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Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.

I Motivations: database queries, optimization, building libraries.

Perfect matching ?

Solution space:
Begin

End
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Framework
An enumeration problem A is a function which associates to each
input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in x.

Concrete complexity classes:
A polynomial time precomputation is allowed.
1. Polynomial total time: TotalP (Minimal hitting set)
2. Incremental polynomial time: IncP
3. Polynomial delay: DelayP
4. Constant delay with a precomputation step:

Constant-Delaypoly (Database queries)
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Incremental time

Definition (Incremental polynomial time)
IncPk is the set of enumeration problems such that there is an
algorithm which for all m produces m solutions (if they exist) from
an input of size n in time O(mknc) with c a constant.

IncP =
⋃
k≥1

IncPk

time

m solutions in time mknc



Relation to research problem

Definition
The decision problem AnotherSol·A is given an instance x and
a set of solutions S in A(x), find a solution not in S if there is one.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A can be solved in polynomial time.

The other enumeration classes cannot be related to decision
problems. Hard to use classical notions such as completness.
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Saturation algorithm

Most algorithms with an incremental delay are saturation
algorithms:

I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of some sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}
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Polynomial Delay

The delay is the maximum time between the production of two
consecutive solutions in an enumeration.

Definition (Polynomial delay)
DelayP is the set of enumeration problems such that there is an
algorithm whose delay is polynomial in the input.

DelayP ⊆ IncP1

time

delay between two solutions nc



Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, enumerate first the solution which contains
1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. This problem is easy to solve in time O(mn).
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Partial solution tree
{12, 134, 23, 14}
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Backtrack search

The backtrack search method is general. To most enumeration
problem A we can associate Ext·A as in the previous slide.

Proposition
There is a polynomial delay to solve the enumeration problem A if
Ext·A is in P.

Many applications:
I Generate all subgraphs with some constraints.
I Interpolate polynomials.
I Fold graphs.
I Generate solutions of formulas.

Can be improved by playing with the order of the variable chosen
to be fixed.
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Separation of complexity classes

Separation:

DelayP ( IncP ( TotalP ( EnumP

Conditional separation under complexity hypotheses.

1. If P = NP everything collapses.

2. IncP 6= TotalP if P 6= NP ∩ coNP using problems with
always a solution but an hard to find one.

3. TotalP 6= EnumP if P 6= NP, using enumeration of
solutions of any NP-complete problem.
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Separation modulo Exponential time
hypothesis

Definition
The Exponential Time Hypothesis states that 3-SAT has no
algorithm in time 2o(n) where n is the number of variables.

Theorem (Capelli, Durand, S.)
ETH implies IncPi ( IncPi+1 for all i and thus
IncP 6= DelayP.

The proof uses a two direction connection between the complexity
of solving SAT and the complexity of generating all solutions of a
padded version of SAT.

DelayP = IncP1 using an exponential size balanced binary
search tree.

Open problem: is it true in polynomial space ?
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From saturation to polynomial delay

Question
Can we solve saturation problems with a polynomial delay ?

In general no, since saturation problems are equals to IncP and
we have proved IncP 6= DelayP.

To make the question interesting and tractable we need to restrict
the saturation rules. Since it works for the union, we will consider
set operations.
Our aim is to design the largest toolbox of efficient enumeration
algorithms.
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Set operations
A set over {1, . . . , n} will be represented by its characteristic
vector of size n.
A set operation is a boolean operation {0, 1}k → {0, 1} applied
componentwise to k boolean vectors.
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Closure by set operation

Let S be a set of boolean vectors of size n and F be a finite set of
boolean operations.
Closure:

I F0(S) = S
I F i(S) = {f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F}
I ClF (S) = ∪iF i(S)

Our enumeration problem is then to compute ClF (S). It can be
seen as computing:

I the closure of a boolean relation by polymorphisms,
I the closure of a set system by set operations,
I the smallest hypergraph with some properties which extends

the input hypergraph.
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Extension problem

ClosureF :

Input: S a set of vectors of size n, and a vector v of size n
Problem: decide whether v ∈ ClF (S).

ClosureF is the extension problem associated to the
computation of ClF (S) (through a simple reduction).

Goal: prove that ClosureF ∈ P for as many sets F as possible, to
use the backtrack search.
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Clones and reduction
There are many finite families of boolean operations, how to
reduce their number ?

Definition
Let F be a finite set of operations, the functional clone generated
by F , denoted by < F >, is the set of operations obtained by any
composition of the operations of F and of the projections πn

k

defined by πn
k (x1, . . . , xn) = xk.

For instance (x ∨ y) + x+ z ∈< ∨,+ >.

Lemma
For all set of operations F and all set of vectors S,
ClF (S) = Cl<F>(S).

There are less clones than families and they are well described and
organized in Post’s lattice.
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Post’s lattice



How to reduce Post’s lattice

To an operation f we can associate its dual f defined by
f(s1, . . . , st) = ¬f(¬s1, . . . ,¬st).

Proposition
The following problems can be polynomially reduced to
ClosureF :
1. ClosureF∪{0}, ClosureF∪{1}, ClosureF∪{0,1}

2. ClosureF
3. ClosureF∪{¬} when F = F



Reduced Post’s lattice

Clone Base
I2 ∅
L2 x+ y + z

L0 +
E2 ∧
S10 x ∧ (y ∨ z)
Sk

10 Thk+1
k , x ∧ (y ∨ z)

S12 x ∧ (y → z)
Sk

12 Thk+1
k , x ∧ (y → z)

D2 maj
D1 maj, x+ y + z

M2 ∨,∧
R2 x ? y : z
R0 ∨,+ I2

L2

L0

E2

S10
S12

S3
12

S2
12

S3
10

S2
10

D2

D1

M2

R
R0

Figure: Reduced Post’s lattice, the edges represent inclusions of clones



Union revisited bis

The case of < ∨ > is done and is equivalent to E2 =< ∧ >. The
delay is O(mn2), can we improve it?

