that is finding the minimal or maximal size of a set which satisfies a
formula. This kind of problem has been introduced in [ALS91] for graphs under
the name of EMSO. These problems are solvable in linear time for graphs of
bounded tree-width. For instance, using the formula A−Circuit(X), we can find
the size of the minimum circuit which extends a set A. When the matroid is
binary and |A| = 1, it is equivalent to the problem of finding the minimum weight
of a solution of an affine formula, which is NP-complete [BMVT78].

6.4.2 Spectra of MSOM formulas

In this subsection, Theorem 6.14 is used to prove that the generalized spectra of
MSOM formulas are semi-linear.

Definition 6.16 (Spectrum). The spectrum of a formula φ is the set
spec(φ) = {n |M |= φ and |M | = n}.

6.4. EXTENSIONS AND APPLICATIONS 107

Definition 6.17 (Ultimately periodic). A set X of integers is said to be ultimately
periodic if there are two integers a and b such that, for n > a in X we have
n = a+ k × b.

This kind of result has been proved for various restrictions of the second order
logic, of the vocabulary or of the set of allowed models. The result holds for first
order logic, finitely many unary relations and one unary function, cf. [DFL97].
Then it has been generalized to second order logic with the same vocabulary in
[GS03]. Fischer and Makowsky obtained similar results for different notions of
width on graphs in [FM04] by reduction to labeled trees. We use the same kind of
method since matroids of bounded branch-width are reducible to enhanced trees
by Theorem 6.14.

The following theorem is one of the simplest variant of the spectrum theorems.
It comes from the pumping lemma on trees and the fact that recognizability and
definability in MSO are equivalent for a set of trees (see [CDG+07]).

Theorem 6.18. Let φ be a MSO formula on labeled trees, then spec(φ) is ulti-
mately periodic.

We give our corollary for a generalization of the notion of spectra and ulti-
mately periodic sets taken from [Cou95].

Definition 6.19. A subset of Nk is linear if it is of the form {f1(~x), . . . , fk(~x) | ~x ∈
Nl} where the fi are affine functions. We say that a set is semi-linear if it a finite
union of linear sets.

Definition 6.20. Let K be a set of relational structures and let φ(X1, . . . , Xk) be
a monadic second order formula where X1, . . . , Xk are free variables. The general-
ized spectrum of φ over K is the set {|X1|, . . . , |Xk| |S ∈ K, (S,X1, . . . , Xk) |= φ}.

We can now state the main theorem of this part, which is a corollary of The-
orem 6.14 and its generalizations to other logics.

Theorem 6.21. Let φ a formula of MSOM , CMSOM or MSOM over matroids
or colored matroids, then the generalized spectrum of φ over F-matroids of branch-
width t is semi-linear.

Proof. By Theorem 6.14, we have a formula F (φ) ∈ MSO such that for each
enhanced tree T of width t representing a matroid M :

(M, ~A) |= φ(~X)⇔ (T, f(~A)) |= F (φ(~X))

The generalized spectra of a MSO formula over terms is semi-linear (see
Theorem 3.2 of [Cou95]). We first restrict the terms to the enhanced trees
of branch-width t by a MSO formula. Therefore it holds that the general-
ized spectrum of F (φ) is semi-linear over the enhanced trees. If we consider
(T, f(A1), . . . , f(Ak)) |= F (φ(~X)), we have that |f(Ai)| = |Ai| since the free vari-
ables of F (φ) are relativized to the leaves and in bijection with the elements of

108 CHAPTER 6. DECOMPOSABLE MATROIDS

M through f . Therefore the generalized spectrum of φ is semi-linear over the
F-matroids. The proof for CMSOM or MSOM over matroids with additional
unary predicates is the same.

6.4.3 Enumeration

The following theorem on enumeration and MSO over terms is proved in [Cou09]
along with generalizations to other structures by MSO reduction to trees. For
instance, we have a similar theorem for graph of bounded tree-width [Bag06].

Theorem 6.22 (Courcelle [Cou09]). Let φ(X1, . . . , Xm) be an MSO formula,
there exists an enumeration algorithm which given a term T of size n and of depth
d enumerate the m-tuples B1, . . . , Bm such that T |= φ(B1, . . . , Bm) with a linear
delay and a preprocessing time O(n× d).

The next corollary is a direct consequence of Theorem 6.22 and of Theorem
6.14, which allows us to interprete MSOM logic over matroids of branch-width t
into MSO logic over their enhanced trees.

Corollary 6.23. Let φ(X1, . . . , Xm) be an MSOM formula, let t be an integer and
let F be a field. There is an algorithm, which given a F-matroid M of branch-width
less than t, enumerates the m-tuples B1, . . . , Bm such that M |= φ(B1, . . . , Bm)
with a linear delay after a cubic preprocessing time.

Proof. Let φ(X1, . . . , Xm) be an MSOM formula, we compute the formula
F (φ(X1, . . . , Xm)) for matroids of branch-width t in linear time. Then, given a
matroid of branch-width t, we compute its enhanced tree in cubic time. We run
the enumeration algorithm given by Theorem 6.22 on this enhanced tree and the
formula F (φ(X1, . . . , Xm)). Each time we find a m-tuple satisfying the formula,
we output its image by the bijection between the leaves of the enhanced tree and
the elements of the matroid. This algorithm gives the solutions of φ(X1, . . . , Xm)
with a linear delay and a cubic preprocessing time.

Corollary 6.23 can be adapted to MSOM over colored matroids and thus ap-
plied to the formula A − Circuit(X). We obtain an algorithm in linear delay,
which solves Enum·A− Circuit on matroids representable over a finite field and
of branch-width t. In addition to its good delay, this algorithm is the first which
solves the problem for an unbounded A. Moreover, the time it takes to output all
solutions is linear in the number of solutions, while the incremental algorithm of
[KBE+05] needs a time cubic in this number.

We have seen in Chapter 2 that this enumeration problem is also in DelayP
for very dense representable matroids. The class of F-matroid of bounded branch-
width being very different from the later, it could be interesting to find classes of
representable matroids inbetween, on which the enumeration of circuits is still in
DelayP.

6.5. MATROID OPERATIONS 109

6.5 Matroid operations

In this section, we give two different ways to build matroids by means of some well
chosen operations. We then prove that the model-checking of MSOM is decidable
in linear time on these classes of matroids. Definitions and notations are taken
from [Hli06] but they are slightly more general, since we will build two different
matroid grammars.

6.5.1 Amalgam of boundaried matrices

Definition 6.24 (Boundaried matroid). A pair (M,γ) is called a t boundaried
matroid if M is a matroid and γ is an injective function from [1, t] to M whose
image is an independent set. The elements of the image of γ are called boundary
elements and the others are called internal elements.

The restriction of M to its ground set minus the elements of the boundary is
called the internal matroid of (M,γ). We need an operation ⊕, which associates
a matroid N1 ⊕ N2 to two t boundaried matroids N1 and N2. By means of this
operation, we try to properly define a set of terms similar to those introduced in
[Hli06]. Hereafter, we explain how these terms are related to enhanced trees. The
same technique will be used with a different operation in the next section.

A t boundaried matrix is a matrix A and an injective function γ from [1, t] to
A whose image is an independent set of columns. Boundaried matrices represent
boundaried matroids in the obvious way. In fact, we define the operation ⊕ on
boundaried matrices and not on the boundaried matroids they represent.

We want to define ⊕ as the pushout (or amalgam) of the two boundaried
matrices. It would then generalize the construction of decomposition trees for
graphs of bounded branch-width, also obtained by a pushout in the category of
graphs. By amalgam, we mean an operation such that A1 and A2 can be injected in
A1⊕A2 by the functions i1 and i2 respectively and such that i1(γ1(j)) = i2(γ2(j))
for all j. We present a way to define such an amalgam between two vector spaces,
which yields an operation on boundaried matrices.

Let (A1, γ1) and (A2, γ2) be two t boundaried matrices. We see Ai as a set
of vectors in the vector space Ei. Let E1 × E2 be the direct product of the two
vector spaces and let B be its subspace generated by the elements (γ1(j),−γ2(j))
for all j.

Definition 6.25. Let E be the quotient space of (E1 × E2) by B. There are
natural injections from A1 and A2 into E1×E2 and then in E. We write (A1, γ1)⊕
(A2, γ2) the set of vectors in E of the form (a1, 0) with a1 ∈ A1 \ γ1([1, t]) and
(0, a2) with a2 ∈ A2 \ γ2([1, t]).

Remark that (A1, γ1)⊕ (A2, γ2) defines a (non boundaried) matroid. To have
a more specific idea of the action of ⊕ and give examples, we must explain how
to unambiguously represent (A1, γ1) ⊕ (A2, γ2) by a matrix. Since, once a base

110 CHAPTER 6. DECOMPOSABLE MATROIDS

is chosen, a set of vectors and a matrix are the same objects, we only have to
give an algorithm to build a base of E. We build a base B of E from C and
D, the canonical bases of E1 and E2. Let i be the injection from E1 ∪ E2 to E.
Let B0 = i(C) and Bj+1 = Bj ∪ {i(Dj+1)} if this set is independent, otherwise
Bj+1 = Bj . Let n be the size of C2, then B is Bn, which is by construction a base
of E.

Example 6.26.

(
1 0 1
0 1 1

)
⊕

 1 0 1 0
0 1 1 0
0 1 1 1

 =

 1 1 0
1 1 1
0 0 −1

(

1 0 1
0 1 1

)
⊕

 1 0 2 0
0 1 1 0
0 1 1 1

 =

 1 2 0
1 1 1
0 0 −1

The matrices of the example can be seen as defined over F3 or any larger field.

The boundary elements are the two first columns of the matrices, separated from
the others by the symbol | for clarity. The image of the canonical base of E1

in E is {e1, e2} and the image of E2 is {e3, e4, e5}. By identification of the first
and second columns, we have e1 = e3 and e2 = e4 + e5. The basis built by the
algorithm is thus {e1, e2, e4}.
The column (1, 1, 1)t of the second matrix in the left hand side of the first equation
is represented in the right hand side by (1, 1, 0)t. Indeed, once injected in E, this
vector is equal to e3 + e4 + e5 which is equal to e1 + e2, the sum of the two first
vectors of the base we have built.

Notice that the columns 1 and 2 of the result in the first equation form a
dependent set but not in the result of the second, thus the two matrices obtained
represent distinct matroids. Yet the matrices we combine by ⊕, although different,
represent the same matroid in both equations.

Example 6.26 shows that⊕ cannot be seen as an operation on matroids because
the result depends on the way the matroids are represented. We could also make
this kind of construction by representing matroids by projective spaces, as it is
done in [Hli06]. Unfortunately, we would define essentially the same operation,
which would still be defined over the projective spaces and not the matroids.
Nevertheless, if we restrict ⊕ to matrices over F2, it properly defines an operation
on the matroids they represent.

Proposition 6.27. Let (M1, γ1) and (M2, γ2) be two boundaried F2-matroids. For
all matrices A1 and A2 which represents these matroids, the matroid represented
by A1 ⊕A2 is the same.

Proof. We are going to show that the fact to be a circuit of A1⊕A2 depends only
on M1 and M2. Since a matroid is entirely determined by its set of circuit, it will
prove the proposition.

