
Space Complexity of Enumeration
Yann Strozecki1

1Université Paris Saclay, UVSQ, DAVID laboratory, France

I. INTRODUCTION

Enumeration algorithms solve the task of listing a set of
elements and are used to count objects, to solve optimization
problems or to build a collection of objects to be interpreted
by another algorithm or a human expert. The dynamic nature
of enumeration algorithms is taken into account when char-
acterizing their complexity: we consider the incremental time,
that is the time to generate the first k solutions and the delay
between two consecutive solutions. When a problem can be
solved by an algorithm that produces the first k solutions from
an input of size n, in time kap(n) with p a polynomial, the
problem is in polynomial incremental time and belongs to the
class IncPa. If the algorithm has a polynomial delay, then it
is in the class DelayP (for more details on complexity classes
for enumeration see [1], [2]).

A problem is considered tractable if it belongs to one of the
classes we have introduced. Indeed, bounding the delay or the
incremental time implies a bound on the total time to generate
all solutions function of the number of solutions. Moreover,
it guarantees that a subset of all solutions can be generated
efficiently if we do not want them all.

In practice, bounding the space used by enumeration algo-
rithms seems as important as bounding their delay as it is
already noted in [3]. Therefore, much effort has been devoted
ensuring that polynomial delay methods run in polynomial
space [4], [5], [6], [7], [8]. We denote by DelayPpoly (re-
spectively IncPpoly

a) the problems solved by polynomial delay
(resp. by polynomial incremental time) and polynomial space
algorithms.

It is possible to turn an algorithm in incremental linear time
into an algorithm in polynomial delay, by delaying the output
of solutions using a buffer. However, this method requires
exponential space for the buffer, which makes it impractical.
Recently, we have provided an algorithm, called geometric
amortization, which turns any incremental linear time algo-
rithm into a polynomial delay algorithm with a polynomial
space overhead: IncPpoly

1 = DelayPpoly [9]. We then tried to
apply this result to the many problems of the literature using a
buffer to amortize the delay, hoping to show that many of them
only require polynomial space with our method. However, in
most examples, the buffer is also used to eliminate duplicates
and it seems inevitable. Hence, in this extended abstract, we
try to understand better the cost of duplicates elimination by
collecting and adapting several folklore results. We also give a
few new structural results on space complexity in enumeration.

II. SYSTEMATIC ELIMINATION OF DUPLICATES

Dealing with duplicated solutions is a major problem in
enumeration. One possible source of duplicates is when the
problem can be interpreted as a non-disjoint union of sets of
solutions, where each set can be enumerated efficiently. In
this case, an efficient method to obtain an algorithm without
duplicates and no space overhead is described in [10]. Often,
we know how to enumerate a set of elements efficiently, but we
only want to output equivalence classes of this set, for instance,
graphs up to isomorphism [11] or solutions of simple dynamic
programs [12]. We say that an algorithm solves an enumeration
problem ΠA with repetitions if it outputs all solutions at least
once, whereas an algorithm solving ΠA outputs all solutions
exactly once. We say that ΠA is in IncPa with repetitions,
if there is an algorithm and a polynomial p, such that the
algorithm outputs at least k distinct solutions in time kap(n).

Theorem 1. Let ΠA be a problem in IncPa with repetitions
then ΠA ∈ IncPa and exponential space.

Proof. We simulate the algorithm solving ΠA with incremen-
tal time kap(n). The algorithm maintain a trie of all output
solutions. Each time the simulation produce a solution, we test
whether it is in the trie and if not the solution is output and
added to the trie. The overhead is only proportional to the
size of a solution, which is polynomial in the input, hence the
described algorithm is in IncPa.

A. Forward-search

We can avoid exponential space when eliminating duplicates
in an algorithm with repetitions, but it increases the incremen-
tal time significantly.

Theorem 2. Let ΠA be a problem in IncPpoly
a with repetitions

then ΠA ∈ IncPpoly
2a . If the number of occurrences of each

solution is polynomially bounded, then ΠA ∈ IncPpoly
a+1 .

Proof. Simulate the algorithm solving ΠA with incremental
time kap(n). Each time t such that a solution y is produced,
we run a new simulation up to time t − 1 and output y only
if y is not output in this second simulation. This algorithm
produces at least k distinct solutions in time O(k2ap(n)2) .

When each solution is repeated at most q(n) times, we can
bound the number of times the previous algorithm must simu-
late the enumeration from the start. In time O(q(n)p(n)ka+1),
k solutions are produced by the simulation.

Sometimes you may simulate the algorithm for ΠA back-
ward from any point of time, for instance when the algorithm
is a tree traversal of solutions or partial solutions. In the
previous method, we may simulate the algorithm backward
to check whether the solution has already been output. Hence,
all identical solutions produced up to time t require together
a time O(t) to be checked. Therefore, the algorithm without
repetition is of complexity O(p(n)ka+1).

