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P(x,y,z) = x3y32% + 5xy*z + 3yz + 1 ’

~» Dense representation no longer relevant!
Sparse representation not always relevant either.

Supersparse (lacunary) representation and circuits.
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Qlx,y,2) = x* +4x°y + 6 x°y? + 4xy> + x°z + 2 xyz
+y2 2+ X2 F vyt 2xy P+ 22241
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Q(x,y,z) = (x+y)* + (z+ 1)+ (x+ y)*(z+ 1)
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Q(x,y,2) = (x+y)*+ (z+ 1)+ (x+ y)?(z+ 1)
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Q(x,y,z) = (x+y)* + (z+ 1)+ (x+ y)*(z+ 1)

~» Straight Line Programs
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» Which polynomials have low/high complexity?
» Polynomial complexity: Determinant } “Algebraic P vs NP”
» Non-polynomial complexity: Permanent?

» (Boolean) Complexity of problems on circuits

» Polynomial Identity Testing : Is the polynomial identically
zero?
» Roots finding, factorization, ...

417



Theorem (Schwartz'80, Zippel'79, DeMillo-Lipton'78)

Let P be a non zero polynomial with n variables of total degree
D, if x1,...,x, are randomly chosen in a set of integers S of
size % then the probability that P(x1,...,xn,) = 0 is bounded
by e.
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Polynomial |dentity Testing

Theorem (Schwartz'80, Zippel'79, DeMillo-Lipton'78)

Let P be a non zero polynomial with n variables of total degree
D, if x1,...,x, are randomly chosen in a set of integers S of
size 2 then the probability that P(xy,...,x,) = 0 is bounded
by e.

» black-box : cannot be derandomized
» derandomization for circuits : open question
» circuits of depth 4 are the “general case”

Theorem (Kabanets-Impagliazzo'03, Agrawal'05)

Derandomization of PIT algorithm
— Super-polynomial lower bound for the permanent
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Theorem (Biirgisser, 2006)

T-conjecture
= super-polynomial lower bound for the permanent
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» Descartes’ rule of signs: t-sparse = < 2t — 1 real roots
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\{

Descartes’ rule of signs: t-sparse = < 2t — 1 real roots
[TZ; fi(X)%: at most 2m(t — 1) + 1 real roots

fis (k x t™)-sparse

Known techniques: 2€((kmt)?) [Khovanskii'80, Risler’85]

v

\{

v

v
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Theorem (Koiran, 2011)

Real T-conjecture
= Super-polynomial lower bound for the permanent
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Theorem (Koiran, 2011)

Real T-conjecture
= Super-polynomial lower bound for the permanent

1. Upper bound on # real roots of f € SPS(k, m, t, A)
2. Lower bound for the permanent

3. Polynomial Identity Testing for SPS-Llike circuits
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Theorem

There exists C > 0 such that the number of real roots of any
f =k 17, £77 € SPS(k, m, t, A) is at most

tm 2k—1_1
C- [e . (1 aF m)] .
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Theorem

There exists C > 0 such that the number of real roots of any
f =k 17, £77 € SPS(k, m, t, A) is at most

tm 2k—1_1
C- [e . (1 aF m)] .

» Independent of A.

» If k and m are fixed, this is polynomial in t.
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Proof sketch. Let F =/ HJ. Gaj — 1+ Hj fjﬂj_aj.
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Proof sketch. Let F = f/[]; lj-aj =1+][; fj-ﬂj_aj. Then

J
m m
F= I < @G-l
j=1 j=1 2y
< 2m(t — 1) roots and poles < 2mt"?: 1 roots

1017



» Reduce the number of terms from k to kK — 1 :

k m
) =3[

i=1 j=1

f(X)/ H £V =1+ ZH f(X) i~

i=2 j=1
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» Reduce the number of terms from k to kK — 1 :

k m
F(X) =3 00 T F(x)
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k m
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» Problem : after derivation, polynomials appears in front of
[172 (X))
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k m
FX) = a0 [ x)
i=2 j=1
k m
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» Problem : after derivation, polynomials appears in front of
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» Reduce the number of terms from k to kK — 1 :

k m
F(X)=>"a() T f(x)
i=2 j=1
k m
f(X)/ H f.}alj _ 1 + Z H G(X)aij_alj
J i=2 j=1

» Problem : after derivation, polynomials appears in front of
Hjn;l fi(X)
» Solution :
» Control their sparsity : ((m+ 2)t"’)2k*1—1

m k—1
» Do not overcount ~~ (;7)2 -1
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» Reduce the number of terms from k to kK — 1 :

k m
F1(X) = &) [ H0

i=2 j=1

k m
/LA™ =1+ T
J

i=2 j=1

» Problem : after derivation, polynomials appears in front of
172 (X))
» Solution :
» Control their sparsity : ((m + 2)t™)2" "1
» Do not overcount ~ (g—':)zk_l_l
» Be clever : Pacal Koiran, Sébastien Tavenas and the
wonderful Wronskian (coming next week).
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» The conjecture for depth-4 circuits implies the general case
[Agrawal-Vinay'08, Koiran'11]
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» exponential-size depth-4 circuits
» polynomial-size circuits with polynomial-depth




Theorem

For any fixed k and m, (PER,) does not have mSPS(k, m) cir-
cuits.
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Proof sketch. (PER,) € mSPS(k, m)

= 7((PER,)) < poly(n)

2"
— PW,(X) = H(X—/ € SPS(k, m, poly(n), 2P°¥(")
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Theorem

For any fixed k and m, (PER,,) does not have mSPS(k, m) cir-
cuits.

Proof sketch. (PER,) € mSPS(k, m)

= 7((PER,)) < poly(n)
2"
= PW,(X) = H(X—/ € SPS(k, m, poly(n), opoly( n))
i=1
But PW,, has 2" roots: contradiction.
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Theorem

For fixed k and m, we can test for zero f € SPS(k, m,t, A) in
time polynomial in t and A.
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Theorem

For fixed k and m, we can test for zero f € SPS(k, m, t,A) in
time polynomial in t and A.

Proof sketch.
» Reduce the number of terms in the sum to 1.
» At each step, check if the monomial of larger degree vanishes.

» Compute the last term explicitely and check if it is zero.

1517



Special case of SPS(k, m, 1, A) with only polynomials of degree 0.
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Special case of SPS(k, m, 1, A) with only polynomials of degree 0.
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Special case of SPS(k, m, 1, A) with only polynomials of degree 0.

Remark. Works with mSPS polynomials by Kronecker substitution :
X; s XD,
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» First result toward the real 7-conjecture
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Implementation of Koiran's Theorem in a particular case
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Links with Polynomial Identity Testing
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Update: Agrawal et al, STOC 2012.
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Update: Agrawal et al, STOC 2012.

4t —3 < n;ax#{x ER: f(x)g(x)+1=0} <2t
&
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Implementation of Koiran's Theorem in a particular case

v

Links with Polynomial Identity Testing

\{

Update: Agrawal et al, STOC 2012.

4t —3 < n;ax#{x ER: f(x)g(x)+1=0} <2t
&

Full version: arXiv:1107.1434
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