6.5. MATROID OPERATIONS 111

A circuit of A1 ⊕ A2 is the union of internal elements of A1 and A2 denoted

by X and Y such that
∑
x∈X

(x, 0) +
∑
y∈Y

(0, y) ∈
〈
{(γ1(j),−γ2(j))}j≤t

〉
and X ∪ Y

is minimal for this property. Equivalently, there is a set S ⊆ [1, t] such that the
two following relation hold:

•
∑
x∈X

x+
∑
i∈S

γ1(i) = 0

•
∑
y∈Y

y +
∑
i∈S

γ2(i) = 0

This is true because, the matrices A1 and A2 are defined over F2, therefore all
coefficients different from zero have to be one. It is equivalent to: X ∪ γ1(S) is a
circuit of A1, thus of M1 and Y ∪ γ2(S) is a circuit of A2 thus of M2

Behind this proof is hidden the notion of the signature of a set in a boundaried
matroid that we are going to use afterwards. We now want to build matroids from
successive applications of the operation ⊕.

Definition 6.28. Let A be a matrix and let γAi for i = 1, 2, 3 be three injective
functions from [1, ti] to the columns of A. If the sets γAi ([1, ti]) are independent and
form a partition of the columns of A, then (A, {γAi }i=1,2,3) is called a 3-partitioned
matrix.
Let M be a matroid and let γMi for i = 1, 2, 3 be three injective functions from
[1, ti] to the ground set of M . If the sets γMi ([1, ti]) are independent and form
a partition of the columns of M , then (M, {γMi }i=1,2,3) is called a 3-partitioned
matroid.

The characteristic matrices used to build the enhanced trees may be seen as 3-
partitioned matrices. From ⊕ and A a 3-partitioned matrix we define an operator
�A which associates a boundaried matrix to two boundaried matrices. It is defined
by two successive uses of ⊕ on the boundaries γA1 and γA2 .

Definition 6.29. Let A1 = (A1, γ1) and A2 = (A2, γ2) be respectively a t1 and a
t2 boundaried matrix and let A be a 3-partitioned matrix. We call A1 �A A2 the
t3 boundaried matrix defined by (A1 ⊕ (A, γA1), γA2)⊕A2 with boundary γA3 .

The operation ⊕ is “associative” meaning that A1 �A A2 can also be defined
by A1 ⊕ ((A, γA2)⊕A2, γ

A
1) with boundary γA3 .

Let Υ be the set containing the two following 1-boundaried matrices:

• Υ0 is the matrix

(
1 0
0 1

)
.

• Υ1 is the matrix
(

1 1
)

.

Definition 6.30. Let MF
t be the set of terms which are inductively defined by:

112 CHAPTER 6. DECOMPOSABLE MATROIDS

A

A2A1
1

γ
2

γ

3
γA

2
γA

1
γA

A 2A1 A1

3
γA

Figure 6.3: Representation of the operation �, boundaries represented in grey and
removed parts hatched

• An element of Υ is a term of MF
t .

• Let T1 and T2 be two terms of value A1 and A2 which are a t1 and a t2
boundaried matrix. Let A be a 3-partitioned matrix, its three parts being
of cardinality t1, t2 and t3, all less than or equal to t. Then A1 �A A2 is a
term of MF

t whose value is a t3 boundaried matrix.

The value of a term ofMF
t is a matrix with a boundary. We will not distinguish

a term from its value and the matroid it represents when we remove the boundary.
To study the matroids represented by these terms, we now need to define the
signature of a set X in exactly the same way as for enhanced trees.

Definition 6.31. Let T be a term of MF
t and let (A, γA) the boundaried matrix

defined by T . We write l for the size of the boundary of A. Let X be a subset of
internal elements of A. We say that X admits the signature λ = (λ1, . . . , λl) in

T if there is a nontrivial linear combination of its elements equal to
∑
i≤l

λiγ
A(i).

The set X always admits the signature ∅.

We now show that the signatures in a term ofMF
t satisfy the relation R given

in Definition 6.9. To this aim, we prove two lemmas similar to Lemmas 6.10 and
6.11 in which we use the following notations:

• Let T be a term ofMF
t equal to T1�AT2, where A is a 3-partitioned matrices.

• The terms T1, T2 and T represent the t1, t2 and t3 boundaried matrices
(N1, γ1), (N2, γ2) and (N, γ3).

• Let E1, E2 and E3 be the vector spaces generated by the columns of N1, N2

and A.

• Let V be the vector space E1 × E2 × E3.

• LetB be
〈{

(γ1(j), 0, 0)− (0, 0, γA1 (j))
}〉

and C be
〈{

(0, γ2(j), 0)− (0, 0, γA2 (j))
}〉

.

6.5. MATROID OPERATIONS 113

• Let E be the quotient of V by B and then by C, it is the vector space which
is used to define (N, γ3).

• Let φ1, φ2 and φ3 be the injection of E1, E2 and E3 in E.

Lemma 6.32. Let X1 and X2 be two sets of internal elements of N1 and N2. If
X1 admits µ in T1, X2 admits δ in T2 and R(A, λ, µ, δ) holds then X = X1 ∪X2

admits λ in T .

Proof. By definition of the signature, we know that a nontrivial combination of

internal elements of X1 (respectively of X2) is equal to
∑

1≤i≤t1

µiγ1(i) (respectively

to
∑

1≤j≤t2

δjγ2(j)). Therefore, there is a combination of elements of X1 ∪X2 seen

as elements of E which we write v and which satisifies:

v = φ1

 ∑
1≤i≤t1

µiγ1(i)

+ φ2

 ∑
1≤j≤t2

δjγ2(j)

Since φ1(γ1(i)) = φ3(γA1 (i)) and φ2(γ2(i)) = φ3(γA2 (i)) for all i,

v = φ3

 ∑
1≤i≤t1

µiγ
A
1 (i)

+ φ3

 ∑
1≤j≤t2

δjγ
A
2 (j)

Moreover, φ3 is a linear function, therefore we have:

v = φ3

 ∑
1≤i≤t1

µiγ
A
1 (i) +

∑
1≤j≤t2

δjγ
A
2 (j)

Because R(A, λ, µ, δ) holds, we have the equality∑

1≤k≤t3

λkγ
A
3 (k) =

∑
1≤i≤t1

µiγ
A
1 (i) +

∑
1≤j≤t2

δjγ
A
2 (j)

This equality yields

v = φ3

 ∑
1≤k≤t3

λkγ
A
3 (k)

 =
∑

1≤k≤t3

λkγ3(k)

It means that X = X1 ∪X2 admits the signature λ in T , since γ3 is the boundary
of N .

Lemma 6.33. Let X1 and X2 be two sets of internal elements of N1 and N2.
If X = X1 ∪X2 admits λ in T , then there are two signatures µ and δ such that
R(A, λ, µ, δ) holds, X1 admits µ in T1 and X2 admits δ in T2.

114 CHAPTER 6. DECOMPOSABLE MATROIDS

Proof. Since X admits λ in T , there is a linear combination of elements of X

equal to φ3

 ∑
1≤k≤t3

λkγ3(k)

. It is equivalent to say that we have the following

equality in V :

(v1, 0, 0) + (0, v2, 0) + (b1, 0, b2) + (0, c1, c2) =
∑

1≤k≤t3

(0, 0, λkγ
A
3 (k)), (6.2)

where (v1, 0, 0) is a combination of elements of X1 injected in V , (0, v2, 0) is a
combination of elements of X2 injected in V , (b1, 0, b2) ∈ B and (0, c1, c2) ∈ C.
Since (b1, 0, b2) is in B, there is a signature µ such that it is equal to:∑

1≤i≤t1

(µiγ1(i), 0,−µiγA1 (i))

In the same way, there is a signature δ such that (0, c1, c2) is equal to:∑
1≤j≤t2

(0, δjγ1(j),−δiγA1 (j))

Equation 6.2 implies that v1 = −b1 and v2 = −c1, therefore X1 is of signature µ
in T1 and X2 is of signature δ in T2. We also deduce from Equation 6.2:

b2 + c2 =
∑

1≤k≤t3

(0, 0, λkγ
A
3 (k))

Therefore R(A, λ, µ, δ) holds.

By means of these two lemmas, we can prove that enhanced trees of width
t and MF

t are the same object. Let g be the afterdefined bijection between the
enhanced trees of width t andMF

t . Let T be an enhanced tree, one replaces A on
each internal node by �A (a characteristic matrix is a 3-partitioned matrix). The
images of the leaves labeled (0) and (1) are the constants Υ0 and Υ1 respectively .

Theorem 6.34. Let M be a F-matroid, then T is one of its enhanced tree of width
t if and only if M is the value of the term g(T).

Proof. One can prove a theorem of characterization of dependent sets by the
signatures on the terms ofMF

t identical to Theorem 6.13, using Lemmas 6.32 and
6.33. Therefore T and g(T) define the same matroid.

Example 6.35. We give here the matrices, with their boundary on the left side,
which are constructed when evaluating the term of Fig. 6.4

Ms3 =

(
0 1 0
1 0 1

)
Ms1 =

 0 1 0 0
0 0 1 1
1 0 0 1

Ms4 =

(
1 1 0
0 1 1

)
Ms2 =

(
1 1 0 1
0 1 1 0

)

6.5. MATROID OPERATIONS 115

s

s1 s22

s3 s41 1

11

1 111
0

1
1

1 1
1 0

0
1

0
1

0

0

ϒ0 ϒ1 ϒ1

ϒ1ϒ1

ϒ1

Figure 6.4: The term associated to the enhanced tree of Fig. 6.2

Ms =

1 0 0 0 0 0
0 1 1 0 0 0
0 0 1 1 0 1
0 0 0 1 1 0

The matrix Ms represents the same matroid as the matrix X of Fig. 6.1 which

was used to find an enhanced tree and then a term as explained in the proof of
the previous theorem.

6.5.2 Series and parallel connections

In this subsection we consider two of the most simple operations on matroids,
called the series and parallel connections. They extend well-known graph opera-
tions, which are used to characterize the graphs of tree-width 2 [Bod98]. By means
of these operations, we describe a class of matroids, which are not all representable,
using the methods introduced in the previous subsection. The following definition
and theorem are taken from [Oxl92].

Definition 6.36. Let M1 and M2 be two 1 boundaried matroids of ground set S1

and S2. Their respective boundaries are {p1} and {p2}. We denote by C(M) the
collection of circuits of the matroid M . Let E be the set S1 ∪ S2 ∪ {p} \ {p1, p2}.
We define two collections of subsets of E:

CS =

{
C(M1 \ {p1}) ∪ C(M2 \ {p2})
∪{C1 \ {p1} ∪ C2 \ {p2} ∪ {p} | pi ∈ Ci ∈ C(Mi)}

CP =

C(M1 \ {p1}) ∪ C(M2 \ {p2})
∪i=1,2 {Ci \ {pi} ∪ {p} | pi ∈ Ci ∈ C(Mi)}
∪ {C1 \ {p1} ∪ C2 \ {p2} | pi ∈ Ci ∈ C(Mi)}

Theorem 6.37. The sets CS and CP are collections of circuits of a matroid on
E.

116 CHAPTER 6. DECOMPOSABLE MATROIDS

1
2

3

4

5

1
2

3 4

5

1
2

3

4

5

1
2

3

4

5

Series
Connection

Parallel
Connection

Figure 6.5: Example of series and parallel connections over graphs with boundaries
represented by a dotted line

The matroid defined by CP is called the parallel connection of M1 and M2

while the one defined by CS is the series connection of M1 and M2.

Definition 6.38. We write M1 ⊕pM2 for the parallel connection of M1 and M2

restricted to the ground set S1 ∪ S2 \ {p1, p2} (one removes the boundary {p}).

The operator ⊕p is known under the name of 2 sum (see [Oxl92]). We could
also consider an operator ⊕s, but it is only the direct sum of two matroids and
it will not enlarge the class of matroids we are about to define. We now consider
the operation � defined as in Definition 6.29, except that ⊕ is replaced by ⊕p.

Definition 6.39. Let Lk be the set of 1 boundaried matroids of size at most k
and let M be the set of 3-partitioned matroids of size 3. We write Tk for the set
of terms T (Lk,M).

