
Generic Strategy Improvement for Simple Stochastic
Games

David Auger, Xavier Badin de Montjoye and Yann Strozecki

Université de Versailles St-Quentin-en-Yvelines
Laboratoire DAVID
Versailles, France

Mars 2022, Séminaire LACL

What’s an SSG ?

Yet another game

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph
with:
I three sets of vertices VMAX , VMIN , VAV E of outdegree 2
I two (or more) ’sink’ vertices with values 0 and 1

max A A

0 1

A min A

Two players: MAX and MIN, and randomness.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

On a MAX node player MAX decides where to go next.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

On a AVE node the next vertex is randomly determined.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

On a MIN node player MIN decides where to go next.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

Etc.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

Etc.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

Etc.

Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A

0 1

A min A

Etc.

Generalized SSGs

Generalize binary SSG:

I arbitrary outdegree on the MAX and MIN nodes
I arbitrary values on sinks
I arbitrary probability distribution on the outneighbours of each AVE node

m M

r1 r2 r3

Val= 1 Val= 0 Val= .5

.1

.9

1.1

.9

What’s the value of an SSG ?

Markov Chain

I a finite, stationnary Markov chain as a collection of random nodes with a
token moving

I stopping condition: proba 1 of reaching a sink node, each with a given
value

R R R

0 1

R R R

value of node v = average value of the sink that is reached

Values of nodes
Here : binary case (outdegree 2, uniform probability)

.54 .43 .86

0 1

.64 .57 .71

Easily computed by linear system :

∀ non sink node v, val[v] =
∑
w

p(v, w) · val[w]

Form of the Values

We assume that the probability distribution on each random vertex has values
of the form p/q, for some q. For binary Markov chain, q = 2.

Value format
In a Markov chain with r vertices, there is t ≤ qr such that each vertex v has
value pv

t
.

This is proven using the matrix tree theorem.

Markov Decision Process

I Add some decision nodes and 1 player
I On a decision node, the player chooses the next node among neighbours

max R R

0 1

R max R

goal : maximize the value of a node / all nodes

Markovian property in MDP

max R R

0 1

R max R

I There is an optimal solution which is stationnary and pure (deterministic)
I strategy := choice of an outneighbour for every max node

Values of a strategy

max
.43 .43 .86

0 1

.57
max
.71 .71

I There is an optimal solution which is stationnary and pure (deterministic)
I strategy := choice of an outneighbour for every max node
I Values obtained from the underlying Markov chain

Solving a MDP

Bellman equations for optimal values val∗ (under mild conditions)
I ∀v random node

val∗[v] =
∑
w

p(v, w) · val∗[w]

I ∀ max node
val∗[v] = max

(v,w)∈A
val∗[w]

I max / linear system
I solved by LP in polynomial time

Optimal values in an SSG

We consider only positional strategies:

σ : VMAX −→ V, τ : VMIN −→ V

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x:

val∗(x) = max
σ strategy
for MAX

min
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
valσ,τ (x)

Problem: given a game and a vertex, compute the value of the vertex.

Decision problem: val∗(x) > 0.5 ?

Alternative version: find the pair of optimal strategies (σ∗, τ∗)

Optimal values in an SSG

We consider only positional strategies:

σ : VMAX −→ V, τ : VMIN −→ V

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x:

val∗(x) = max
σ strategy
for MAX

min
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
valσ,τ (x)

Problem: given a game and a vertex, compute the value of the vertex.

Decision problem: val∗(x) > 0.5 ?

Alternative version: find the pair of optimal strategies (σ∗, τ∗)

Solving an SSG

Bellman equations for optimal values val∗ (under mild conditions)
I ∀v random node

val∗[v] =
∑
w

p(v, w) · val∗[w]

I ∀v max node
val∗[v] = max

(v,w)∈A
val∗[w]

I ∀v min node
val∗[v] = min

(v,w)∈A
val∗[w]

I max / min / linear system
I there is t ≤ qr such that for each vertex v, val∗[v] = pv

t

I Complexity somewhere between P and EOPL = PLS ∩ PPAD
I Harder than Parity Game, Mean payoff Game, Discounted payoff Game

but equivalent to their stochastic versions.

