
Enumeration Complexity: Looking for Tractability

Yann Strozecki

Reading Group. Theoretical foundations of computer systems.
Simons institute

Enumeration problems

I Enumeration problems: list all solutions rather than
deciding whether there is one or finding one.

I Complexity measures: total time, delay between solutions,
space.

I Motivations: database, logic, counting, optimization, biology,
chemistry, datamining . . .

Input: a graph.
Output: perfect matchings.

Begin

End

Framework

An enumeration problem A is a function which associates to each
input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

The computation model for enumeration is a RAM with uniform
cost measure and an OUPTPUT instruction. Support efficient
data structures.

Complexity measures:

I total time
I incremental time
I delay
I space

Parameters:

I input size
I output size
I single solution size

Complexity classes

Several complexity classes introduced in the 80’s [Johnson et al.]
to answer the question what is tractability in enumeration?

1. Polynomially balanced predicate: EnumP
2. Output polynomial: OutputP
3. Incremental polynomial time: IncP
4. Polynomial delay: DelayP
5. Strong polynomial delay: SDelayP
6. Constant Delay: CD

Polytime testing

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in |x|.

Equivalent of NP for enumeration.

Definition
A parsimonious reduction from A to B, two enumeration
problems, is a pair of polynomial time computable functions f, g
such that for all x, g(x) is a bijection from B(f(x)) to A(x).

I Useful to prove hardness of enumerating solutions of
NP-complete problems.

I Not general enough to prove hardness of natural problems.

Polytime testing

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in |x|.

Equivalent of NP for enumeration.

Definition
A parsimonious reduction from A to B, two enumeration
problems, is a pair of polynomial time computable functions f, g
such that for all x, g(x) is a bijection from B(f(x)) to A(x).

I Useful to prove hardness of enumerating solutions of
NP-complete problems.

I Not general enough to prove hardness of natural problems.

Tractability and EnumP

Restriction compared to the polynomial hierarchy for enumeration
[Creignou et al.].

Not a relevant notion of tractability:
1. No algorithm out of bruteforce.
2. Finding traces of SAT formulas or maximal H-free edge

induced subgraphs are not in EnumP but easy to solve.
3. Useful for hardness.

Tractability and EnumP

Restriction compared to the polynomial hierarchy for enumeration
[Creignou et al.].

Not a relevant notion of tractability:
1. No algorithm out of bruteforce.
2. Finding traces of SAT formulas or maximal H-free edge

induced subgraphs are not in EnumP but easy to solve.
3. Useful for hardness.

Output polynomial

An output sensitive algorithm has its complexity depending on
both its input and output.

Definition
A problem A ∈ EnumP is in OutputP if there is a polynomial p
and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP 6= EnumP iff P 6= NP, using enumeration of solutions
of any NP-complete problem.

Output polynomial

An output sensitive algorithm has its complexity depending on
both its input and output.

Definition
A problem A ∈ EnumP is in OutputP if there is a polynomial p
and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP 6= EnumP iff P 6= NP, using enumeration of solutions
of any NP-complete problem.

OutputP and tractability

Relevant measure of tractability because it depends on the number
of solutions. Many limitations:

I All solutions must be computed (certificate of optimality,
building a library).

I Should not be too many solutions and the degree of the
polynomial complexity is critical.

I No hardness result and very few problems known in this class.

Question: is there a natural problem in OutputP but not in the
classes below?

Dualization in distributive lattices [Defrain et al.].

OutputP and tractability

Relevant measure of tractability because it depends on the number
of solutions. Many limitations:

I All solutions must be computed (certificate of optimality,
building a library).

I Should not be too many solutions and the degree of the
polynomial complexity is critical.

I No hardness result and very few problems known in this class.

Question: is there a natural problem in OutputP but not in the
classes below?

Dualization in distributive lattices [Defrain et al.].

OutputP and tractability

Relevant measure of tractability because it depends on the number
of solutions. Many limitations:

I All solutions must be computed (certificate of optimality,
building a library).