A term of Tk has for value a 1 boundaried matroid. Notice that the class of
boundaried matroids of size k closed by the series parallel operation is strictly
larger than Tk. Indeed, when one builds a term, the position of the boundary is
imposed. It could be interesting to extend the result of this section to this broader
class.

A term of Tk can have a non representable matroid for value, since the con-
stants at the leaves are arbitrary matroids. Therefore the matroids represented by
elements of Tk and elements of MF

t are different. Nevertheless there is a relation
between the operations ⊕p and ⊕ as illustrated by the next proposition.

Proposition 6.40. Let M1 (resp. M2) be a matroid of boundary {p1} (resp.
{p2}) represented by the sets of vectors A1 (resp. A2). Then A1 ⊕ A2 represents
the matroid M1 ⊕pM2.

Proof. We prove that the dependent sets of A1⊕A2 are the same as the dependent
sets of M1 ⊕pM2. In fact, we only show that a dependent set D of M1 ⊕pM2 is
a dependent set of A1 ⊕ A2. The converse is easy and left to the reader. By the
definition of ⊕p, the dependent set D can be of two different kinds. It may be the

6.5. MATROID OPERATIONS 117

image of a dependent set of M1 \{p1} or M2 \{p2}, it is then trivially a dependent
set of A1 ⊕A2.

Assume now that D = D1 \ {p1} ∪ D2 \ {p2}, where D1 is a dependent set
of M1 containing {p1} and D2 a dependent set of M2 containing {p2}. Since M1

and M2 are represented by A1 and A2, we have the following linear dependence
relations of their columns in bijection with D1 and D2:

λ1p1 +
∑

αiA
i
1 = 0 and λ2p2 +

∑
βiA

i
2 = 0

By linear combination of the two previous equalities we get:

λ1(p1 − p2) +
∑

αiA
i
1 +

∑
−λ1λ

−1
2 βiA

i
2 = 0

In A1 ⊕A2, we have p1 = p2 therefore, the equation becomes:∑
αiA

i
1 +

∑
−λ1λ

−1
2 βiA

i
2 = 0

This last equation proves that D is dependent in A1 ⊕A2.

It seems that the previous lemma would fail for generalizations of ⊕p to a
boundary larger than one. Indeed, ⊕ is not an operation on matroids as seen in
Example 6.26 with a boundary of size two. In fact, one of the natural generaliza-
tions of ⊕p to boundary of size k is the k sum (see [Oxl92]) which is defined on
binary matroids only.

Corollary 6.41. A matroid defined by a term of Tk whose constants are F-
matroids is an F-matroid of branch-width at most k.

Proof. By structural induction on the terms of Tk whose constants are F-matroids.
The constants are matroids of size k because they are in Tk and they are repre-
sentable by hypothesis, hence they are of branch-width at most k. Assume now
that T = T1 �M T2, where the values of T1 and T2 are matroid of branch-width
k represented by A1 and A2 respectively. All matroids of size 3 are cycle ma-
troids and hence are representable in any field. Therefore M is represented by
the 3-partitioned matrix A over F. Using the previous proposition, we have that
A1 �A A2 represents the same boundaried matroid as T = T1 �M T2. Finally,
Theorem 6.34 proves that A1 �A A2 is of branch-width k, which completes the
proof.

We now define a very general notion of signature to use the previously intro-
duced technique and illustrate it in this setting. A signature describes which sets
of elements of the boundary make a set of internal elements dependent. Notice
that, contrary to the representable matroid case, the signature of a set is unique.
We could use this notion of signature for other operations than ⊕p, over matroids
of boundary bigger than 1.

118 CHAPTER 6. DECOMPOSABLE MATROIDS

Definition 6.42 (Signature). Let T be a term whose value is a boundaried ma-
troid M and let X be a set of internal elements of M . The signature of the set X
in T is the set of all the subsets S of the boundary such that X ∪S is a dependent
set in M .

In our setting, the term is in Tk, thus there is only one boundary element
denoted by 1. We have only three different signatures:

1. if X is dependent then it is of signature {{}, {1}} that we denote by 2

2. if X is dependent only when we add the boundary element then it is of
signature {{1}} which we denote by 1

3. if X is independent even with the boundary element then it is of signature
∅ which we denote by 0

Note that an empty set is of signature 0, because the boundary is an indepen-
dent set. We now prove in this context a result similar to Lemma 6.10. We will
not need an equivalent of Lemma 6.11, since here the signatures are unique.

Lemma 6.43. There is a relation Rp(µ, δ, λ,N), where the first three arguments
are signatures and N is a 3-partitioned matroid of size 3, such that the following
holds. Let T = T1�N T2 be a term of Tk, let X1 and X2 be sets of internal elements
of the boundaried matroids represented by respectively T1 and T2. If the set X1 is
of signature µ in T1, the set X2 is of signature δ in T2 and Rp(µ, δ, λ,N) holds,
then the set X1 ∪X2 is of signature λ in T .

Proof. There are six 3-partitioned matroids of size 3, which we denote by Ni for
i = 1, . . . , 6. We represent each of them by three points in an ellipse. The bottom
left point is γNi1 (1), the bottom right one is γNi2 (1) and the top one is γNi3 (1). The
smaller ellipses enclosing points represent the circuits of the matroid. We give
here the value of the relation Rp for each Ni. One may then easily check that the
proposition holds.

6.5. MATROID OPERATIONS 119

N1
Rp(·, ·,2, N1) = {(0,2), (2,0), (1,2), (2,1), (2,2)}
Rp(·, ·,1, N1) = {}

N2
Rp(·, ·,2, N2) = {(0,2), (2,0), (1,2), (2,1), (2,2)}
Rp(·, ·,1, N2) = {(1,1)}

N3
Rp(·, ·,2, N3) = {(0,2), (2,0), (1,2), (2,1), (2,2), (1,1)}
Rp(·, ·,1, N3) = {}

N4
Rp(·, ·,2, N4) = {(0,2), (2,0), (1,2), (2,1), (2,2)}
Rp(·, ·,1, N4) = {(1,1), (1,0)}

N5
Rp(·, ·,2, N5) = {(0,2), (2,0), (1,2), (2,1), (2,2)}
Rp(·, ·,1, N5) = {(1,1), (0,1)}

N6
Rp(·, ·,2, N5) = {(0,2), (2,0), (1,2), (2,1), (2,2), (1,1)}
Rp(·, ·,1, N5) = {(0,1), (1,0)}

We give in the proof the value of the relation Rp which plays the same role as
R in Lemma 6.10. The precise value of Rp is not important for the proof: what
matters is that it only depends on µ, δ, λ and N , but not on X1, X2 or T .

A close examination of the operations �Ni in the previous proof shows that
we already know three of them:

• M1 �N1 M2 is the matroid given by the direct sum of M1 and M2 with
boundary γN1

3 .

• M1�N2M2 is the matroid given by the series connection of M1 and M2 with
boundary γN2

3 .

• M1 �N6 M2 is the matroid given by the parallel connection of M1 and M2

with boundary γN6
3 .

Observe that a leaf of a term of Tk represents a matroid of size less than k,
while a leaf of a term in MF

t represents one element of the matroid it defines. To
use our method on terms of Tk, it is convenient to modifiy them. At each leaf
labeled by an abstract 1 boundaried matroid M , we root a binary tree with as
many leaves as internal elements in M . We denote by T̃k, the sets of terms of Tk
transformed this way. We now have a bijection between the leaves of a term of T̃k
and the elements of the matroid it represents.

Theorem 6.44 (Characterization of dependence). Let T be a term of T̃k which
represents the matroid M and let X be a set of elements of M . The set X is

120 CHAPTER 6. DECOMPOSABLE MATROIDS

dependent if and only if there exists a signature λs at each node s of T seen as a
labeled tree:

1. if s1 and s2 are the children of s of label �N then Rp(λs1 , λs2 , λs, N)

2. if s is labeled by an abstract boundaried matroid N , then X ∩N is a set of
signature λs in N

3. the signature at the root is 2

Proof. Let us remark that the set X is dependent in M if its signature contains
the set {}, i.e. if it is 2. We thus have to prove by induction on T that λs is the
signature of X in Ts. The base case is given by the condition 2, while Lemma 6.43
and condition 1 allow us to prove the induction step.

The function F we use in the next theorem is the same as in Section 6.3. It
associates a formula of MSO to a formula of MSOM by relativization to the leaves
and the use of a formula dep, whose new definition is given in the proof of the
next theorem.

Theorem 6.45. There exists a mapping F such that if T is a term of T̃k which
represents the matroid M and if f is the bijection between the leaves of T and the
elements of M then M |= φ(~a)⇔ T |= F (φ(f(~a))).

Proof. The demonstration is done by the construction of a formula dep(Y) satis-
fying the conditions of the characterization theorem. We use the formulas defined
in the proof of Theorem 6.14, condition 1 is implemented by the formula Ψ1 ex-
cept that R is now the relation Rp. In Ψ3, we replace X(0,...,0) by X2 to satisfy
condition 3.

Let Q(S,N, λ) be the relation which is true if and only if S is a subset of
the boundaried matroid N of signature λ. Recall that the set of signatures λs
is represented by a set of second-order variables ~X. To enforce condition 2, we
define a formula Ψ4(X, ~X, s). It is true if and only if each internal node s of
signature λ is labeled by a boundaried matroid N and λ is indeed the signature of
the intersection of Y with N . We write Y ∩N = S for the fact that the elements
of Y which are leaves of a subtree rooted in a node labeled by the boundaried
matroid N form the subset S of N . One may check that it is expressible by a
MSO formula.

Ψ2(Y, ~X, s) =
∧

(N,S⊆N),λ

(label(s) = N ∧Xλ(s) ∧ Y ∩N = S)⇒ Q(S,N, λ)

This formula is a conjunction on all boundaried matroids N of size k and their
subsets, which are in number bounded by 22k , and on the three possible signatures.
We define the formula dep of size O(22k):

dep(Y) ≡ ∃ ~X Ω(~X) ∧Ψ1(~X) ∧Ψ2(Y, ~X) ∧Ψ3(~X)

6.6. DISCUSSION 121

B
γ1 //

γ2
��

M1

i1
��

M2 i2
// M1 ⊕M2

The set B is an independent set of size t.
i1 ◦ γ1 = i2 ◦ γ2 where γ1 and γ2 are injective
their images are the boundaries and therefore
independent sets of M1 and M2.

Figure 6.6: The diagram of the amalgam/pushout

The characterization theorem proves that the formula dep is correct and the
theorem is then obtained by a simple induction on the formula.

Corollary 6.46. The model-checking problem of MSOM is decidable in time
f(k, l)× n over the set of matroids given by a term of Tk, where n is the number
of elements in the matroid, l is the size of the formula and f is a computable
function.

6.6 Discussion

In this chapter, we have studied the representable matroids of bounded branch-
width. We have given a new proof of the fact that model-checking of MSOM over
them can be done in polynomial time (linear if a suitable representation is given).
Moreover we have linked together the notion of enhanced tree, adapted from the
branch decomposition, and the terms of MF

t . In both cases, we use the same
tools, namely the relation R and the characterization of dependent sets through
signatures and R.

We have also introduced the set of terms Tk, which represent matroids different
from MF

t . We have then used the exact same method with signatures and a
relation Rp to characterize the dependent sets in a matroid represented by a term
of MF

t . In fact, we could use this method on any term built from an operation
M1 ⊕M2, such that M1 and M2 are restrictions of M1 ⊕M2. In other words,
the operation has to be derived from an amalgam or push-out over a class of
matroids. If we rephrase this in the language of category, it means the following.
The matroid M1 ⊕M2 is the limit of the diagram of Figure 6.6 in the category of
finite matroids whose arrows are morphisms preserving the dependence relation.
For this limit to exist, we have to restrict the class of finite matroid to one of its
proper subclass (see [Oxl92] Chapter 12).

