

Generic Strategy Improvement for Simple Stochastic Games

David Auger, Xavier Badin de Montjoye and Yann Strozecki

Université de Versailles St-Quentin-en-Yvelines Laboratoire DAVID Versailles, France

Mars 2022, Séminaire LACL

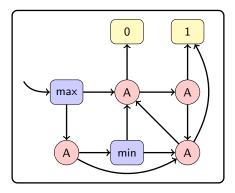
What's an SSG ?

Yet another game

Simple stochastic game (SSG)

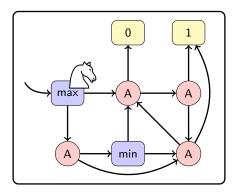
A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph with:

- ▶ three sets of vertices V_{MAX} , V_{MIN} , V_{AVE} of outdegree 2
- \blacktriangleright two (or more) 'sink' vertices with values 0 and 1



Two players: MAX and MIN, and *randomness*.

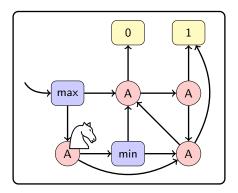
- player MAX wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.



On a MAX node player MAX decides where to go next.

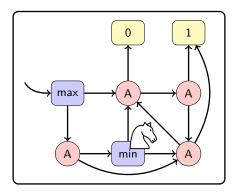
A play consists in moving a *pebble* on the graph:

- \blacktriangleright player $\rm MAX$ wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.



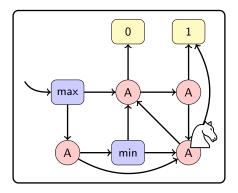
On a AVE node the next vertex is randomly determined.

- \blacktriangleright player $\rm MAX$ wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.

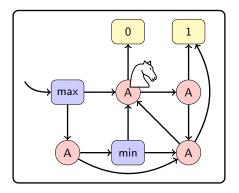


On a MIN node player MIN decides where to go next.

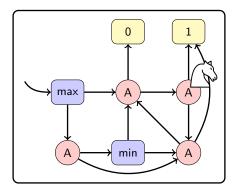
- \blacktriangleright player $\rm MAX$ wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.



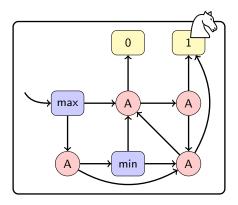
- \blacktriangleright player $\rm MAX$ wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.



- \blacktriangleright player $\rm MAX$ wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.



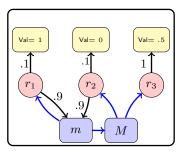
- \blacktriangleright player $\rm MAX$ wants to maximize the value of the sink reached.
- player MIN wants to minimize the value. If no sink is reached, the value is 0.



Generalized SSGs

Generalize *binary* SSG:

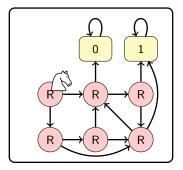
- \blacktriangleright arbitrary outdegree on the MAX and MIN nodes
- arbitrary values on sinks
- \blacktriangleright arbitrary probability distribution on the outneighbours of each AVE node



What's the value of an SSG ?

Markov Chain

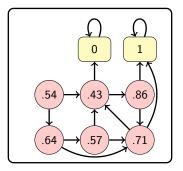
- a finite, stationnary Markov chain as a collection of *random nodes* with a token moving
- stopping condition: proba 1 of reaching a sink node, each with a given value



value of node v = average value of the sink that is reached

Values of nodes

Here : binary case (outdegree 2, uniform probability)



Easily computed by linear system :

$$\forall \text{ non sink node } v, \quad val[v] = \sum_w p(v,w) \cdot val[w]$$

Form of the Values

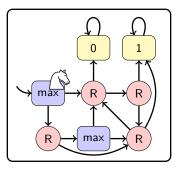
We assume that the probability distribution on each random vertex has values of the form p/q, for some q. For binary Markov chain, q = 2.

Value format In a Markov chain with r vertices, there is $t \leq q^r$ such that each vertex v has value $\frac{p_v}{t}$.

This is proven using the matrix tree theorem.