B. Time/Space Trade-off

We can obtain a tradeoff between time and space when
eliminating duplicates, however we can only bound the total
time to generate all solutions and not the incremental time.

Theorem 3. Let λ(n) be any function and let ΠA be a problem
of total time t(n) using a space s(n) and each solution is of
size at most p(n). Then there is an algorithm in total time
O(t(n)p(n) ∗ ⌈t(n)/λ(n)⌉) and space s(n) + λ(n)p(n).

Proof. Simulate the algorithm for ΠA and store the first λ(n)
solutions in lexicographic order, using for instance a trie. The
size of a solution is bounded by p(n) for some polynomial
p. Simulate the algorithm back again to obtain the next λ(n)
solutions and so on until all solutions are produced.

This method has been proposed for turning a uniform
sampler into a probabilistic enumeration algorithm in the
Thesis of Leslie Ann Goldberg [3]. She also proves that any
algorithm using a black box uniform sampler to enumerate
all solutions are such that the product of their delay and
their space is lower bounded by the number of solutions to
output up to a polynomial factor. A similar theorem can be
proved for the elimination of duplicates from a black box
enumeration algorithm with repetitions, proving that the space
use is inevitable.

C. Tractable Elimination of Duplicates

There are a few settings, in which duplicates can be
eliminated efficiently without space overhead or a large time
overhead. Typically, algorithms list duplicates because they
generate many distinct objects all in the same equivalence class
and the objective is to generate all equivalence classes.

To obtain an efficent algorithm generating equivalence
classes from an algorithm generating all objects, we need to
be able to find a canonical representative in polynomial time
and that the classes are of polynomial size. Then, we generate
all objects and filter them using a canonicity test, which gives
an algorithm with a bounded total time. If we further want a
bound on the incremental time or the delay, we must be able
to tell which of the objects in an equivalence class is generated
first.

We can give three examples where such methods could be
used:

• The elements generated are of the form (y1, . . . , yk) for
a constant k but we only want the sets {y1, . . . , yk}
(without the order).

• The elements generated are of the form
(y1, . . . , yk, yk+1), such that yk+1 is of logarithmic
size but we only want the elements (y1, . . . , yk, yk) (the
last element is projected away).

• The average size of an equivalence class is small and we
can list elements in small equivalence classes first (see
e.g. the generation of graphs up to isomorphism [3]).

III. STRUCTURAL RESULTS ON SPACE COMPLEXITY

We try to understand the power of using more memory in
general.

A. Is Exponential Space Useful ?

Let Enumpoly be the set of all enumeration problems
solvable using a polynomial space machine, an equivalent
of PSPACE for enumeration. The class EnumP (see [1])
is the set of enumeration problems whose solutions are of
polynomial size and can be checked in polynomial time. What
can we say of the relative power of these classes?

Theorem 4. 1) EnumP ⊆ Enumpoly

2) P = PSPACE if and only if EnumP = Enumpoly

Proof. 1) Let ΠA ∈ EnumP, by definition we can check
whether an element y is a solution of ΠA for some instance x
in polynomial time and thus in polynomial space. Moreover,
the solutions are of polynomial size, hence there are at most an
exponential number of potential solutions, which can easily be
generated in polynomial space. Therefore, the algorithm which
lists all potential solutions and checks them before outputting
them is in polynomial space.

2) Consider any PSPACE problem A, from it we define
the enumeration problem ΠA whose set of solutions is {1}
if the instance x is in A and {0} otherwise. If EnumP =
Enumpoly, then given an instance x, we can test in polynomial
time whether 1 is a solution proving that A ∈ P.

Consider now a problem ΠA ∈ Enumpoly . We consider the
decision problem A: given (x, y) is y a solution of the problem
ΠA on the instance x. Using the algorithm enumerating all
solutions of ΠA in polynomial space, we get an algorithm to
solve A in polynomial space. We assume P = PSPACE, hence
A ∈ P, which implies that we can test whether an element is
a solution in polynomial time. Since ΠA can be solved in
polynomial space, the solutions output must themselves be of
polynomial size in the input, hence we have ΠA ∈ EnumP.

The same theorem can be proved for the polynomial hier-
archy defined in [13].

B. Exponential Space and Tractable Problem

A more practical question is to understand whether expo-
nential space enlarges the classes IncPi, which correspond to
tractable problems. We relax the constraint that solutions can
be checked in polynomial time and we denote the correspond-
ing classes by ˜IncPi. Remark that it does not seem possible
to characterize the class IncPpoly by a search problem asking
to find a solution not in a given set (see [2]), which seems to
make it different from IncP.