Possible extensions One could lift the condition that the boundaries are in-
dependent sets. We obtain a larger set of terms build from ⊕ on which the
model-checking of MSOM is still decidable in linear time. The question is: will
we really capture more matroids in this way?

One can extend the operation ⊕p to a boundary of size k, into an operation
called the generalized parallel connection (see [Oxl92]). However, it is defined only

122 CHAPTER 6. DECOMPOSABLE MATROIDS

for very few boundaried matroids. It could be interesting to study the set of terms
obtained from this operation and suitable 3-partitioned matroids.

A very simple generalization, that we do not give here is to mix ⊕ and ⊕p. In
this way we obtain terms with two naturals parameters on which all the techniques
introduced in this chapter work easily. The only thing to do is to explain how a
signature for ⊕ can be transformed into a signature for ⊕p.

Finally, since there are few operations on abstract matroids, we can restrict
our attention to matroid subclasses different from cycle matroids or vector ma-
troids. We could for instance try to find grammars to generate bicircular matroids,
transversal matroids or gammoids. In the next chapter, we try to develop the
method used in this chapter to deal with hypergraphs or structures represented
by hypergraphs.

One other open question is to devise a decomposition algorithm, which given
a matroid outputs a term of Tk with k optimal or within a constant factor of the
optimum.

Chapter 7

Decomposition of Hypergraph
Like Structures

In this exploratory chapter, we try to give an abstract approach to the method
with signatures and matroid grammars we have presented. We provide a way to
represent hypergraphs by terms. By means of this method, we can encode essen-
tially any grammar for hypergraphs (and thus for matroids or graphs). We prove
that any MSO formula over hypergraphs given by these terms can be translated
into a MSO formula over the terms. Therefore the model-checking problem is
linear time decidable for these decomposed hypergraphs. This framework can be
useful to simplify proofs that model-checking is easy on a class of objects. To do
this, we only need to prove that a particular class of hypergraphs or hypergraph
like structures can be represented by the terms we introduce.

7.1 Representation of a hypergraph

In this part, we define hypergraphs by terms. In fact, the construction allows us to
define any structure which is a hypergraph with additional properties like to be a
matroid. We could even generalize the next construction to second-order relation
of larger arity.

Definition 7.1. Let Ft be the set of functions from [0, t] × [0, t] to [0, t]. We
denote by Ht the set of terms T (Ft, {l}).

The constant l is arbitrary and only indicates that an element is a leaf. There-
fore the terms of Ht have no well-defined value. We now explain how they rep-
resent hypergraphs, by means of a suitable substitution of 0 or 1 to the labels of
the leaves.

Definition 7.2 (Value of a set). Let T be a term of Ht, let L be the set of leaves
of T and let X be one of its subsets. The value of the term T where the labels of
the leaves in X are replaced by 1 and the others are replaced by 0 is called the
value of X in T and is denoted by v(X,T).

123

124 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

A term of Ht is meant to represent a hypergraph whose base set is the set of
all leaves of the term. The notion of value of a set is used to define the hyperedges.

Definition 7.3 (Hypergraph represented by a term). Let T be a term of Ht and
let L be the set of leaves of T . The hypergraph HT represented by T has L for
vertices and its set of hyperedges is {X ⊆ L | v(X,T) = 1}.

In fact, a term of Ht with n leaves defines a function from [0, t]n to [0, t]. When
restricted on {0, 1}n, and assuming it takes values in {0, 1}, it can be seen as the
sum of the indicator functions of the edges of the represented hypergraph.

Example 7.4. The hypergraph Hk,n which has n vertices and all edges of size
k is represented by a term of Hk+1. In fact, it is represented by any binary tree
with n leaves, whose nodes are labeled by the function:

f(x, y) =

{
if x+ y ≤ k, x+ y
otherwise, k + 1

and whose root is labeled by g such that g(x, y) = 1 if and only if x+ y = k.
It is easy to prove that it is not represented by a term of Hk.

Example 7.5. Here are the tables of the four functions used in the next example:

f1 0 1

0 1 0

1 0 1

f2 0 1

0 0 1

1 0 0

f3 0 1

0 0 0

1 1 0

f4 0 1

0 0 0

1 0 1

3

2

4

1

5

1 2

3 4 5
f1

f3

f2

f2

Figure 7.1: A term of H1 and its associated hypegraph

Remark 7.6. We give here three variations of the definition of Ht and of the way
it defines hypergraphs. We explain that it does not change the class of hypergraphs
represented by terms of Ht. We later use these variations as “syntactic sugars“ to
simplify some proofs.

1. Let T be a term of Ht and let S be a set of integers less than or equal to t.
The hypergraph reresented by (T, S) has for leaves the set of leaves of T and

7.1. REPRESENTATION OF A HYPERGRAPH 125

for hyperedges the set {X ⊆ L | v(X,T) ∈ S}. The set of hypergraphs rep-
resented in this way is not larger. Let T̃ be the term T where one composes
the function labeling the root with a function which maps the elements of S
to 1 and the others to 0. The hypergraph represented by T̃ is isomorphic to
the hypergraph represented by (T, S).

2. One may want to label the leaves by integers less than or equal to t. The
value of a set X is then the value of the term T where the labels of the
leaves not in X are replaced by 0. Again, it does not define a larger class of
hypergraphs. Let s be a node of T labeled by f , its left child is the constant
k and its right child is a subterm denoted by T1. Let f̃(x, y) = f(g(x), y)
where g maps 1 to k and is the identity otherwise. One replaces f(k, T1) by
f̃(l, T1). By doing this transformation for each constant, we obtain a term
of Ht which represents the same hypergraph as T .

3. Finally one may allow the set of functions Ft to also contain the functions
from [0, t] to [0, t]. Let T be a term which contains such unary functions.
We now give a visual representation of the three situation in which a unary
function may appear if the term has at least two leaves. For each situation,
we provide a local rule to remove the unary function, which proves that they
do not bring any more expressive power. The unary function is denoted by f ,
T1 and T2 are subterms and h is the function defined by h(x, y) = g(f(x), y).

f

g

T1 T1

gf

f

g

T1 T2 T1 T2

gf

g

T1

T2

f

T1 T2

h

Remark that one can represent the hypergraph with one vertex and no edge in
these three variations, while the original definition did not allow to represent it.
In fact in all the previous transformations, we have assumed that there is at least
two leaves (or equivalently a function) in the term.

126 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

7.2 Decomposition-width of a hypergraph and its prop-
erties

The grammarHt can be used to define a width parameter, that we call decomposition-
width, since it is very similar to the parameter of the same name introduced in
[Kra09].

Definition 7.7. Let H be a hypergraph. The decomposition-width of H, written
dw(H), is the smallest integer t such that H is represented by a term of Ht.

The question is now, what are the hypergraphs of decomposition-width t and
which properties do they enjoy?

Lemma 7.8. Let H be a hypergraph with n vertices and k edges denoted by
E1, . . . , Ek, there is a term T of Hk whose leaves are in bijection with the ver-
tices of H such that v(Ei, T) = i and if X is not an edge, v(X,T) = 0.

Proof. We prove the proposition by induction on n.
In the base case, that is H a hypergraph with two vertices, it is easy to check

that there is always a term f(l, l) such that the property is satisfied. We give these
terms in Example 7.9.

Let H be a hypergraph with n vertices and k hyperedges E1, . . . , Ek. We
partition the vertices in V1 and V2 such that neither V1 or V2 are empty. Let H1

and H2 be the subhypergraphs of H induced by V1 and V2 respectively. Since H1

and H2 have less than n vertices and at most k edges, we can use the induction
hypothesis. We obtain two terms T1 and T2 which satisfy the proposition for T1

and T2 respectively. We now define a function f from [0, k]2 to [0, k]. For all
m ≤ k, Em is a hyperedge of H, thus Em ∩ V1 is a hyperedge of H1 indexed by
some i and Em ∩ V2 is a hyperedge of H2 indexed by some j. We set f(i, j) = m
and we set f to 0 on all the other arguments. Remark now that v(Em, f(T1, T2)) =
f(v(Em ∩ V1, T1), v(Em ∩ V2, T2)). By definition of T1 and T2 v(Em ∩ V1, T1) = i
and v(Em ∩ V1, T1) = j. Thus, by definition of f , v(Em, f(T1, T2)) = f(i, j) = m.
If X is not a hyperedge of H, then for the same reasons v(X, f(T1, T2)) = 0. This
completes the induction and the proof.

Example 7.9. Here are presented all hypergraphs on two vertices together with
the function f such that they are represented by the term f(l, l) and satisfies the
property given in the proof of Proposition 7.8.

1.

f 0 1

0 0 0

1 0 0

2.
1 f 0 1

0 0 0

1 1 0

7.2. DECOMPOSITION-WIDTH 127

3.
1 2 f 0 1

0 0 2

1 1 0

4.
1

2

f 0 1

0 0 0

1 1 2

5.
1 2

3

f 0 1

0 0 2

1 1 3

Proposition 7.10. Let H be a hypergraph, the following holds:

• if H has k edges, then dw(H) ≤ k

• if H has n vertices, then dw(H) ≤ H
2d
n
2 e

Proof. By Lemma 7.8, we have a term T of Hk such that v(Ei, T) = i and if X is
not an edge, v(X,T) = 0. Let S = [1, k], H is defined by (T, S) as in Remark 7.6
and is thus of decomposition-width less than k.

Assume that H has n vertices. Let V1, V2 be a partition of the vertices of H
such that their cardinals are at most l = dk2e. We consider the induced subhy-
pergraphs HV1 and HV2 . They both have at most 2l edges. We apply Lemma 7.8
to find two terms T1 and T2 of Hl which represents HV1 and HV2 . One defines a
function f as in the proof of Lemma 7.8. Let g(0) = 0 and g(x) = 1 otherwise,
the function g ◦ f is a function from [0, l]2 to {0, 1}. Since g ◦ f(T1, T2) represents
H, dw(H) ≤ 2l.

Remark 7.11. Proposition 7.10 proves that all hypergraphs have a finite decomposition-
width.

One can prove by counting the terms of Ht (and by eliminating some redun-
dancies) that there is at most

(2n)!

n!(n+ 1)!2n
(t+ 1)d

n
2
e((t+1)2+4)

hypergraphs with n vertices and a decomposition-width less than t. On the other
hand, there are 22n hypergraphs with n vertices. Thus, there must be one hyper-

graph H with n vertices such that dw(H) > 2d
n
2 e

n . Therefore the decomposition-
width of the hypergraphs is unbounded.

Open question: the lower and upper bound on the maximal decomposition-
width of a n vertices hypergraph are very close, can we eliminate this gap?

128 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

7.2.1 Structural properties

We now list some nice properties of the decomposition-width with regard to nat-
ural operation on hypergraphs.

Definition 7.12. Let H be a hypergraph, the complement hypergraph of H,
denoted by H, is the hypergraph with the same vertices and such that a set is an
edge of H if and only if it is not an edge of H.

Proposition 7.13. Let H be a hypergraph, the following equality holds: dw(H) =
dw(H).

Proof. Let T be a term of Ht such that H is represented by T . It is easy to see
that (T, [0, t]\{1}) represents H. By Remark 7.6, it implies that dw(H) ≤ dw(H).

Since H = H we obtain dw(H) = dw(H).

The previous proposition enables us to slightly improve Proposition 7.10. In-
deed, when given a n vertices hypergraph, either itself or its complent has less
than 2n−1 hyperedges. Using this trick in the proof of Proposition 7.10, we obtain
that a hypergraph H on n vertices satisfies dw(H) ≤ 2d

n
2
e−1.