I Should not be too many solutions and the degree of the
polynomial complexity is critical.

I No hardness result and very few problems known in this class.

Question: is there a natural problem in OutputP but not in the
classes below?

Dualization in distributive lattices [Defrain et al.].

Incremental time
A machine M enumerates A in incremental time f(t)g(n) if on
every input x, M enumerates t elements of A(x) in time f(t)g(|x|)
for every t ≤ |A(x)|.

Definition (Incremental polynomial time)
IncP is the set of enumeration problems such that there is an
algorithm in incremental time O(tanb), for inputs of size n and a, b
constants.

time

t solutions in time tanb

Saturation algorithm

Many incremental polynomial time algorithms are saturation
algorithms:
I begin with a polynomial number of simple solutions
I for each tuple of already generated solutions apply a rule to

produce a new solution
I stop when no new solution is found

1. Accessible vertices in a graph by flooding.
2. Determinization of an automata.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of sets.

Saturation algorithm

Many incremental polynomial time algorithms are saturation
algorithms:
I begin with a polynomial number of simple solutions
I for each tuple of already generated solutions apply a rule to

produce a new solution
I stop when no new solution is found

1. Accessible vertices in a graph by flooding.
2. Determinization of an automata.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of sets.

Relation to a search problem

Search problem AnotherSol·A
Input: x and a set of solutions S ⊂ A(x)
Output: y ∈ A(x) \ S or] if there is none.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A ∈ FP.

Hardness proofs: maximal models of Horn formulas [Kavvadias et
al.], dualization in distributive lattice [Babin and Kuznetsov,
Defrain and Nourine], repairs in databases [Kimfield et al.].

Relation to a search problem

Search problem AnotherSol·A
Input: x and a set of solutions S ⊂ A(x)
Output: y ∈ A(x) \ S or] if there is none.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A ∈ FP.

Hardness proofs: maximal models of Horn formulas [Kavvadias et
al.], dualization in distributive lattice [Babin and Kuznetsov,
Defrain and Nourine], repairs in databases [Kimfield et al.].

Relationship with total functions

Definition
A problem in TFNP is a polynomially balanced polynomial time
predicate A such that for all x, A(x) is not empty. An algorithm
solving A must produce an element of A(x) on input x.

TFNP = FPNP∩coNP

Proposition (Capelli, S. 2019)
IncP 6= OutputP if and only if TFNP 6= FP.

Proof: (⇒)Remark that AnotherSol·A is a TFNP problem
when A ∈ OutputP.
(⇐) Use many distinct copies of A(x) to obtain an OutputP
problem, an IncP algorithm allows to find one solution in FP.

Relationship with total functions

Definition
A problem in TFNP is a polynomially balanced polynomial time
predicate A such that for all x, A(x) is not empty. An algorithm
solving A must produce an element of A(x) on input x.

TFNP = FPNP∩coNP

Proposition (Capelli, S. 2019)
IncP 6= OutputP if and only if TFNP 6= FP.

Proof: (⇒)Remark that AnotherSol·A is a TFNP problem
when A ∈ OutputP.
(⇐) Use many distinct copies of A(x) to obtain an OutputP
problem, an IncP algorithm allows to find one solution in FP.

Incremental Hierarchy

Definition (Incremental polynomial time hierarchy)
A problem A ∈ EnumP is in IncPa if there is a machine M which
solves it in incremental time O(tanb) for some constant b.

Theorem (Capelli, S. 2019)
If ETH holds, then IncPa (IncPb for all a < b.

Proof sketch: Problem Padt, input ϕ a CNF, with 2nt trivial
solutions and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b
n) algorithm to solve

SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Incremental Hierarchy

Definition (Incremental polynomial time hierarchy)
A problem A ∈ EnumP is in IncPa if there is a machine M which
solves it in incremental time O(tanb) for some constant b.

