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What’s an SSG ?



Yet another game



Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph
with:
I three sets of vertices VMAX , VMIN , VAV E of outdegree 2
I two (or more) ’sink’ vertices with values 0 and 1

max A A

0 1

A min A

Two players: MAX and MIN, and randomness.



Rules of an SSG
A play consists in moving a pebble on the graph:

I player MAX wants to maximize the value of the sink reached.
I player MIN wants to minimize the value. If no sink is reached, the value is

0.

max A A
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On a MAX node player MAX decides where to go next.
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On a AVE node the next vertex is randomly determined.
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Generalized SSGs

Generalize binary SSG:

I arbitrary outdegree on the MAX and MIN nodes
I arbitrary values on sinks
I arbitrary probability distribution on the outneighbours of each AVE node
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What’s the value of an SSG ?



Markov Chain

I a finite, stationnary Markov chain as a collection of random nodes with a
token moving

I stopping condition: proba 1 of reaching a sink node, each with a given
value

R R R

0 1

R R R

value of node v = average value of the sink that is reached



Values of nodes
Here : binary case (outdegree 2, uniform probability)

.54 .43 .86

0 1

.64 .57 .71

Easily computed by linear system :

∀ non sink node v, val[v] =
∑
w

p(v, w) · val[w]



Form of the Values

We assume that the probability distribution on each random vertex has values
of the form p/q, for some q. For binary Markov chain, q = 2.

Value format
In a Markov chain with r vertices, there is t ≤ qr such that each vertex v has
value pv

t
.

This is proven using the matrix tree theorem.



Markov Decision Process

I Add some decision nodes and 1 player
I On a decision node, the player chooses the next node among neighbours

max R R

0 1

R max R

goal : maximize the value of a node / all nodes



Markovian property in MDP

max R R

0 1

R max R

I There is an optimal solution which is stationnary and pure (deterministic)
I strategy := choice of an outneighbour for every max node



Values of a strategy

max
.43 .43 .86

0 1

.57
max
.71 .71

I There is an optimal solution which is stationnary and pure (deterministic)
I strategy := choice of an outneighbour for every max node
I Values obtained from the underlying Markov chain



Solving a MDP

Bellman equations for optimal values val∗ (under mild conditions)
I ∀v random node

val∗[v] =
∑
w

p(v, w) · val∗[w]

I ∀ max node
val∗[v] = max

(v,w)∈A
val∗[w]

I max / linear system
I solved by LP in polynomial time



Optimal values in an SSG

We consider only positional strategies:

σ : VMAX −→ V, τ : VMIN −→ V

The value of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x:

val∗(x) = max
σ strategy
for MAX

min
τ strategy
for MIN

Eσ,τ (value of the sink reached | game starts in x)︸ ︷︷ ︸
valσ,τ (x)

Problem: given a game and a vertex, compute the value of the vertex.

Decision problem: val∗(x) > 0.5 ?

Alternative version: find the pair of optimal strategies (σ∗, τ∗)
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I Complexity somewhere between P and EOPL = PLS ∩ PPAD
I Harder than Parity Game, Mean payoff Game, Discounted payoff Game

but equivalent to their stochastic versions.
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Algorithms to solve SSGs



Classical Methods

Several methods to compute the value of an SSG:

I Quadratic programming, express min and max constraints as a sum of
quadratic functions to minimize

I Value iteration, apply a contracting operator on the values
I Dichotomic search, find the values by dichotomic search
I LP-type problem
I Unique sink orientation
I Strategy improvement



Strategy improvement algorithm

Strategy improvement algorithm: sequence of MAX-strategies of strictly
increasing values.
n: number of MAX-vertices
r: number of random vertices
Binary SSG: MAX, MIN and average vertices of degree two

Algorithms based on switches
I Hoffman-Karp’s algorithm → binary SSGs, O (2n/n) iterations
I Fibonnaci Seesaw algorithm → binary SSGs, O (1.61n) iterations
I Gimbert-Horn’s algorithm → O (r!) iterations
I Ludwig’s algorithm → 2O(

√
n) expected iterations

I Auger, Coucheney, Strozecki’s algorithm → 2O(r) expected iterations



Game with shortcuts

Game transformation
A: a subset of arcs of G and σ a max strategy.
G[A, σ]: copy of G with a modification −→ each arc e = (x, y) ∈ A removed
and replaced by e′ = (x, se)
se: new sink vertex with value vσ,τ(σ)(y).

x1

x2

x3

x4

x5

−→

x1

x2

x3

0.3

x4

x5

Figure: Transformation of G in G[{(x2, x3)}, σ] with vσ(x3) = 0.3



The generic strategy improvement algorithm (GSIA)

Order of strategies
Let σ, σ′ be two MAX-strategies, σ � σ′ iff vσ > vσ′ and for all MAX-vertices
x such that vσ(x) = vσ′ (x), we have σ(x) = σ′(x).