Let H = (V,E) be a hypergraph and W ⊆ V . Recall that the section hyper-
graph induced by W is denoted by H ×W and is equal to (W, {e ⊆W |e ∈ E}).

Proposition 7.14. Let H = (V,E) be a hypergraph and W ⊆ V then
dw(H ×W) ≤ dw(H).

Proof. Let T be a term representing H. Assume that W = V \ {a} it is enough
to prove the proposition in this case, we then conclude by removing points suc-
cessively.

Some subterm of T is of the form g(f(a, T1), T2). Let h(x, y) = g(f(0, x), y).
Let T̃ be the tree T where this subterm is changed by h(T1, T2). One may check
that the values of all sets without a remain the same as in T , therefore T̃ represents
H ×W . From this dw(H ×W) ≤ dw(H) and that concludes the proof.

This proposition is interesting if we use hypergraphs to represent the indepen-
dent sets of matroids. Indeed for hereditary structures such as the independent
sets, the section hypergraph and the induced hypergraph are the same. More-
over, the notion of matroid restriction is nothing but the induced (or section)
hypergraph of the independent sets of a matroid.

Remark 7.15. The removal of an edge can increase the decomposition-width.
Indeed, the complete hypergraph on n vertices has a decomposition-width of 1,
while any hypergraph on n vertices can be obtained by removing some of its
hyperedges.

Open question: is decomposition-width decreasing under contraction of an
edge? Is decomposition-width decreasing when we consider a subhypergraph in-
duced by a set of vertices?

7.3. DECISION OF MSO OVER DECOMPOSABLE HYPERGRAPHS 129

Proposition 7.16. Let H1 and H2 be two hypergraphs and H1 ∪ H2 their dis-
joint union (or direct sum) and let m = max(dw(H1), dw(H2)). The following
inequalties hold: m ≤ dw(H1 ∪H2) ≤ m+ 1.

Proof. Let T1 and T2 be two terms representing respectively H1 and H2 and which
belong respectively to Hdw(H1) and Hdw(H2). There are two terms T̃1 and T̃2 of
Hm+1 obtained by a slight modification of T1 and T2 such that the only set of
value 0 in T̃1 or T̃2 is the empty set. Moreover, T̃1 and T̃2 represent H1 and H2.

Let f be the function from [0,m+1]2 to {0, 1} defined by f(1, 0) = f(0, 1) = 1
and f is zero on the other couples. The term f(T̃1, T̃2) represents H1∪H2 therefore
dw(H1 ∪H2) ≤ m+ 1.

Let V1 and V2 denote the set of vertices of respectively H1 and H2. It holds
that H1 = (H1 ∪ H2) × V1 and H2 = (H1 ∪ H2) × V2. By Proposition 7.14, one
obtains that dw(H1∪H2) ≥ dw(H1) and dw(H1∪H2) ≥ dw(H2), which concludes
the proof.

Open Question: let H1 and H2 be two hypergraphs, what is the relation of
their decomposition-width with the one of the amalgam of H1 and H2 along a set
of size k?

7.3 Model-checking of MSO on hypergraphs represented
by a term of Ht

We study the monadic second-order logic over hypergraphs and we first give several
examples of what it can express. Recall that a hypergraph is represented by a finite
domain and one second-order relation denoted by R such that R(X) holds if and
only if X is an edge of the hypergraph.

The formula ∀XR(X) defines the complete hypergraph. We can also state that
R is hereditary by ∀X,Y [(X ⊂ Y ∧ R(Y)) ⇒ R(X)]. In fact, as seen in Chapter
6, the three axioms which characterize the circuits of a matroid are expressible
in MSO. Therefore, there is a formula Matroid, which is true if and only if the
hypergraph is the set of circuits of a matroid.

We can characterize interesting objects, like the hitting sets of a hypergraph,
by a MSO formula:

Hitting − set(X) ≡ ∀Y [R(Y)⇒ (X ∩ Y 6= ∅)]

We can also characterize transversals, which is useful since the associated enumer-
ation problem is hard:

Transversal(X) ≡ Hitting − set(X) ∧ ∀Y [Hitting − set(Y)⇒ ¬(Y (X)]

A k-coloring of the hypergraph H = (V,E) is a function f from V to [k] such
that for each edge e ∈ E there are v1, v2 ∈ E such that f(v1) 6= f(v2). The

130 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

property to be k-colorable can be expressed by the following formula:

∃X1 . . . ∃Xk

∧
i 6=j

(Xi ∩Xj = ∅) ∧ ∀XR(X)⇒

[∃v1∃v2(v1 ∈ X) ∧ (v2 ∈ X) ∧
∨
i 6=j

(v1 ∈ X1) ∧ (v2 ∈ Xj)]

7.3.1 Representation of hyperedges over a term

Let T be a term of Ht which represents H. We explain in this subsection how to
translate the hyperedge predicate R over H into a MSO formula over T . Here
the value of a set plays a role similar to the signatures of the previous chapter.

Remark 7.17. Let T be a term of Ht and H is its associated hypergraph. Let Y
be a subset of the leaves of T . For each node s of T , we denote by Ls the leaves
of Ts. For each node s of T labeled by f , with left child s1 and right child s2, the
equality v(Y ∩ Ls, Ts) = f(v(Y ∩ Ls1 , Ts1), v(Y ∩ Ls2 , Ts2)) holds.

We want to write a formula with one free second order variable Y , which
states that Y is an edge. We represent the value of v(Y ∩ Ls, Ts) for each s by
the second-order variables Xi for i = 0, . . . , t. We will have Xi(s) if and only if
v(Y ∩ Ls, Ts) = i. We write ~X for the set of variables {Xi}i≤t. The following
formula states that ~X represents one and only one value for each node s.

Ω(~X) = ∀s
t∨
i=0

Xi(s) ∧
∧
j 6=i
¬Xj(s)

The following MSO formula ensures that the values defined by ~X satisfy the

equation of Remark 7.17:

Ψ1(~X) ≡ ∀s¬leaf(s)⇒ ∃s1, s2 lchild(s, s1) ∧ rchild(s, s2)∧∧
f,i,j,k

(label(s) = f ∧Xi(s1) ∧Xj(s2) ∧Xk(s))⇒ f(i, j) = k

We also need a formula which expresses the fact that the value of a leaf of T
is 1 if it is in Y and is 0 otherwise:

Ψ2(~X, Y) ≡ ∀s leaf(s)⇒ [(s ∈ Y ⇒ X1(s)) ∧ (s /∈ Y ⇒ X0(s))]

The conjunction of the formulas Ψ1 and Ψ2 ensures that ~X represents the
function which associates to a node s of T the value v(Y ∩ Ls, Ts). By definition,
Y is a hyperedge of T if v(Y, T) = 1, which is expressed in the next formula:

Ψ3(~X) ≡ ∃r root(r) ∧X1(r)

7.4. REPRESENTATION OF HYPERGRAPH LIKE STRUCTURES 131

The following formula is true if and only if Y is a hyperedge of T :

hyperedge(Y) ≡ ∃X0 . . . ∃Xt

[
Ψ1(~X) ∧Ψ2(~X, Y) ∧Ψ3(~X)

]
Let F be the function, which associates to the formula φ in MSO over hy-

pergraphs the formula F (φ) by relativization to the leaves and replacement of
the predicate R by the formula hyperedge. It is defined exactly as in Chapter 6.
We call f the bijection between the leaves of a term of Ht and the vertices of its
associated hypergraph.

Theorem 7.18. Let H be a hypergraph associated to the term T of Ht and let
φ(~x) be a MSO formula over the hypergraphs with free variables ~x, we have

(H,~a) |= φ(~x)⇔ (T, f(~a)) |= F (φ(~x)).

Corollary 7.19. The model checking problem for MSO over the hypergraphs
given by a term of Ht is decidable in time f(t, l) × n where n is the number of
vertices of H, l the size of the formula and f a computable function.

Deciding if a graph is k-colorable is NP-complete for k ≥ 3. Since it is a special
case of the problem of deciding if a hypergraph is k-colorable, the latter is also
NP-complete for k ≥ 3. We have given a MSO formula which holds if and only if
a hypergraph is k-colorable, thus this problem is linear time decidable over Ht.

We can also use Theorem 6.22 to obtain a corollary similar to Corollary 6.23
on enumeration:

Corollary 7.20. Let φ(X1, . . . , Xm) be an MSO formula over hypergraphs. The
enumeration of the sets satisfying φ can be done in linear delay on the hypergraphs
associated to a term of Ht.

We have given the formula Transversal(X) which is true if and only if X
is a transversal. Therefore, one can enumerate the tranversals of a hypergraph
associated to a term of Ht in linear delay. The best enumeration algorithm for
this problem over all hypergraphs is in incremental superpolynomial time [FK96].

To make the model-checking results more interesting, it would be interesting to
have an algorithm which given a hypergraph finds a term of good decomposition-
width representing the hypergraph.

Open questions: prove that computing the decomposition-width is NP-
complete. Find a suitable restriction of the hypergraphs (or of Ht) such that there
is an approximation algorithm similar to the one for branch-width or tree-width.

7.4 Representation of hypergraph like structures

7.4.1 Definable subclasses

We want to represent hypergraph like structures by terms of Ht. Let say we have
a class C of structures and a simple encoding of these structures into hypergraphs,

132 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

that is an efficiently computable injective function from C to the hypergraphs.
We need the relations and functions of C to be expressible in MSO over the
hypergraphs which encode them (it is an interpretation).

In addition, we want a MSO formula which is satisfied by a hypergraph if
and only if it encodes one of the structures we consider. Hence, we can recognize
the terms of Ht which encode an element of C in linear time (for a fixed t). It
is thus reasonnable to define the decomposition-width of an element of C as the
decomposition-width of its encoding.

Matroids We have seen that there is a formula Matroid which holds if and only
if the term represents the circuits of a matroid. We can then define a notion of
decomposition-width for matroids represented by their circuits. In fact, we will
see in the next section, the classes of matroids defined in the previous chapter,
and they are represented by the hypergraph of their dependent sets. However, it
is not hard to derive a MSO axiomatization of the dependent sets from the one
of the circuits.

Oriented Matroids We define the oriented matroids of a given decomposition-
width, thanks to a slightly more involved encoding. Let M be an oriented matroid
of ground set S = {s1, . . . , sn}. To simplify the presentation, M has no loops
neither parallel elements (dependent sets of size two).

Let S1 = {s1
1, . . . , s

1
n} and S2 = {s2

1, . . . , s
2
n}, M is represented by a hypergraph

H with vertices S1∪S2. The element of S1 represent the points of M in ”negative”
position and S2 the points in “positive“ position. The hyperedges represent the
oriented circuits of M in the following way: if (C−, C+) is an oriented circuit then
{s1
i | si ∈ C−} ∪ {s2

i | si ∈ C+} is a hyperedge of H. The singletons {s1
i } and the

pairs {s1
i , s

2
i } are also hyperedges of H for all i.