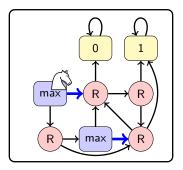
Markov Decision Process

- ► Add some *decision nodes* and 1 player
- > On a decision node, the player chooses the next node among neighbours



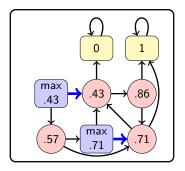
goal : maximize the value of a node / all nodes

Markovian property in MDP



- There is an optimal solution which is stationnary and pure (deterministic)
- strategy := choice of an outneighbour for every max node

Values of a strategy



- There is an optimal solution which is stationnary and pure (deterministic)
- strategy := choice of an outneighbour for every max node
- Values obtained from the underlying Markov chain

Solving a MDP

Bellman equations for optimal values val* (under mild conditions)

 \blacktriangleright $\forall v$ random node

$$val_*[v] = \sum_w p(v, w) \cdot val_*[w]$$

 \blacktriangleright \forall max node

$$val_*[v] = \max_{(v,w)\in A} val_*[w]$$

max / linear system

solved by LP in polynomial time

Optimal values in an SSG

We consider only positional strategies:

 $\sigma: V_{\mathsf{MAX}} \longrightarrow V, \quad \tau: V_{\mathsf{MIN}} \longrightarrow V$

The value of a vertex x is the best expected value of a sink that MAX can guarantee starting from x:

 $val_{*}(x) = \max_{\substack{\sigma \text{ strategy} \\ \text{for MAX}}} \min_{\substack{\tau \text{ strategy} \\ \text{for MIN}}} \underbrace{\mathbb{E}_{\sigma,\tau}\left(\text{value of the sink reached } | \text{ game starts in } x\right)}_{val_{\sigma,\tau}(x)}$

Problem: given a game and a vertex, compute the value of the vertex.

Decision problem: $val_*(x) > 0.5$?

<u>Alternative version</u>: find the pair of optimal strategies (σ^*, τ^*)

Optimal values in an SSG

We consider only positional strategies:

 $\sigma: V_{\mathsf{MAX}} \longrightarrow V, \quad \tau: V_{\mathsf{MIN}} \longrightarrow V$

The value of a vertex x is the best expected value of a sink that MAX can guarantee starting from x:

 $val_{*}(x) = \max_{\substack{\sigma \text{ strategy} \\ \text{for MAX}}} \min_{\substack{\tau \text{ strategy} \\ \text{for MIN}}} \underbrace{\mathbb{E}_{\sigma,\tau} \left(\text{value of the sink reached } | \text{ game starts in } x \right)}_{val_{\sigma,\tau}(x)}$

Problem: given a game and a vertex, compute the value of the vertex.

Decision problem: $val_*(x) > 0.5$?

<u>Alternative version</u>: find the pair of optimal strategies (σ^*, τ^*)

Solving an SSG

Bellman equations for optimal values val* (under mild conditions)

 $\blacktriangleright \forall v \text{ random node}$

$$val_*[v] = \sum_w p(v, w) \cdot val_*[w]$$

▶ $\forall v \text{ MAX node}$

$$val_*[v] = \max_{(v,w) \in A} val_*[w]$$

▶ $\forall v \text{ MIN node}$

$$val_*[v] = \min_{(v,w) \in A} val_*[w]$$

max / min / linear system

- there is $t \leq q^r$ such that for each vertex v, $val_*[v] = \frac{p_v}{t}$
- Complexity somewhere between P and $EOPL = PLS \cap PPAD$
- Harder than Parity Game, Mean payoff Game, Discounted payoff Game but equivalent to their stochastic versions.

Solving an SSG

Bellman equations for optimal values val* (under mild conditions)

 $\blacktriangleright \forall v \text{ random node}$

$$val_*[v] = \sum_w p(v, w) \cdot val_*[w]$$

▶ $\forall v \text{ MAX node}$

$$val_*[v] = \max_{(v,w)\in A} val_*[w]$$

▶ $\forall v \text{ MIN node}$

$$val_*[v] = \min_{(v,w) \in A} val_*[w]$$

max / min / linear system

- there is $t \leq q^r$ such that for each vertex v, $val_*[v] = \frac{p_v}{t}$
- Complexity somewhere between P and $EOPL = PLS \cap PPAD$
- Harder than Parity Game, Mean payoff Game, Discounted payoff Game but equivalent to their stochastic versions.

Algorithms to solve SSGs

Classical Methods

Several methods to compute the value of an SSG:

- Quadratic programming, express min and max constraints as a sum of quadratic functions to minimize
- Value iteration, apply a contracting operator on the values
- Dichotomic search, find the values by dichotomic search
- LP-type problem
- Unique sink orientation
- Strategy improvement

Strategy improvement algorithm

Strategy improvement algorithm: sequence of MAX-strategies of strictly increasing values.