Algorithm 1: GSIA
Data: G an SSG
Result: (σ, τ) a pair of optimal strategies
begin

select an initial max strategy σ
while (σ, τ(σ)) are not optimal strategies of G do

choose a subset A of arcs of G
find σ′ such that σ′ �

G[A,σ]
σ.

σ ←− σ′

return (σ, τ(σ))



A generic algoithm

A generic algorithm
Three choices:
I the initial strategy
I the set A of fixed arcs
I how to find σ′

The set of arcs and the method to find σ′ can change at each step.

Correction of GSIA
Any instance of GSIA terminates and compute σ∗, τ∗



The Hoffman Karp Algorithm

I the initial strategy: anything
I the set A of fixed arcs: the arcs going out of MAX-vertices
I how to find σ′: solve the game G[A, σ] (one player without randomness)

Algorithm in O(2n/n) iterations, lower bound in 2O(n).

max
.43 .43 .86

0 1

.57
max
.71 .71

Changing the strategy on the upper left MAX-vertex is a switch and it
increases the value.
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One algorithm to rule them all

Why introducing yet another strategy improvement algorithm?

I capture all known SIAs
I relax the stopping condition (all plays stop almost surely)
I get better complexity bounds, function of the number of random vertices
I suggest new algorithms



Proof of correction

Two points in order to prove the correction of GSIA.
I If σ is not optimal in G, then σ is not optimal in G[A, σ]
I If σ′ �

G[A,σ]
σ in G[A, σ] then σ′ > σ in G

Equivalency of the value vector
The value of the vertices of G[A, σ] under (σ, τ(σ)) are the same as the value
of G under (σ, τ(σ))



Concatenated strategies

Concatenation
The strategy σ′|Aσ plays as in σ′ until the token reaches A then as in σ.

The strategy σ′|Aσ is not positional.

Interpretation in the transformed game
For two max strategies σ, σ′ and a subset of arcs A, we have:
vGσ′|Aσ = v

G[A,σ]
σ′ .



Limits of concatenated strategies

σ′|1Aσ ≡ σ′|Aσ

σ′|i+1
A σ ≡ σ′|Aσ′|iAσ

Non decreasing sequence
Let G be an SSG, A a subset of arcs of G and σ, σ′ two max strategies. If
σ′ �

G[A,σ]
σ then σ′ >

G
σ.

Main ideas of the proof:
I order � implies that there are less vertices in cycles going from σ to σ′

I induction to prove that (σ′|iAσ)i is increasing (in G), relying on the
monotonicity of SSGs with regard to their sinks values

I the limit of vGσ′|iσ is vGσ′



Complexity of GSIA

I Function of n (binary SSGs), upper bound from the number of strategies:
2n. Lower bound in 2n − 1.

I Function of r (binary SSGs), there is an improvement of a least 2−r on a
MAX-vertex in an iteration. At most n2r iterations and a lower bound of
2r+1.

I For q-SSGs, nqr iterations. When q is large, a r! bound as for Gimbert
and Horn’s algorithm is better.

I Iterations which do not change the order of random vertices are cheap.
Only rqr heavy iterations.

Opt-GSIA is a restriction of GSIA, where A is always the same and σ′ is the
optimal strategy in G[A, σ].
Open Question: Can we prove better bounds for Opt-GSIA?
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f-strategies

f-strategies
Let f be a total ordering on VR ∪ VS , f : x1 < x2 < · · · < xr+s. An f -strategy
is an optimal strategy in the game where the s+ r vertices above are replaced
by sinks with new values satisfying Val(x1) < Val(x2) < · · · < Val(xr+s).

The order defines the strategy
An f -strategy does not depend on the value chosen for the sink and can be
computed from f in linear time.

Gimbert and Horn propose to list all f -strategies or an SIA which transforms
an f -strategy by updating the order to match the values at each step.



Complexity of generalized Gimbert and Horn’s algorithm

Generalized GHA
Consider an SSG G and a set of arcs A containing k arcs out of MAX or MIN
vertices. Then Algorithm Opt-GSIA runs in at most min((r + k)qr, (r + k)!)
iterations.

Comparison with the state of the art
Opt-GSIA, with A subset of the arcs going out of random vertices, needs less
iterations than Ibsen-Jensen and Miltersen’s algorithm to find the optimal
values on any input.

I The speedup is exponential on some instances.
I When an arc out of each random vertex is in A, the transformed game is

easy to solve.



New Algorithms

We consider instances of Opt-GSIA:

I the transformed game must be simple enough to be solvable in polynomial
time

I the transformed game must be complex enough, so that finding its optimal
solution improves values fast

I A is the set of arcs out of MIN vertices: single player transformed game
(converge from below)

I A is a feedback vertex set: acyclic transformed game
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Thank you for your attention