Solving an SSG

Bellman equations for optimal values val∗ (under mild conditions)
I ∀v random node

val∗[v] =
∑
w

p(v, w) · val∗[w]

I ∀v max node
val∗[v] = max

(v,w)∈A
val∗[w]

I ∀v min node
val∗[v] = min

(v,w)∈A
val∗[w]

I max / min / linear system
I there is t ≤ qr such that for each vertex v, val∗[v] = pv

t

I Complexity somewhere between P and EOPL = PLS ∩ PPAD
I Harder than Parity Game, Mean payoff Game, Discounted payoff Game

but equivalent to their stochastic versions.

Algorithms to solve SSGs

Classical Methods

Several methods to compute the value of an SSG:

I Quadratic programming, express min and max constraints as a sum of
quadratic functions to minimize

I Value iteration, apply a contracting operator on the values
I Dichotomic search, find the values by dichotomic search
I LP-type problem
I Unique sink orientation
I Strategy improvement

Strategy improvement algorithm

Strategy improvement algorithm: sequence of MAX-strategies of strictly
increasing values.
n: number of MAX-vertices
r: number of random vertices
Binary SSG: MAX, MIN and average vertices of degree two

Algorithms based on switches
I Hoffman-Karp’s algorithm → binary SSGs, O (2n/n) iterations
I Fibonnaci Seesaw algorithm → binary SSGs, O (1.61n) iterations
I Gimbert-Horn’s algorithm → O (r!) iterations
I Ludwig’s algorithm → 2O(

√
n) expected iterations

I Auger, Coucheney, Strozecki’s algorithm → 2O(r) expected iterations

Game with shortcuts

Game transformation
A: a subset of arcs of G and σ a max strategy.
G[A, σ]: copy of G with a modification −→ each arc e = (x, y) ∈ A removed
and replaced by e′ = (x, se)
se: new sink vertex with value vσ,τ(σ)(y).

x1

x2

x3

x4

x5

−→

x1

x2

x3

0.3

x4

x5

Figure: Transformation of G in G[{(x2, x3)}, σ] with vσ(x3) = 0.3

The generic strategy improvement algorithm (GSIA)

Order of strategies
Let σ, σ′ be two MAX-strategies, σ � σ′ iff vσ > vσ′ and for all MAX-vertices
x such that vσ(x) = vσ′ (x), we have σ(x) = σ′(x).

Algorithm 1: GSIA
Data: G an SSG
Result: (σ, τ) a pair of optimal strategies
begin

select an initial max strategy σ
while (σ, τ(σ)) are not optimal strategies of G do

choose a subset A of arcs of G
find σ′ such that σ′ �

G[A,σ]
σ.

σ ←− σ′

return (σ, τ(σ))

A generic algoithm

A generic algorithm
Three choices:
I the initial strategy
I the set A of fixed arcs
I how to find σ′

The set of arcs and the method to find σ′ can change at each step.

Correction of GSIA
Any instance of GSIA terminates and compute σ∗, τ∗

The Hoffman Karp Algorithm

I the initial strategy: anything
I the set A of fixed arcs: the arcs going out of MAX-vertices
I how to find σ′: solve the game G[A, σ] (one player without randomness)

Algorithm in O(2n/n) iterations, lower bound in 2O(n).

max
.43 .43 .86

0 1

.57
max
.71 .71

Changing the strategy on the upper left MAX-vertex is a switch and it
increases the value.

The Hoffman Karp Algorithm

I the initial strategy: anything
I the set A of fixed arcs: the arcs going out of MAX-vertices
I how to find σ′: solve the game G[A, σ] (one player without randomness)

Algorithm in O(2n/n) iterations, lower bound in 2O(n).

max
.43 .43 .86

0 1

.57
max
.71 .71

Changing the strategy on the upper left MAX-vertex is a switch and it
increases the value.

One algorithm to rule them all

Why introducing yet another strategy improvement algorithm?

I capture all known SIAs
I relax the stopping condition (all plays stop almost surely)
I get better complexity bounds, function of the number of random vertices
I suggest new algorithms

Proof of correction

Two points in order to prove the correction of GSIA.
I If σ is not optimal in G, then σ is not optimal in G[A, σ]
I If σ′ �

G[A,σ]
σ in G[A, σ] then σ′ > σ in G

Equivalency of the value vector
The value of the vertices of G[A, σ] under (σ, τ(σ)) are the same as the value
of G under (σ, τ(σ))

Concatenated strategies

Concatenation
The strategy σ′|Aσ plays as in σ′ until the token reaches A then as in σ.