Theorem (Capelli, S. 2019)
If ETH holds, then IncPa (IncPb for all a < b.

Proof sketch: Problem Padt, input ϕ a CNF, with 2nt trivial
solutions and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b
n) algorithm to solve

SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Complete enumeration problem

Corollary
If ETH holds, then there is no problem complete for parsimonious
reduction in IncP.

Proof: A complete problem implies a collapse of the IncP
hierarchy to some level.

The result is true for most reductions (as soon as IncPa is stable
under the reduction).

Complete enumeration problem

Corollary
If ETH holds, then there is no problem complete for parsimonious
reduction in IncP.

Proof: A complete problem implies a collapse of the IncP
hierarchy to some level.

The result is true for most reductions (as soon as IncPa is stable
under the reduction).

IncP and Tractability

Relevant notion of tractability for several reasons:

I Partial enumeration: more time means more guaranteed
solutions.

I Hardness results using AnotherSol·A.
I A strict hierarchy to classify the complexity of problems inside

IncP.
I The class IncP1 as the really tractable problems: linear

incremental time i.e. polynomial time per solution.

Drawbacks:
I No complete problem for the class.
I Weak regularity of the enumeration process

IncP and Tractability

Relevant notion of tractability for several reasons:

I Partial enumeration: more time means more guaranteed
solutions.

I Hardness results using AnotherSol·A.
I A strict hierarchy to classify the complexity of problems inside

IncP.
I The class IncP1 as the really tractable problems: linear

incremental time i.e. polynomial time per solution.

Drawbacks:
I No complete problem for the class.
I Weak regularity of the enumeration process

Polynomial Delay

The delay is the maximum time between the production of two
consecutive solutions given by an enumeration algorithm.

Definition (Polynomial delay)
A problem A ∈ EnumP is in DelayP if there is a machine M
which solves it on any input x with delay O(|x|a).

DelayP ⊆ IncP1

time

delay between two solutions nc

Algorithmic Tricks for DelayP

Proposition (Durand, S.)
Let A and B be two problems in DelayP then A ∪B is in
DelayP.

Proof sketch: Compute the next solution of A and output it if it
is not a solution of B otherwise output the next solution of B.

If the solutions are generated in the same order, just merge them
dynamically.

Definition (Polynomial delay reduction)
Reduction with only cartesian products and unions keeps DelayP
stable.

Similar to d-DNNF set circuits [Amarilli et al.].
Also in automata tools [Courcelle et al.], listing equivalence classes
[Mary et al.].

Algorithmic Tricks for DelayP

Proposition (Durand, S.)
Let A and B be two problems in DelayP then A ∪B is in
DelayP.

Proof sketch: Compute the next solution of A and output it if it
is not a solution of B otherwise output the next solution of B.

If the solutions are generated in the same order, just merge them
dynamically.

Definition (Polynomial delay reduction)
Reduction with only cartesian products and unions keeps DelayP
stable.

Similar to d-DNNF set circuits [Amarilli et al.].
Also in automata tools [Courcelle et al.], listing equivalence classes
[Mary et al.].

Algorithmic Tricks for DelayP

Proposition (Durand, S.)
Let A and B be two problems in DelayP then A ∪B is in
DelayP.

Proof sketch: Compute the next solution of A and output it if it
is not a solution of B otherwise output the next solution of B.

If the solutions are generated in the same order, just merge them
dynamically.

Definition (Polynomial delay reduction)
Reduction with only cartesian products and unions keeps DelayP
stable.

Similar to d-DNNF set circuits [Amarilli et al.].
Also in automata tools [Courcelle et al.], listing equivalence classes
[Mary et al.].

Tricks using space

Trading space for regularity.

Proposition (Regularization with space)
IncP1 = DelayP.

Proof: Amortize the generation of solutions, using a large queue:
exponential space.

Eliminating polynomial number of repetitions of solutions in a
polynomial delay algorithm: exponential space.