- n: number of MAX-vertices
- r: number of random vertices

Binary SSG: MAX, MIN and average vertices of degree two

Algorithms based on switches

- Hoffman-Karp's algorithm \rightarrow binary SSGs, $O(2^n/n)$ iterations
- ▶ Fibonnaci Seesaw algorithm \rightarrow binary SSGs, $O(1.61^n)$ iterations
- Gimbert-Horn's algorithm $\rightarrow O(r!)$ iterations
- Ludwig's algorithm $\rightarrow 2^{O(\sqrt{n})}$ expected iterations
- Auger, Coucheney, Strozecki's algorithm $\rightarrow 2^{O(r)}$ expected iterations

Game with shortcuts

Game transformation

A: a subset of arcs of G and σ a MAX strategy. $G[A, \sigma]$: copy of G with a modification \longrightarrow each arc $e = (x, y) \in A$ removed and replaced by $e' = (x, s_e)$ s_e : new sink vertex with value $v_{\sigma,\tau(\sigma)}(y)$.

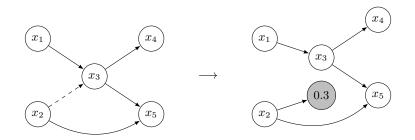


Figure: Transformation of G in $G[\{(x_2, x_3)\}, \sigma]$ with $v_{\sigma}(x_3) = 0.3$

The generic strategy improvement algorithm (GSIA)

Order of strategies

Let σ, σ' be two MAX-strategies, $\sigma \succ \sigma'$ iff $v_{\sigma} > v_{\sigma'}$ and for all MAX-vertices x such that $v_{\sigma}(x) = v_{\sigma'}(x)$, we have $\sigma(x) = \sigma'(x)$.

Algorithm 1: GSIA

A generic algoithm

A generic algorithm

Three choices:

- the initial strategy
- the set A of fixed arcs
- \blacktriangleright how to find σ'

The set of arcs and the method to find σ' can change at each step.

Correction of GSIA

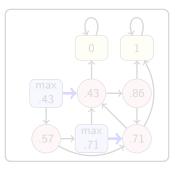
Any instance of GSIA terminates and compute σ^*,τ^*

The Hoffman Karp Algorithm

the initial strategy: anything

the set A of fixed arcs: the arcs going out of MAX-vertices

how to find σ' : solve the game $G[A, \sigma]$ (one player without randomness) Algorithm in $O(2^n/n)$ iterations, lower bound in $2^{O(n)}$.



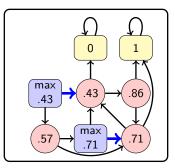
Changing the strategy on the upper left MAX-vertex is a **switch** and it increases the value.

The Hoffman Karp Algorithm

the initial strategy: anything

the set A of fixed arcs: the arcs going out of MAX-vertices

how to find σ' : solve the game $G[A, \sigma]$ (one player without randomness) Algorithm in $O(2^n/n)$ iterations, lower bound in $2^{O(n)}$.



Changing the strategy on the upper left MAX-vertex is a $\ensuremath{\textit{switch}}$ and it increases the value.

One algorithm to rule them all

Why introducing yet another strategy improvement algorithm?

- capture all known SIAs
- relax the stopping condition (all plays stop almost surely)
- get better complexity bounds, function of the number of random vertices
- suggest new algorithms

Proof of correction

Two points in order to prove the correction of GSIA.

• If σ is not optimal in G, then σ is not optimal in $G[A, \sigma]$

• If
$$\sigma' \underset{G[A,\sigma]}{\succ} \sigma$$
 in $G[A,\sigma]$ then $\sigma' > \sigma$ in G

Equivalency of the value vector

The value of the vertices of $G[A,\sigma]$ under $(\sigma,\tau(\sigma))$ are the same as the value of G under $(\sigma,\tau(\sigma))$

Concatenated strategies

Concatenation

The strategy $\sigma'|_A \sigma$ plays as in σ' until the token reaches A then as in σ .

The strategy $\sigma'|_A \sigma$ is not positional.