Given any hypergraph, we want to be able to test that it encodes an oriented
matroid int hte way we have just described. It means that the set of pairs of the
hypergraph has to define a bijection from the negative to the positive elements.
Let φ a MSO formula which expresses this condition, it is the conjunction of the
following formulas:

• ∀xR({x})⇒ ∃!y(x 6= y ∧R({x, y}))

• ∀x¬R({x})⇒ ∃!y(x 6= y ∧R({x, y}))

• ∀x yR({x, y})⇒ (R({x}) ∧R({y})) ∨ (R({y}) ∧R({x}))

We now list a set of atomic formulas over the oriented matroid M and their
translation over the hypergraph H which represents it:

• C(X) ≡ ∃x1 x2 x3(
∧
i 6=j xi 6= xj ∧ {x1, x2, x3} ⊆ X) ∧R(X)

• x ∈ X+ ≡ x ∈ X ∧ ¬R({x})

7.4. REPRESENTATION OF HYPERGRAPH LIKE STRUCTURES 133

• Y = X+ ≡ ∀x(x ∈ X+ ⇔ x ∈ Y)

• x ∈ X− ≡ x ∈ X ∧R({x})

• Y = X− ≡ ∀x(x ∈ X− ⇔ x ∈ Y)

• −x ∈ X ≡ ∃y y 6= x ∧R({x, y}) ∧ y ∈ X

• Y = −X ≡ ∀x(−x ∈ X ⇔ x ∈ Y)

• X ⊆ Y ≡ ∀x(x ∈ X+) ∨ (−x ∈ X+)⇒ (x ∈ Y +) ∨ (−x ∈ Y +)

From these atomic formulas, we can express the axioms that an oriented ma-
troid has to satisfy:

• ∀X∃Y (C(X) ∧ Y = −X)⇒ C(Y)

• ∀X Y (C(X) ∧ C(Y) ∧X ⊆ Y)⇒ (X = Y ∨X = −Y)

• ∀X Y (X 6= Y ∧C(X)∧C(Y)∧(∃e e ∈ X+∧e ∈ Y −))⇒ (∃Z C(Z)e /∈ Z+∧e /∈
Z− ∧∀x(x ∈ Z+ ⇒ x ∈ X+ ∨ x ∈ Y +) ∧ (x ∈ Z− ⇒ x ∈ X− ∨ x ∈ Y −)

Finally, we write Ψ for the conjunction of these MSO formulas with φ. The set
of hypergraphs represented by a term of Ht and satisfying Ψ encodes the oriented
matroids of decomposition-width t.

7.4.2 Encoding other decompositions

One can interpret many decompositions as a subset of the terms of Ht. One then
automatically obtains the linear time model-checking of MSO for the objects
represented by the interpreted decomposition. In such a reduction there are two
obvious objectives:

• to do the reduction to Ht for the smallest possible t

• to reduce to a subset of Ht which uses as few different functions of Ft as
possible

Clique-width We now explain how to interpret a t-expression as a term of
Ht+2. This proves that graphs of clique-width t have a decomposition-width at
most t + 2. The idea to encode a t-expression into a term T̃ of Ht+2 is to use
v(X, T̃) to represent the color of the vertices when X is a singleton, the fact that
two vertices are linked by an edge or that X is not an edge. We use the values
from 1 to t to represent the colors from 1 to t. The value t+ 1 stands for an edge,
the value 0 denotes an empty set, while the value t+ 2 is a garbage state for the
rest.

134 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

Definition 7.21. Let Hct+2 be the set of terms of Ht+2 such that they are built
from binary functions f or unary functions g (as in Remark 7.6) satisfying the
following properties:

• f(0) = g(0, 0) = 0

• for i ∈ [1, t], g(0, i), g(i, 0), f(i) ∈ [1, t]

• for i, j ∈ [1, t], g(i, j) ∈ {t+ 1, t+ 2}

• g(0, t+ 1) = g(0, t+ 1) = f(t+ 1) = t+ 1

• for all i > 0, g(i, t+ 1) = g(t+ 1, i) = t+ 2

• for all x, y, g(x, t+ 2) = g(t+ 2, y) = f(t+ 2) = t+ 2

Lemma 7.22. Let T ∈ Hct+2 and X a set of leaves of T then the following holds:

• if X = ∅ then v(X,T) = 0

• if |X| = 1 then v(X,T) ∈ [1, t]

• if |X| = 2 then v(X,T) = t+ 1 or v(X,T) = t+ 2

• if |X| ≥ 3 then v(X,T) = t+ 2

Proof. A trivial structural induction on the terms of Hct for each size of X proves
the lemma.

Proposition 7.23. Let G be a graph, then dw(G) ≤ cw(G) + 2.

Proof. In this proof, we use all the flexibility provided by Remark 7.6. Let T be a
t-expression which represents G, we inductively build a term T̃ of Hct+2 such that

(T̃ , {t + 1}) also represents G. We will not distinguish the leaves of the trees T ,
T̃ and the vertices of G (the construction of T̃ gives a simple bijection between
them). One adds to the induction hypothesis the following properties:

1. for any leaf u of T of color i, we have v({u}, T̃) = i

2. for any {u,w} edge of G, v({u,w}, T̃) = t+ 1

3. for any subterm T1 of T and {u,w} two leaves of T̃1 which are not an edge
of G, v(X, T̃1) = t+ 2

• Let T be the constant Gi, it represents a graph with one vertex of color i.
The term T̃ is the constant i, it satisfies the induction hypothesis and is in
Hct+2.

• Let T = T1 ⊕ T2, where T1 and T2 are subterms. The induction hypothesis
gives two terms T̃1 and T̃2 of Hct+2 associated to T1 and T2. Let f(x, 0) = x,

f(0, y) = y and f(x, y) = n+ 2 otherwise. We let T̃ = f(T1, T2), it is a term
of Hct+2 and it represents the same graph as T = T1 ⊕ T2.

7.4. REPRESENTATION OF HYPERGRAPH LIKE STRUCTURES 135

• Let T = ρa→bT1, where T1 is a subterm and T̃1 the term of Hct+2 given by
the induction hypothesis. Let f(a) = b, f is the identity otherwise. We
let T̃ = f(T1), it is a term of Hct+2 and it represents the same graph as
T = ρa→bT1.

• Let T = ηa,bT1 where T1 is a subterm and T̃1 the term of Hct+2 given by the
induction hypothesis.

For all leaf u of color a and leaf w of color b in T , there is exactly one
subterm f(T̃2, T̃3) such that u is a leaf of T̃2 and w is a leaf of T̃3. Let
f̃(v({u}, T̃2), v({w}, T̃3)) = t + 1 and f̃(x, y) = f(x, y) otherwise. We let T̃
be the term T̃1 where all the functions f defined as previously are replaced
by f̃ . Obviously T̃ is a term of Hct+2.

We must prove that T̃ satifies the induction hypothesis. First remark that
v(X, T̃) 6= v(X, T̃1) only if |X| = 2. Indeed, the transformation of f into f̃
only changes the image of some couples (i, j) where i, j ∈ [1, t].

Let {u, v} be an edge of the graph represented by T̃1, then v({u,w}, T̃) = t+1
by induction hypothesis. Because T̃ ∈ Hc

t+2, we obtain that v({u,w}, T̃) =
t + 1. Assume now that u is of color a and w is of color b in T1. By
construction, there is a subterm T̃4 of T̃ such that v({u,w}, T̃4) = t + 1.
Because T̃ ∈ Hc

t+2, we obtain that v({u,w}, T̃) = t+ 1.

Finally, we have to check that if {u,w} is not an edge inG, then v({u,w}, T̃2) =
t+2 for all subterms T̃2 of T̃ . Let f̃(T̃3, T̃4) be the subterm such that u is a leaf
of T̃2 and w is a leaf of T̃3. By induction hypothesis, v({u,w}, f(T̃3, T̃4)) =
t + 2, thus if v({u,w}, f̃(T̃3, T̃4)) = t + 1 then there is u′ of color a and w′

of color b such that v({u}, T̃3) = v({u′}, T̃3) and v({w}, T̃4) = v({w′}, T̃4).
Since T̃1 ∈ Hct+2, if two leaves have the same value in a subterm of T̃1, they

have the same value in T̃1. Therefore the color of u is a and the color of w
is b and {u,w} is an edge of G.

Open question: can we bound the decomposition-width of graphs by the
clique-width? By a result of Courcelle and Oum [CO07], it is sufficient to prove
that the graphs of bounded decomposition-width have a decidable CMS1 theory.

Matroid branch-width Recall that a matroid M represented by a matrix A
over the finite field F and of branch-width t can be represented by a term T ∈MF

t .
We can transform T into a term of Hk for some k which represents the same
matroid as T . The natural idea is to map each signature to an integer and to see
a function �A of T as a function on the signatures and thus on their encoding by
integers. This function would be (x, y)→ z such that R(A, x, y, z), but this does
not define a function. Hence, we have to change what represents a signature.

1MS1 and a predicate expressing that a set has even cardinality

136 CHAPTER 7. DECOMPOSABLE HYPERGRAPHS

The idea is that the signature of a set of leaves X in a term representing a
boundaried matroid denotes the intersection of the boundary space and of the
vector subspace generated by X rather than just one vector of this space. For
a proof using this idea in a similar context, see [Kra09]. By following the same

proof, we would obtain dw(M) ≤ qt+1−q(t+1)+t
(q−1)2

where q = |F|.

Matroids represented by a term of Tk There is a direct interpretation of
the term of Tk into terms of Ht or some t. One has to represent any matroid of
size k, by Proposition 7.10 we can do that by a term of H

2d
k
2 e−1 . Then we only

needs to represent the three signatures 0, 1 and 2 by the three integers 0, 1 and
2. One may check that the operation �M of Tk realizes the following function
on signatures: (x, y) → z such that Rp(M,x, y, z) (see Lemma 6.43). One just
replaces in a term of Tk all functions by the ones we have just described and the
leaves representing matroids of size k by the terms given by Proposition 7.10.

Therefore, if M is a matroid represented by a term of Tk, then dw(M) ≤
max(2d

k
2
e−1, 2).

Index

DelayP, 29
DelayPP, 62
EnumP, 25
IncP, 28
IncPP, 60
QueryP, 31
SDelayP, 29
TotalP, 26
TotalPP, 60
Enum·A-Circuit, 41
Enum·Poly, 49
Enum·Transversal, 27
k-uniform, 2
A-Circuit, 41
AnotherSolutionA, 28
Monomial-Coefficient, 70
Monomial-Factor, 54
Non-Zero-Monomial, 70
Polynomial Identity Testing, 17

Enum·MaxIS, 25

Berge-acyclicity, 2
bipartite graph, 2
BPP, 13
branch-width, 88

circuit, 3
clique-width, 90
complete problem, 11
contraction, 4
cycle, 1
cycle matroid, 4

degree, 16
degree with regard to a set, 54
delay, 9

Determinant, 18

first-order logic, 14
formal degree, 17

graph, 1
graph minor, 2

Hamiltonian path, 2
hard problem, 11
hypergraph, 2
hypertree, 2

induced subhypergraph, 3

labeled tree, 85

matching, 2
matroid, 3
minor, 4

Parsimonious reduction, 11
Permanent, 19
Pfaffian, 18
planar, 2
polynomially balanced predicate, 7

RAM machine, 7
RAM machine with oracle, 10
rank, 5
restriction, 4
RNC, 14
RP, 13

SAT, 12
second-order logic, 15
section hypergraph, 3
semi-linear, 107

137

138 INDEX

series-parallel graphs, 88
spanning tree, 2
support, 49

term, 16
total degree, 16
total time, 9
transversal, 3
tree, 1
tree-width, 87

vector matroid, 4

Bibliography

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Ap-
proach. 2009. 6, 60

[ACP87] S. Arnborg, D.G. Corneil, and A. Proskurowski. Complexity of finding
embeddings in a k-tree. SIAM Journal of Algebraic Discrete Methods,
8(2):277–284, 1987. 87

[AF96] D. Avis and K. Fukuda. Reverse search for enumeration. Discrete
Applied Mathematics, 65(1):21–46, 1996. 23, 30

[Aig07] M. Aigner. A course in enumeration. Springer Verlag, 2007. 48, 74

[AKS04] M. Agrawal, N. Kayal, and N. Saxena. PRIMES is in P. Annals of
Mathematics, 160(2):781–793, 2004. 32