Cheater’s lemma [Carmeli et al.] and sampling to enumeration
[Goldberg, Capelli and S.].

Tricks using space

Trading space for regularity.

Proposition (Regularization with space)
IncP1 = DelayP.

Proof: Amortize the generation of solutions, using a large queue:
exponential space.

Eliminating polynomial number of repetitions of solutions in a
polynomial delay algorithm: exponential space.

Cheater’s lemma [Carmeli et al.] and sampling to enumeration
[Goldberg, Capelli and S.].

DelayP and tractability

Most common notion of tractability in enumeration. Advantages:
I Most algorithms are naturally analyzable in term of delay.
I Regularity of enumeration?

Drawbacks:
I No method to prove hardness.
I Should restrict space to be relevant in practice.

DelayP and tractability

Most common notion of tractability in enumeration. Advantages:
I Most algorithms are naturally analyzable in term of delay.
I Regularity of enumeration?

Drawbacks:
I No method to prove hardness.
I Should restrict space to be relevant in practice.

Are IncP1 and DelayP really equal?
Let us call Cpoly the class of problems in C which can be solved
using polynomial space.

Difference between IncP1 and DelayP: regularity of
enumeration or memory usage.

DelayPpoly = IncPpoly
1 ?

Theorem (Capelli, S. 2019)
Let A be a problem with a polynomial space incremental linear
algorithm such that ∀t < |A(x)|, a polynomial fraction of the first
t solutions are generated with polynomial delay. Then
A ∈ DelayPpoly.

Proof sketch: Simulate the algorithm at different points in time
and use the parts with high density of solutions to compensate for
parts with low density.

Are IncP1 and DelayP really equal?
Let us call Cpoly the class of problems in C which can be solved
using polynomial space.

Difference between IncP1 and DelayP: regularity of
enumeration or memory usage.

DelayPpoly = IncPpoly
1 ?

Theorem (Capelli, S. 2019)
Let A be a problem with a polynomial space incremental linear
algorithm such that ∀t < |A(x)|, a polynomial fraction of the first
t solutions are generated with polynomial delay. Then
A ∈ DelayPpoly.

Proof sketch: Simulate the algorithm at different points in time
and use the parts with high density of solutions to compensate for
parts with low density.

Are IncP1 and DelayP really equal?
Let us call Cpoly the class of problems in C which can be solved
using polynomial space.

Difference between IncP1 and DelayP: regularity of
enumeration or memory usage.

DelayPpoly = IncPpoly
1 ?

Theorem (Capelli, S. 2019)
Let A be a problem with a polynomial space incremental linear
algorithm such that ∀t < |A(x)|, a polynomial fraction of the first
t solutions are generated with polynomial delay. Then
A ∈ DelayPpoly.

Proof sketch: Simulate the algorithm at different points in time
and use the parts with high density of solutions to compensate for
parts with low density.

Regularization without space

Theorem (Capelli, S. (unpublished))
An enumerator in incremental time p(n)t and space s(n) can be
turned into an enumerator of delay O(p(n) ∗ log(N)) and space
O(s(n) ∗ log(N)), where N is the number of produced solutions.

Very Short Proof Sketch:
Run log(N) copies of the enumerator. Each is in charge of the
solutions in the interval of time [2i, 2i+1]. When a solution is found
by one enumerator, it gives time to the enumerators in charge of
larger intervals. Do not need to know N nor s(n) in advance.

Regularization without space

Theorem (Capelli, S. (unpublished))
An enumerator in incremental time p(n)t and space s(n) can be
turned into an enumerator of delay O(p(n) ∗ log(N)) and space
O(s(n) ∗ log(N)), where N is the number of produced solutions.

Very Short Proof Sketch:
Run log(N) copies of the enumerator. Each is in charge of the
solutions in the interval of time [2i, 2i+1]. When a solution is found
by one enumerator, it gives time to the enumerators in charge of
larger intervals. Do not need to know N nor s(n) in advance.