Theorem 5. If EXP ̸= PSPACE then ˜IncP1 ̸⊂ Enumpoly.

Proof. Let A be a problem in EXP, which can be solved
in time O(2p(n)), with p a polynomial. Let ΠA be the
enumeration problem which on the instance x has solutions
{1, 2, . . . , 2p(|x|)} and also the special solution ♯ if x ∈ A.
This problem is in ˜IncP1, since we can enumerate the trivial
solutions {1, 2, . . . , 2p(|x|)} in time O(2p(n)) with constant
delay and then in time O(2p(n)) we can decide whether x ∈ A
and then output ♯ or not.

If we assume that ˜IncP1 ⊂ Enumpoly, then we can solve
ΠA in polynomial space. The enumeration algorithm can be
used to solve the problem A in polynomial space, by detecting
whether ♯ is output. Hence A ∈ PSPACE.

Open Problem 1. Can we relax the hypothesis of the previous
problem to prove equivalence with a classical complexity
hypothesis?

Open Problem 2. Can we prove IncPi ̸= IncPpoly
i , assuming

some complexity hypothesis?

More than understanding the separation of complexity
classes, we would like to understand when using exponential
space strictly decreases the incremental time needed to solve
specific problems.

Open Problem 3. The enumeration of the circuits of a binary
matroid is in IncP2, using a saturation algorithm [14], which
intrinsically relies on exponential memory. Can we prove that
the problem is in IncPpoly

2 or even in IncPpoly?

Acknowledgments: The author thanks Florent Capelli and
Arnaud Mary for many discussions on the complexity of
enumeration.

REFERENCES

[1] Y. Strozecki, “Enumeration complexity,” Bulletin of EATCS, vol. 1,
no. 129, 2019.

[2] Y. Strozecki, Enumeration Complexity: Incremental Time, Delay and
Space. Habilitation thesis, Université de Versailles Saint-Quentin-en-
Yvelines, 2021.

[3] L. A. Goldberg, Efficient algorithms for listing combinatorial structures.
PhD thesis, University of Edinburgh, UK, 1991.

[4] E. L. Lawler, J. K. Lenstra, and A. Rinnooy Kan, “Generating all max-
imal independent sets: NP-hardness and polynomial-time algorithms,”
SIAM Journal on Computing, vol. 9, no. 3, pp. 558–565, 1980.

[5] D. Avis and K. Fukuda, “Reverse search for enumeration,” Discrete
Applied Mathematics, vol. 65, no. 1-3, pp. 21–46, 1996.

[6] S. Cohen, B. Kimelfeld, and Y. Sagiv, “Generating all maximal induced
subgraphs for hereditary and connected-hereditary graph properties,”
Journal of Computer and System Sciences, vol. 74, no. 7, pp. 1147–
1159, 2008.

[7] A. Conte and T. Uno, “New polynomial delay bounds for maximal
subgraph enumeration by proximity search,” in Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, pp. 1179–
1190, 2019.

[8] C. Brosse, V. Limouzy, and A. Mary, “Polynomial delay algorithm
for minimal chordal completions,” in 49th International Colloquium on
Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022,
Paris, France (M. Bojanczyk, E. Merelli, and D. P. Woodruff, eds.),
vol. 229 of LIPIcs, pp. 33:1–33:16, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2022.

[9] F. Capelli and Y. Strozecki, “Geometric amortization of enumeration
algorithms,” arXiv preprint arXiv:2108.10208, 2021.

[10] A. Durand and Y. Strozecki, “Enumeration complexity of logical query
problems with second-order variables,” in CSL, pp. 189–202, 2011.

[11] L. A. Goldberg, “Efficient algorithms for listing unlabeled graphs,” J.
Algorithms, vol. 13, no. 1, pp. 128–143, 1992.

[12] Y. Wang, A. Mary, M. Sagot, and B. Sinaimeri, “A general framework for
enumerating equivalence classes of solutions,” in 29th Annual European
Symposium on Algorithms, ESA 2021, September 6-8, 2021, Lisbon,
Portugal (Virtual Conference) (P. Mutzel, R. Pagh, and G. Herman, eds.),
vol. 204 of LIPIcs, pp. 80:1–80:14, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2021.

[13] N. Creignou, M. Kröll, R. Pichler, S. Skritek, and H. Vollmer, “A
complexity theory for hard enumeration problems,” Discrete Applied
Mathematics, vol. 268, pp. 191–209, 2019.

[14] L. Khachiyan, E. Boros, K. Elbassioni, V. Gurvich, and K. Makino,
“On the complexity of some enumeration problems for matroids,” SIAM
Journal on Discrete Mathematics, vol. 19, no. 4, pp. 966–984, 2005.