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-
decomposable graphs. Journal of Algorithms, 12(2):308–340, 1991.
106

[AMAM09] V. Arvind, P. Mukhopadhyay, S. Albers, and J.Y. Marion. Quan-
tum query complexity of multilinear identity testing. In Symposium
on Theoretical Aspects of Computer Science, volume 3, pages 87–98,
2009. 47

[ASY] AV Aho, TG Szymanski, and M. Yannakakis. Sorting the Cartesian
Product. In Proc. 1980 Princeton Conf. on Information Sciences and
Systems, pages 557–560. 24

[Bag] G. Bagan. Algorithmes et Complexité des Problèmes d’Énumération
pour l’Évaluation de Requêtes Logiques. PhD thesis, Université de
Caen, 2009. 7

[Bag06] G. Bagan. MSO queries on tree decomposable structures are com-
putable with linear delay. In Computer Science Logic, pages 167–181.
Springer, 2006. 108

139

140 BIBLIOGRAPHY

[BDGO08] G. Bagan, A. Durand, E. Grandjean, and F. Olive. Computing the jth
solution of a first-order query. RAIRO Theor. Inf. Appl., 42:147–164,
2008. 23, 31

[Ber84] S.J. Berkowitz. On computing the determinant in small parallel time
using a small number of processors. Information Processing Letters,
18(3):147–150, 1984. 18

[BMVT78] E.R. Berlekamp, R.J. McEliece, and H.C.A. Van Tilborg. On the
inherent intractability of certain coding problems. IEEE Transactions
on Information Theory, 24(3):384–386, 1978. 106

[BO88] M. Ben-Or. A deterministic algorithm for sparse multivariate poly-
nomial interpolation. In Proceedings of the twentieth annual ACM
symposium on Theory of computing, pages 301–309. ACM New York,
NY, USA, 1988. 47, 67

[Bod93] H.L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, page 234. ACM,
1993. 87

[Bod98] H.L. Bodlaender. A partial k-arboretum of graphs with bounded
treewidth. Theoretical Computer Science, 209(1-2):1–45, 1998. 115

[BR91] R.A. Brualdi and H.J. Ryser. Combinatorial matrix theory. Cam-
bridge Univ Pr, 1991. 19, 77

[CDG+07] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard,
D. Lugiez, S. Tison, and M. Tommasi. Tree automata techniques
and applications. Available on: http://www.grappa.univ-lille3.

fr/tata, 2007. release October, 12th 2007. 107

[CER93] B. Courcelle, J. Engelfriet, and G. Rozenberg. Handle-rewriting
hypergraph grammars. Journal of Computer and System Sciences,
46(2):218–270, 1993. 89

[CH97] N. Creignou and JJ Hébrard. On generating all solutions of gen-
eralized satisfiability problems. RAIRO Theoretical Informatics and
Applications, 31(6), 1997. 30

[CKS01] N. Creignou, S. Khanna, and M. Sudan. Complexity classifications of
boolean constraint satisfaction problems. Society for Industrial Math-
ematics, 2001. 40

[CMSS08] S. Caracciolo, G. Masbaum, A.D. Sokal, and A. Sportiello. A random-
ized polynomial-time algorithm for the Spanning Hypertree Problem
on 3-uniform hypergraphs. Arxiv preprint arXiv:0812.3593, 2008. 78

http://www.grappa.univ-lille3.fr/tata
http://www.grappa.univ-lille3.fr/tata

BIBLIOGRAPHY 141

[CO00] B. Courcelle and S. Olariu. Upper bounds to the clique width of
graphs. Discrete Applied Mathematics, 101(1-3):77–114, 2000. 89

[CO07] B. Courcelle and S. Oum. Vertex-minors, monadic second-order logic,
and a conjecture by Seese. Journal of Combinatorial Theory, Series
B, 97(1):91–126, 2007. 135

[Coo71] S.A. Cook. The complexity of theorem-proving procedures. In Pro-
ceedings of the third annual ACM symposium on Theory of computing,
page 158. ACM, 1971. ix, xv, 12

[Cou] B. Courcelle. Graph algebras and monadic second-order logic. To be
published by Oxford University Press. 85, 91

[Cou91] B. Courcelle. Graph rewriting: An algebraic and logic approach. In
Handbook of Theoretical Computer Science, Volume B: Formal Models
and Sematics (B), pages 193–242. 1991. xiii, xix, 95

[Cou92] B. Courcelle. The monadic second-order logic of graphs. III: Tree-
decompositions, minors and complexity issues. Informatique théorique
et applications, 26(3):257–286, 1992. 106

[Cou95] B. Courcelle. Structural properties of context-free sets of graphs
generated by vertex replacement. Information and Computation,
116(2):275–293, 1995. 107

[Cou09] B. Courcelle. Linear delay enumeration and monadic second-order
logic. Discrete Applied Mathematics, 157(12):2675–2700, 2009. 23,
29, 31, 108

[CR05] D. Corneil and U. Rotics. On the relationship between clique-width
and treewidth. SIAM J. Comput., 34(4):825–847, 2005. 90

[CW90] D. Coppersmith and S. Winograd. Matrix multiplication via arith-
metic progressions. Journal of symbolic computation, 9(3):251–280,
1990. 68

[DFL97] A. Durand, R. Fagin, and B. Loescher. Spectra with only unary func-
tion symbols. In Computer Science Logic, pages 189–202. Springer,
1997. 107

[DG07] Arnaud Durand and Etienne Grandjean. First-order queries on struc-
tures of bounded degree are computable with constant delay. ACM
Trans. Comput. Log., 8(4), 2007. 23

[DH03] A. Durand and M. Hermann. The inference problem for propositional
circumscription of affine formulas Is coNP-complete. STACS 2003:
20th Annual Symposium on Theoretical Aspects of Computer Science,
pages 451–462, 2003. 41

142 BIBLIOGRAPHY

[DH09] T. Daigo and K. Hirata. On generating all maximal acyclic subhyper-
graphs with polynomial delay. In Proceedings of the 35th Conference
on Current Trends in Theory and Practice of Computer Science, pages
181–192. Springer, 2009. 23, 24, 37

[DHK05] A. Durand, M. Hermann, and P.G. Kolaitis. Subtractive reductions
and complete problems for counting complexity classes. Theoretical
Computer Science, 340(3):496–513, 2005. 25, 39

[Die05] R. Diestel. Graph theory, volume 173 of Graduate Texts in Mathe-
matics. Springer, Heidelberg, 91:92, 2005. 1

[DS11] D. Duris and Y. Strozecki. The complexity of acyclic subhypergraph
problems. Workshop on Algorithms and Computation, 2011. 77, 81

[Dur09] D. Duris. Acyclicité des hypergraphes et liens avec la logique sur les
structures relationnelles finies. PhD thesis, Université Paris Diderot
- Paris 7, 2009. 2, 78

[Edm65] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathe-
matics, 17(3):449–467, 1965. x, xv, 11

[EG] T. Eiter and G. Gottlob. Hypergraph transversal computation and
related problems in logic and AI. 3, 23

[EG95] T. Eiter and G. Gottlob. Identifying the minimal transversals of
a hypergraph and related problems. SIAM Journal of Computing,
24(6):1278–1304, 1995. 3, 23, 27

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time rec-
ognizable sets. American Mathematical Society, pages 43–74, 1974.
15

[FG06] J. Flum and M. Grohe. Parameterized complexity theory. Springer-
Verlag New York Inc, 2006. 73, 82

[FK96] M.L. Fredman and L. Khachiyan. On the complexity of dualiza-
tion of monotone disjunctive normal forms. Journal of Algorithms,
21(3):618–628, 1996. 3, 23, 27, 131

[FM04] E. Fischer and J.A. Makowsky. On spectra of sentences of monadic
second order logic with counting. Journal of Symbolic Logic,
69(3):617–640, 2004. 107

[FRRS06] M.R. Fellows, F.A. Rosamond, U. Rotics, and S. Szeider. Clique-
width minimization is NP-hard. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of computing, page 362. ACM,
2006. 90

BIBLIOGRAPHY 143

[GdM10] A. Goodall and A. de Mier. Spanning trees of 3-uniform hypergraphs.
Arxiv preprint arXiv:1002.3331, 2010. 79

[GHR95] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to parallel compu-
tation: P-completeness theory. Oxford University Press, USA, 1995.
14

[GJ79] M.R. Garey and D.S. Johnson. Computers and intractability: a guide
to NP-completeness, 1979. 72

[GO04] E. Grandjean and F. Olive. Graph properties checkable in linear time
in the number of vertices. Journal of Computer and System Sciences,
68(3):546–597, 2004. 7

[Gra96] E. Grandjean. Sorting, linear time and the satisfiability problem. An-
nals of Mathematics and Artificial Intelligence, 16(1):183–236, 1996.
7

[Gro08] M. Grohe. Logic, graphs, and algorithms. In Logic and Automata:
History and Perspectives, pages 357–422. Amsterdam Univ Pr, 2008.
88, 91, 95

[GS02] E. Grandjean and T. Schwentick. Machine-independent characteri-
zations and complete problems for deterministic linear time. SIAM
Journal on Computing, 32:196, 2002. 7

[GS03] Y. Gurevich and S. Shelah. Spectra of monadic second-order formu-
las with one unary function. In Proceedings of the 18th Annual IEEE
Symposium on Logic in Computer Science, pages 291–300. IEEE Com-
puter Society, 2003. 107

[GS09] S. Garg and É. Schost. Interpolation of polynomials given by straight-
line programs. Theoretical Computer Science, 410(27-29):2659–2662,
2009. 47, 60, 67

[Hli03] P. Hliněnỳ. On matroid properties definable in the MSO logic. Math-
ematical Foundations of Computer Science, pages 470–479, 2003. 92,
95

[Hli06] P. Hliněný. Branch-width, parse trees, and monadic second-order logic
for matroids. Journal of Combinatorial Theory, Series B, 96(3):325–
351, 2006. xiii, xix, 92, 95, 96, 98, 105, 109, 110

[HMJ07] I.V. Hicks and N.B. McMurray Jr. The branchwidth of graphs and
their cycle matroids. Journal of Combinatorial Theory, Series B,
97(5):681–692, 2007. 93

144 BIBLIOGRAPHY

[HO08] P. Hliněnỳ and S. Oum. Finding Branch-Decompositions and Rank-
Decompositions. SIAM Journal on Computing, 38:1012, 2008. 93, 98,
105

[HOSG08] P. Hliněnỳ, S. Oum, D. Seese, and G. Gottlob. Width parameters
beyond tree-width and their applications. The Computer Journal,
51(3):326, 2008. 91, 95

[HOSW02] R. Hall, J. Oxley, C. Semple, and G. Whittle. On matroids of branch-
width three. Journal of Combinatorial Theory, Series B, 86(1):148–
171, 2002. 93

[HW06] P. Hliněnỳ and G. Whittle. Matroid tree-width. European Journal of
Combinatorics, 27(7):1117–1128, 2006. 93, 94

[IFF01] S. Iwata, L. Fleischer, and S. Fujishige. A combinatorial strongly
polynomial algorithm for minimizing submodular functions. Journal
of the ACM, 48(4):761–777, 2001. 88

[IW97] R. Impagliazzo and A. Wigderson. P= BPP if E requires exponen-
tial circuits: Derandomizing the XOR lemma. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pages
220–229. ACM, 1997. xi, xvii

[Jer03] M. Jerrum. Counting, sampling and integrating: algorithms and com-
plexity. Birkhäuser, 2003. 18