Complexity consequence

Theorem (Capelli, S. (unpublished))
DelayPpoly = IncPpoly

1

Three different takeaways:
I Incremental time is more relevant than delay.
I DelayP is not relevant as a tractability notion: could be

replaced by IncP1.
I There is a good trick to help prove a problem is in

DelayPpoly.

Faster, better, tractabler

I DelayP or IncP1: the canonical notion of tractability for
enumeration.

I SDelayP: polynomial delay in the size of the last solution.
I CD: constant delay [Segoufin, Durand, Ruskey].

I Polynomial space.
I Polynomial time sampling.

Help through relaxations:
I Randomized algorithms.
I Average delay: Total time / Number of solutions.
I Approximate enumeration.

Faster, better, tractabler

I DelayP or IncP1: the canonical notion of tractability for
enumeration.

I SDelayP: polynomial delay in the size of the last solution.
I CD: constant delay [Segoufin, Durand, Ruskey].
I Polynomial space.
I Polynomial time sampling.

Help through relaxations:
I Randomized algorithms.
I Average delay: Total time / Number of solutions.
I Approximate enumeration.

Faster, better, tractabler

I DelayP or IncP1: the canonical notion of tractability for
enumeration.

I SDelayP: polynomial delay in the size of the last solution.
I CD: constant delay [Segoufin, Durand, Ruskey].
I Polynomial space.
I Polynomial time sampling.

Help through relaxations:
I Randomized algorithms.
I Average delay: Total time / Number of solutions.
I Approximate enumeration.

The class SDelayP
A precomputation time polynomial in the input is allowed.

Definition (Strong polynomial delay)
A problem A ∈ EnumP is in SDelayP if there is a machine M
which solves A with delay p(k), with p a polynomial and k the size
of a solution.

Proposition (Informal)
Incremental linear time tp(k) is equivalent to SDelayP.

A few examples in SDelayP:
1. s− t paths in a DAG
2. MSO on graphs of bounded width [Courcelle]
3. ∃FO + free second order variables [Durand, S.]
4. Saturation by set operations [Mary, S.]

The class SDelayP
A precomputation time polynomial in the input is allowed.

Definition (Strong polynomial delay)
A problem A ∈ EnumP is in SDelayP if there is a machine M
which solves A with delay p(k), with p a polynomial and k the size
of a solution.

Proposition (Informal)
Incremental linear time tp(k) is equivalent to SDelayP.

A few examples in SDelayP:
1. s− t paths in a DAG
2. MSO on graphs of bounded width [Courcelle]
3. ∃FO + free second order variables [Durand, S.]
4. Saturation by set operations [Mary, S.]

The class SDelayP
A precomputation time polynomial in the input is allowed.

Definition (Strong polynomial delay)
A problem A ∈ EnumP is in SDelayP if there is a machine M
which solves A with delay p(k), with p a polynomial and k the size
of a solution.

Proposition (Informal)
Incremental linear time tp(k) is equivalent to SDelayP.

A few examples in SDelayP:
1. s− t paths in a DAG
2. MSO on graphs of bounded width [Courcelle]
3. ∃FO + free second order variables [Durand, S.]
4. Saturation by set operations [Mary, S.]

Obstruction to SDelayP
One major problem to obtain a SDelayP algorithm is dealing
with non disjoint unions and repetitions in general.

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments of a DNF.

Enum·DNF is an interesting model to study the problem of non
disjoint union:
I models of terms generated in constant delay and very

structured
I interesting DNF subclasses
I Enum·DNF related to knowledge representation, minimal

transversal enumeration, subset membership queries, CQ +
SO variables, DNF model counting . . .

Obstruction to SDelayP
One major problem to obtain a SDelayP algorithm is dealing
with non disjoint unions and repetitions in general.

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments of a DNF.