Interpretation in the transformed game

For two MAX strategies $\sigma, \, \sigma'$ and a subset of arcs A, we have: $v^G_{\sigma'|_A\sigma} = v^{G[A,\sigma]}_{\sigma'}.$

Limits of concatenated strategies

$$\sigma'|_A^1 \sigma \equiv \sigma'|_A \sigma$$

$$\sigma'|_A^{i+1}\sigma\equiv\sigma'|_A\sigma'|_A^i\sigma$$

Non decreasing sequence

Let G be an SSG, A a subset of arcs of G and σ, σ' two MAX strategies. If $\sigma' \underset{G[A,\sigma]}{\succ} \sigma$ then $\sigma' > \sigma$.

Main ideas of the proof:

- order \succ implies that there are *less* vertices in cycles going from σ to σ'
- ▶ induction to prove that $(\sigma'|_{A}^{i}\sigma)_{i}$ is increasing (in *G*), relying on the monotonicity of SSGs with regard to their sinks values

Complexity of GSIA

- Function of n (binary SSGs), upper bound from the number of strategies: 2^n . Lower bound in $2^n 1$.
- Function of r (binary SSGs), there is an improvement of a least 2^{-r} on a MAX-vertex in an iteration. At most $n2^r$ iterations and a lower bound of 2^{r+1} .
- For q-SSGs, nq^r iterations. When q is large, a r! bound as for Gimbert and Horn's algorithm is better.
- Iterations which do not change the order of random vertices are cheap. Only rq^r heavy iterations.

Opt-GSIA is a restriction of GSIA, where A is always the same and σ' is the optimal strategy in $G[A, \sigma]$. **Open Question:** Can we prove better bounds for Opt-GSIA?

Complexity of GSIA

- Function of n (binary SSGs), upper bound from the number of strategies: 2^n . Lower bound in $2^n 1$.
- Function of r (binary SSGs), there is an improvement of a least 2^{-r} on a MAX-vertex in an iteration. At most $n2^r$ iterations and a lower bound of 2^{r+1} .
- For q-SSGs, nq^r iterations. When q is large, a r! bound as for Gimbert and Horn's algorithm is better.
- Iterations which do not change the order of random vertices are cheap. Only rq^r heavy iterations.

Opt-GSIA is a restriction of GSIA, where A is always the same and σ' is the optimal strategy in $G[A, \sigma]$.

Open Question: Can we prove better bounds for Opt-GSIA?

f-strategies

f-strategies

Let f be a total ordering on $V_R \cup V_S$, $f: x_1 < x_2 < \cdots < x_{r+s}$. An f-strategy is an optimal strategy in the game where the s + r vertices above are replaced by sinks with new values satisfying $Val(x_1) < Val(x_2) < \cdots < Val(x_{r+s})$.

The order defines the strategy

An f-strategy does not depend on the value chosen for the sink and can be computed from f in linear time.

Gimbert and Horn propose to list all f-strategies or an SIA which transforms an f-strategy by updating the order to match the values at each step.

Complexity of generalized Gimbert and Horn's algorithm

Generalized GHA

Consider an SSG G and a set of arcs A containing k arcs out of MAX or MIN vertices. Then Algorithm Opt-GSIA runs in at most $\min((r+k)q^r, (r+k)!)$ iterations.

Comparison with the state of the art

Opt-GSIA, with A subset of the arcs going out of random vertices, needs less iterations than Ibsen-Jensen and Miltersen's algorithm to find the optimal values on any input.

- The speedup is exponential on some instances.
- When an arc out of each random vertex is in A, the transformed game is easy to solve.

New Algorithms

We consider instances of Opt-GSIA:

- the transformed game must be simple enough to be solvable in polynomial time
- the transformed game must be complex enough, so that finding its optimal solution improves values fast
- A is the set of arcs out of MIN vertices: single player transformed game (converge from below)

New Algorithms

We consider instances of Opt-GSIA:

- the transformed game must be simple enough to be solvable in polynomial time
- the transformed game must be complex enough, so that finding its optimal solution improves values fast
- A is the set of arcs out of MIN vertices: single player transformed game (converge from below)
- A is a feedback vertex set: acyclic transformed game

New Algorithms

We consider instances of Opt-GSIA:

- the transformed game must be simple enough to be solvable in polynomial time
- the transformed game must be complex enough, so that finding its optimal solution improves values fast
- A is the set of arcs out of MIN vertices: single player transformed game (converge from below)
- ► A is a feedback vertex set: acyclic transformed game

Thank you for your attention