[JPY88] David S. Johnson, Christos H. Papadimitriou, and Mihalis Yan-
nakakis. On generating all maximal independent sets. Inf. Process.
Lett., 27(3):119–123, 1988. 9, 23, 24, 26, 29, 34

[Kan08] M. Kanté. Graph Structurings: Some Algorithmic Applications. PhD
thesis, Université Bordeaux 1, 2008. 85

[Kas61] P.W. Kasteleyn. The statistics of dimers on a lattice. Physica,
27:1209–1225, 1961. 19, 79

[Kay10] N. Kayal. Algorithms for Arithmetic Circuits. ECCC Report TR10-
073, 2010. 74

[KBE+05] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino.
On the complexity of some enumeration problems for matroids. SIAM
Journal on Discrete Mathematics, 19(4):966–984, 2005. 10, 23, 28, 33,
41, 108

[KI04] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity
tests means proving circuit lower bounds. Computational Complexity,
13(1):1–46, 2004. xi, xvii

BIBLIOGRAPHY 145

[KLL00] E. Kaltofen, W. Lee, and A.A. Lobo. Early termination in Ben-
Or/Tiwari sparse interpolation and a hybrid of Zippel’s algorithm.
In Proceedings of the 2000 international symposium on Symbolic and
algebraic computation, pages 192–201. ACM New York, NY, USA,
2000. 47, 60

[KMSV10] Zohar S. Karnin, Partha Mukhopadhyay, Amir Shpilka, and Ilya
Volkovich. Deterministic identity testing of depth-4 multilinear cir-
cuits with bounded top fan-in. In STOC ’10: Proceedings of the 42nd
ACM symposium on Theory of computing, pages 649–658, New York,
NY, USA, 2010. ACM. xi, xvii, 47, 70

[Kra09] D. Kral. Decomposition width-a new width parameter for matroids.
Arxiv preprint arXiv:0904.2785, 2009. 96, 126, 136

[KS93] D. Kavvadias and M. Sideri. On Horn envelopes and hypergraph
transversals. 1993. 23

[KS01] A.R. Klivans and D. Spielman. Randomness efficient identity testing
of multivariate polynomials. In Proceedings of the thirty-third annual
ACM symposium on Theory of computing, pages 216–223. ACM New
York, NY, USA, 2001. xii, xvii, 47, 48, 60, 63, 67

[KS08] Z.S. Karnin and A. Shpilka. Black box polynomial identity testing of
generalized depth-3 arithmetic circuits with bounded top fan-in. In
Conference on Computational Complexity, pages 280–291, 2008. 47

[KSS00] D.J. Kavvadias, M. Sideri, and E.C. Stavropoulos. Generating all
maximal models of a Boolean expression. Information Processing Let-
ters, 74(3-4):157–162, 2000. 23, 27, 30, 41

[Kur30] K. Kuratowski. Sur le probleme des courbes gauches en topologie.
Fund. Math, 15(271-283):79, 1930. 2

[KV91] S. Khuller and V.V. Vazirani. Planar graph coloring is not self-
reducible, assuming P6= NP. Theoretical Computer Science, 88(1):183,
1991. 30

[KV05] E. Kaltofen and G. Villard. On the complexity of computing deter-
minants. Computational Complexity, 13(3):91–130, 2005. 18, 68, 79

[LFK92] C. Lund, L. Fortnow, and H. Karloff. Algebraic methods for inter-
active proof systems. Journal of the ACM (JACM), 39(4):868, 1992.
53

[Lib04] L. Libkin. Elements of finite model theory. Springer Verlag, 2004. 14,
15

146 BIBLIOGRAPHY

[Lov80] L. Lovász. Matroid matching and some applications. J. Combin.
Theory Ser. B, 28(2):208–236, 1980. xiii, xix, 78

[McC80] J. McCarthy. Circumscription–a form of non-monotonic reasoning.
Artificial intelligence, 13(1-2):27–39, 1980. 41

[MP08] G. Malod and N. Portier. Characterizing Valiant’s algebraic complex-
ity classes. Journal of complexity, 24(1):16–38, 2008. 74

[MT07] F. Mazoit and S. Thomassé. Branchwidth of graphic matroids. Sur-
veys in combinatorics, 346:275–286, 2007. 93

[MV02] G. Masbaum and A. Vaintrob. A new matrix-tree theorem. Interna-
tional Mathematics Research Notices, 2002(27):1397, 2002. 77, 78

[OS06] S. Oum and P. Seymour. Approximating clique-width and branch-
width. Journal of Combinatorial Theory, Series B, 96(4):514–528,
2006. 88, 90, 93

[Oum08] S. Oum. Rank-width is less than or equal to branch-width. Journal
of Graph Theory, 57(3):239–244, 2008. 89

[Oxl92] J.G. Oxley. Matroid Theory. Oxford University Press, 1992. 3, 115,
116, 117, 121

[Ple79] Ján Plesńık. The np-completeness of the hamiltonian cycle problem in
planar digraphs with degree bound two. Inf. Process. Lett., 8(4):199–
201, 1979. 74

[PP94] C.H. Papadimitriou and CH Papadimitriou. Computational complex-
ity. Addison-Wesley Reading, MA, 1994. 6

[PR94] G. Pruesse and F. Ruskey. Generating linear extensions fast. SIAM
Journal on Computing, 23(2):373–386, 1994. 23

[Rot01] G. Rote. Division-free algorithms for the determinant and the pfaffian:
algebraic and combinatorial approaches. Lecture Notes in Computer
Science, pages 119–135, 2001. 18

[RS83] N. Robertson and P.D. Seymour. Graph minors. I. Excluding a forest.
Journal of Combinatorial Theory, Series B, 35(1):39–61, 1983. xiii,
xviii, 86

[RS86] N. Robertson and P.D. Seymour. Graph minors. II. Algorithmic as-
pects of tree-width. Journal of algorithms, 7(3):309–322, 1986. xiii,
xviii, 86

[RS91] N. Robertson and P.D. Seymour. Graph minors. X. Obstructions
to tree-decomposition. Journal of Combinatorial Theory, Series B,
52(2):153–190, 1991. xiii, xviii, 89, 93

BIBLIOGRAPHY 147

[RS95] N. Robertson and PD Seymour. Graph minors. XIII. The disjoint
paths problem. Journal of Combinatorial Theory, Series B, 63(1):65–
110, 1995. xiii, xviii, 41

[RT75] RC Read and RE Tarjan. Bounds on backtrack algorithms for listing
cycles, paths, and spanning trees. Networks, 5(3):237–252, 1975. 41

[Sax09] N. Saxena. Progress on Polynomial Identity Testing. Bull. EATCS,
99:49–79, 2009. 47

[Sch80] JT Schwartz. Fast probabilistic algorithms for verification of polyno-
mial identities. Journal of the ACM (JACM), 27(4):717, 1980. xi,
xvii, 50

[Sip83] M. Sipser. A complexity theoretic approach to randomness. In Pro-
ceedings of the fifteenth annual ACM symposium on Theory of com-
puting, pages 330–335. ACM, 1983. 13

[SS10] N. Saxena and C. Seshadhri. From sylvester-gallai configurations to
rank bounds: Improved black-box identity test for depth-3 circuits.
2010. xi, xvii

[Str10] Y. Strozecki. Enumeration of the monomials of a polynomial and
related complexity classes. Mathematical Foundations of Computer
Science, pages 629–640, 2010. 48

[TIAS77] S. Tsukiyama, M. Ide, H. Ariyoshi, and I. Shirakawa. A new algorithm
for generating all the maximal independent sets. SIAM Journal on
Computing, 6:505, 1977. 29

[Tod] S. Toda. Classes of arithmetic circuits capturing the complexity of
computing the determinant. IEICE Transactions on Information and
Systems, E, 75:116–124. 74

[Tod91] S. Toda. PP is as hard as the polynomial-time hierarchy. SIAM
Journal on Computing, 20(5):877, 1991. 13

[TW68] JW Thatcher and JB Wright. Generalized finite automata theory with
an application to a decision problem of second-order logic. Theory of
Computing Systems, 2(1):57–81, 1968. xiii, xviii, 86, 95

[Uno97] T. Uno. Algorithms for enumerating all perfect, maximum and max-
imal matchings in bipartite graphs. Algorithms and Computation,
pages 92–101, 1997. x, xvi, 11, 23, 30, 33, 62

[Val79] L.G. Valiant. The complexity of computing the permanent. Theoret-
ical computer science, 8(2):189–201, 1979. x, 11, 19, 76

148 BIBLIOGRAPHY

[vEB91] P. van Emde Boas. Machine models and simulations, Handbook
of theoretical computer science (vol. A): algorithms and complexity,
1991. 8

[VZG87] J. Von Zur Gathen. Feasible arithmetic computations: Valiant’s hy-
pothesis. Journal of Symbolic Computation, 4(2):137–172, 1987. 71

[Zip79] R. Zippel. Probabilistic algorithms for sparse polynomials. Symbolic
and algebraic computation, pages 216–226, 1979. xi, xvii

[Zip90] R. Zippel. Interpolating polynomials from their values. Journal of
Symbolic Computation, 9(3):375–403, 1990. 47, 50, 60, 67, 68

	Preliminaries
	Graphs, hypergraphs and matroids
	Graphs
	Hypergraphs
	Matroids
	Oriented matroids

	Complexity
	Problems
	Model of computation
	RAM machine for enumeration
	Other complexity measures
	Complexity classes: a short zoology

	Logic
	Structure
	First-order logic
	Second-order logic
	The model-checking problem

	Polynomials
	Representation
	Examples

	I Complexity
	Enumeration
	Basics
	Complexity measures and classes
	Polynomial total time
	Incremental polynomial time
	Polynomial delay

	Separation between classes
	Unordered enumeration problems
	Ordered enumeration problems

	The power of ordering
	Hardness through a family of orders
	Hardness through one order
	Hardness through one enumerable order

	Operations on predicates and enumeration
	Union of predicates
	Subtraction of predicates
	Intersection of predicates

	An example: A-Circuit

	Enumeration of Monomials
	Introduction
	Preliminaries

	Finding one monomial at a time
	The algorithm

	An incremental algorithm
	A polynomial delay algorithm
	Small values
	Large values
	Circuits
	The algorithm

	Complexity classes for randomized enumeration
	Higher degree polynomials
	KS algorithm
	Interpolation of fixed degree polynomials
	Comparison of interpolation methods

	Modest improvements
	Finite fields
	A method to decrease the degree
	Reduction of error and number of monomials
	Derandomization

	Hard questions for easy to compute polynomials
	Polynomials of unbounded degree
	Degree 3 polynomials
	Degree 2 polynomials
	Hardness regardless of the degree

	Polynomials and Hypergraphs
	Introduction to the Pfaffian Tree theorem
	Enumeration of the spanning hypertrees
	Parallelism
	Maximal spanning hypertree

	II Logic
	Monadic Second-Order Logic
	Terms and trees
	Decomposition: the different notions of width
	Tree-width
	Branch-width
	Clique-width

	The logic MSO on graphs
	The logic MSO on higher order structures
	Hypergraphs
	Matroids

	Decomposable Matroids
	Introduction
	Matroid decomposition
	Matroid branch-width
	Enhanced branch decomposition Tree

	Decision on an enhanced tree
	Signature
	From matroids to trees

	Extensions and applications
	Logic extension
	Spectra of MSOM formulas
	Enumeration

	Matroid operations
	Amalgam of boundaried matrices
	Series and parallel connections

	Discussion

	Decomposable Hypergraphs
	Representation of a hypergraph
	Decomposition-width
	Structural properties

	Decision of MSO over decomposable hypergraphs
	Representation of hyperedges over a term

	Representation of hypergraph like structures
	Definable subclasses
	Encoding other decompositions