The strategy σ′|Aσ is not positional.

Interpretation in the transformed game
For two max strategies σ, σ′ and a subset of arcs A, we have:
vGσ′|Aσ = v

G[A,σ]
σ′ .

Limits of concatenated strategies

σ′|1Aσ ≡ σ′|Aσ

σ′|i+1
A σ ≡ σ′|Aσ′|iAσ

Non decreasing sequence
Let G be an SSG, A a subset of arcs of G and σ, σ′ two max strategies. If
σ′ �

G[A,σ]
σ then σ′ >

G
σ.

Main ideas of the proof:
I order � implies that there are less vertices in cycles going from σ to σ′

I induction to prove that (σ′|iAσ)i is increasing (in G), relying on the
monotonicity of SSGs with regard to their sinks values

I the limit of vGσ′|iσ is vGσ′

Complexity of GSIA

I Function of n (binary SSGs), upper bound from the number of strategies:
2n. Lower bound in 2n − 1.

I Function of r (binary SSGs), there is an improvement of a least 2−r on a
MAX-vertex in an iteration. At most n2r iterations and a lower bound of
2r+1.

I For q-SSGs, nqr iterations. When q is large, a r! bound as for Gimbert
and Horn’s algorithm is better.

I Iterations which do not change the order of random vertices are cheap.
Only rqr heavy iterations.

Opt-GSIA is a restriction of GSIA, where A is always the same and σ′ is the
optimal strategy in G[A, σ].
Open Question: Can we prove better bounds for Opt-GSIA?

Complexity of GSIA

I Function of n (binary SSGs), upper bound from the number of strategies:
2n. Lower bound in 2n − 1.

I Function of r (binary SSGs), there is an improvement of a least 2−r on a
MAX-vertex in an iteration. At most n2r iterations and a lower bound of
2r+1.

I For q-SSGs, nqr iterations. When q is large, a r! bound as for Gimbert
and Horn’s algorithm is better.

I Iterations which do not change the order of random vertices are cheap.
Only rqr heavy iterations.

Opt-GSIA is a restriction of GSIA, where A is always the same and σ′ is the
optimal strategy in G[A, σ].
Open Question: Can we prove better bounds for Opt-GSIA?

f-strategies

f-strategies
Let f be a total ordering on VR ∪ VS , f : x1 < x2 < · · · < xr+s. An f -strategy
is an optimal strategy in the game where the s+ r vertices above are replaced
by sinks with new values satisfying Val(x1) < Val(x2) < · · · < Val(xr+s).

The order defines the strategy
An f -strategy does not depend on the value chosen for the sink and can be
computed from f in linear time.

Gimbert and Horn propose to list all f -strategies or an SIA which transforms
an f -strategy by updating the order to match the values at each step.

Complexity of generalized Gimbert and Horn’s algorithm

Generalized GHA
Consider an SSG G and a set of arcs A containing k arcs out of MAX or MIN
vertices. Then Algorithm Opt-GSIA runs in at most min((r + k)qr, (r + k)!)
iterations.

Comparison with the state of the art
Opt-GSIA, with A subset of the arcs going out of random vertices, needs less
iterations than Ibsen-Jensen and Miltersen’s algorithm to find the optimal
values on any input.

I The speedup is exponential on some instances.
I When an arc out of each random vertex is in A, the transformed game is

easy to solve.

New Algorithms

We consider instances of Opt-GSIA:

I the transformed game must be simple enough to be solvable in polynomial
time

I the transformed game must be complex enough, so that finding its optimal
solution improves values fast

I A is the set of arcs out of MIN vertices: single player transformed game
(converge from below)

I A is a feedback vertex set: acyclic transformed game

New Algorithms

We consider instances of Opt-GSIA:

I the transformed game must be simple enough to be solvable in polynomial
time

I the transformed game must be complex enough, so that finding its optimal
solution improves values fast

I A is the set of arcs out of MIN vertices: single player transformed game
(converge from below)

I A is a feedback vertex set: acyclic transformed game

New Algorithms

We consider instances of Opt-GSIA:

I the transformed game must be simple enough to be solvable in polynomial
time

I the transformed game must be complex enough, so that finding its optimal
solution improves values fast

I A is the set of arcs out of MIN vertices: single player transformed game
(converge from below)

I A is a feedback vertex set: acyclic transformed game

Thank you for your attention