Enum·DNF is an interesting model to study the problem of non
disjoint union:
I models of terms generated in constant delay and very

structured
I interesting DNF subclasses
I Enum·DNF related to knowledge representation, minimal

transversal enumeration, subset membership queries, CQ +
SO variables, DNF model counting . . .

Obstruction to SDelayP
One major problem to obtain a SDelayP algorithm is dealing
with non disjoint unions and repetitions in general.

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments of a DNF.

Enum·DNF is an interesting model to study the problem of non
disjoint union:
I models of terms generated in constant delay and very

structured
I interesting DNF subclasses
I Enum·DNF related to knowledge representation, minimal

transversal enumeration, subset membership queries, CQ +
SO variables, DNF model counting . . .

Lower Bound Conjectures for SDelayP

Delay linear in O(mn) by binary partition (similar to monotone
CNF [Uno]).
Can we get rid of m in the complexity?

DNF Enumeration Conjecture
Enum·DNF /∈ SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm generating the models of a DNF in delay
o(m) where m is the number of terms.

Lower Bound Conjectures for SDelayP

Delay linear in O(mn) by binary partition (similar to monotone
CNF [Uno]).
Can we get rid of m in the complexity?

DNF Enumeration Conjecture
Enum·DNF /∈ SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm generating the models of a DNF in delay
o(m) where m is the number of terms.

Results [Capelli, S. 2020]

Class Delay Space
DNF O(||D||) O(||D||)
DNF O(nm1−γ) average delay O(||D||)
k-DNF k3/222k O(||D||)
Monotone DNF O(n2), m2 preprocessing O(sn)
Monotone DNF O(log(mn)) average delay O(mn)

Table: Overview of the results. In this table, D is a DNF, n its number of
variables, m its number of terms and s its number of models.
γ = log3(2) > 0, 63

Regularization of flashlight algorithms

Current subproblem

Enumerated subproblems

I Flashlight algorithm with average delay a and delay d.

I Blue parts: a subproblem with si solutions, time asi.
I Red part: a path, time bounded by d.
I

∑
si solutions in a

∑
si + d: IncP1-enumerator.

I Regularized to a delay in O(log(N)a).

Regularization of flashlight algorithms

Current subproblem

Enumerated subproblems

I Flashlight algorithm with average delay a and delay d.
I Blue parts: a subproblem with si solutions, time asi.

I Red part: a path, time bounded by d.
I

∑
si solutions in a

∑
si + d: IncP1-enumerator.

I Regularized to a delay in O(log(N)a).

Regularization of flashlight algorithms

Current subproblem

Enumerated subproblems

I Flashlight algorithm with average delay a and delay d.
I Blue parts: a subproblem with si solutions, time asi.
I Red part: a path, time bounded by d.

I
∑
si solutions in a

∑
si + d: IncP1-enumerator.

I Regularized to a delay in O(log(N)a).

Regularization of flashlight algorithms

Current subproblem

Enumerated subproblems

I Flashlight algorithm with average delay a and delay d.
I Blue parts: a subproblem with si solutions, time asi.
I Red part: a path, time bounded by d.
I

∑
si solutions in a

∑
si + d: IncP1-enumerator.

I Regularized to a delay in O(log(N)a).

Regularization of flashlight algorithms

Current subproblem

Enumerated subproblems

I Flashlight algorithm with average delay a and delay d.
I Blue parts: a subproblem with si solutions, time asi.
I Red part: a path, time bounded by d.
I

∑
si solutions in a

∑
si + d: IncP1-enumerator.

I Regularized to a delay in O(log(N)a).

Solving Enum·DNF with regularity

Applying the method of the previous slide to the algorithms
designed for Enum·DNF , we obtain the following theorems.

Strong DNF Enumeration Conjecture is false
There is an algorithm solving Enum·DNF in delay O(n2m1−γ)
and linear space.

Theorem
There is an algorithm solving Enum·DNF for monotone formulas,
in delay Õ(n) and linear space.

Solving Enum·DNF with regularity

Applying the method of the previous slide to the algorithms
designed for Enum·DNF , we obtain the following theorems.

Strong DNF Enumeration Conjecture is false
There is an algorithm solving Enum·DNF in delay O(n2m1−γ)
and linear space.

Theorem
There is an algorithm solving Enum·DNF for monotone formulas,
in delay Õ(n) and linear space.

SDelayP and tractability
It is a relevant notion of tractability when:
1. Large input with regard to the size of one solution:

hypergraph problems, implicit input.
2. When solution size is "constant", could replace the "FPT"

constant delay.
3. Doing infinite enumeration, the size of the solutions grows

arbitrarily.
4. Proving lower bound of the form A /∈ SDelayP should be

easier.

Drawbacks:
1. In graph problems, the instance is typically of size m = O(n2)

and the solutions are of size n: not a complexity problem.
2. Harder to obtain: not allowed to check the complete input

between two solutions.
3. People are not familiar with this notion.

SDelayP and tractability
It is a relevant notion of tractability when:
1. Large input with regard to the size of one solution:

hypergraph problems, implicit input.
2. When solution size is "constant", could replace the "FPT"

constant delay.
3. Doing infinite enumeration, the size of the solutions grows

arbitrarily.
4. Proving lower bound of the form A /∈ SDelayP should be

easier.

Drawbacks:
1. In graph problems, the instance is typically of size m = O(n2)

and the solutions are of size n: not a complexity problem.
2. Harder to obtain: not allowed to check the complete input

between two solutions.
3. People are not familiar with this notion.

Summary

SDelayP ⊆ DelayP = IncP1 (IncP (OutputP (EnumP

Conditional separation under complexity hypotheses: P 6= NP,
TFNP 6= FP and ETH.

Summary

SDelayP (DelayP (IncP (OutputP

If we remove the condition to be in EnumP: unconditional
separation.

Open problems: hardness

1. DelayP 6= SDelayP?
2. Existence of a complete problem in OutputP or IncP1?
3. Logical characterization of IncP1, SDelayP?

Lower bounds (SDelayP, IncPi) or fine grained complexity for
real problems:
1. Minimal hitting sets of hypergraphs: delay of mO(log(m)).
2. Minimal hitting sets of k-regular hypergraphs in IncPk+2.
3. Maximal cliques of a graph in IncP1.
4. Circuits of a binary matroids in IncP2.
5. Models of a DNF in IncP1.

Open problems: hardness

1. DelayP 6= SDelayP?
2. Existence of a complete problem in OutputP or IncP1?
3. Logical characterization of IncP1, SDelayP?

Lower bounds (SDelayP, IncPi) or fine grained complexity for
real problems:
1. Minimal hitting sets of hypergraphs: delay of mO(log(m)).
2. Minimal hitting sets of k-regular hypergraphs in IncPk+2.
3. Maximal cliques of a graph in IncP1.
4. Circuits of a binary matroids in IncP2.
5. Models of a DNF in IncP1.

Questions ???

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay, Gray code like algorithms.
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Allow dynamic amortization (generalized OUPTUT
instruction).

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity)in surveys by
[Segoufin, Durand]. Often polynomial number of solutions:
restricting preprocessing is fundamental.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay, Gray code like algorithms.
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Allow dynamic amortization (generalized OUPTUT
instruction).

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity)in surveys by
[Segoufin, Durand]. Often polynomial number of solutions:
restricting preprocessing is fundamental.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay, Gray code like algorithms.
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Allow dynamic amortization (generalized OUPTUT
instruction).

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity)in surveys by
[Segoufin, Durand]. Often polynomial number of solutions:
restricting preprocessing is fundamental.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay, Gray code like algorithms.
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Allow dynamic amortization (generalized OUPTUT
instruction).

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity)in surveys by
[Segoufin, Durand]. Often polynomial number of solutions:
restricting preprocessing is fundamental.