I Complexity comes from solving repeatedly the extension
problem.

I We can set up datastructures to solve it faster.
I During a branch of the backtrack search we go over the

instance once.
I Therefore the delay is improved to O(mn).

Open question: can we get rid or decrease the dependency on m?
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The data structures

{a = 12, b = 134, c = 23, d = 14}

1 1

2, 1

23, 1

23

1, 212

123

1234 123 124 12 134 14

12, 3 13, 2 1, 23

(3, 2, 2, 2)

(2, 0, 1, 2)

(1, 0, 0, 1)

(0, 1, 1, 0)

1→ a, b, d

3→ b, c
4→ b, d

2→ a, c (3, 2, 2, 2)



Symmetric difference

L0 =< x+ y >, ClL0(S) is the vector space generated by the
vectors in S.

1. ClosureL0 ∈ P since it is equivalent to solving a linear
system.

2. We can compute a base of ClL0(S) in polynomial time which
can be seen as a solution.

3. This base can be turned into explicit solutions by Gray code
enumeration with a delay O(n).

4. Same idea for L2 =< x+ y + z >, with an additionnal
constraint on the elements of the basis.



Symmetric difference

L0 =< x+ y >, ClL0(S) is the vector space generated by the
vectors in S.

1. ClosureL0 ∈ P since it is equivalent to solving a linear
system.

2. We can compute a base of ClL0(S) in polynomial time which
can be seen as a solution.

3. This base can be turned into explicit solutions by Gray code
enumeration with a delay O(n).

4. Same idea for L2 =< x+ y + z >, with an additionnal
constraint on the elements of the basis.



Symmetric difference

L0 =< x+ y >, ClL0(S) is the vector space generated by the
vectors in S.

1. ClosureL0 ∈ P since it is equivalent to solving a linear
system.

2. We can compute a base of ClL0(S) in polynomial time which
can be seen as a solution.

3. This base can be turned into explicit solutions by Gray code
enumeration with a delay O(n).

4. Same idea for L2 =< x+ y + z >, with an additionnal
constraint on the elements of the basis.



Symmetric difference

L0 =< x+ y >, ClL0(S) is the vector space generated by the
vectors in S.

1. ClosureL0 ∈ P since it is equivalent to solving a linear
system.

2. We can compute a base of ClL0(S) in polynomial time which
can be seen as a solution.

3. This base can be turned into explicit solutions by Gray code
enumeration with a delay O(n).

4. Same idea for L2 =< x+ y + z >, with an additionnal
constraint on the elements of the basis.



Symmetric difference

L0 =< x+ y >, ClL0(S) is the vector space generated by the
vectors in S.

1. ClosureL0 ∈ P since it is equivalent to solving a linear
system.

2. We can compute a base of ClL0(S) in polynomial time which
can be seen as a solution.

3. This base can be turned into explicit solutions by Gray code
enumeration with a delay O(n).

4. Same idea for L2 =< x+ y + z >, with an additionnal
constraint on the elements of the basis.



All boolean functions

M2 =< ∨,∧ >, and < M2,¬ > is the set of all boolean functions.

I Instance: a set of boolean vectors S = {s1, . . . , sn}.

I We can use the distributivity of ∨ and ∧ to get the following
normal form of a solution: ∨i ∧j lij with lij an element of S
or its negation.

I The problem ClosureM2,¬ is in P.

I We can compute the minimal ∧jlij , they are the atoms of the
boolean algebra ClosureM2,¬(S), which can be generated
with delay O(n) by Gray code.

I This can be done for M2, R2 =< x ? y : z > and
R0 =< ∨,+ >.
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boolean algebra ClosureM2,¬(S), which can be generated
with delay O(n) by Gray code.

I This can be done for M2, R2 =< x ? y : z > and
R0 =< ∨,+ >.
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Majority

Proposition

Let S be a vector set, a vector v belongs to Cl<maj>(S) if and
only if for all i, j ∈ [n], i 6= j, there exists x ∈ S such that
xi,j = vi,j .

Idea of the proof: you build incrementally the vector v by using a
sequence of vectors which have the same pairs as v.

I Closuremaj ∈ P by checking every pair of indices of the
candidate vector, delay O(mn3).

I A linear number of pairs must be checked when a single
coefficient is fixed, delay O(mn2).

I For each pair of indices, we can precompute the possible pairs
of values, delay O(n2).
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Thank universal algebra

Definition
An operation f is a near unanimity of arity k if it satisfies
f(x1, x2, . . . , xk) = x for each k-tuple with at most one element
different from x.

Theorem (Baker-Pixley)
Let F be a clone which contains a near unanimity term of arity k,
then v ∈ ClF (S) if and only if for all set of indices I of size k − 1,
vI ∈ ClF (S)I = ClF (SI).

The threshold function of arity k, denoted by Thk
k−1 is equal to 1

if and only if at least k − 1 of its k arguments are equal to 1.

Corollary
For all clones F containing Thk

k−1, ClosureF ∈ P
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The result

There are two special cases S10 =< x ∧ (y ∨ z) > and
S12 =< x ∧ (y → z) > whose proofs are similar to but not implied
by the previous case.

Theorem (Mary,S.)
For all sets F of boolean operations, ClosureF ∈ P.

Corollary
For all sets F of boolean operations, enumerating ClF is in
DelayP.
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Larger domains

The natural generalization is to consider vectors over a finite
domain D with more than two elements. Every definition
generalizes in a straigthforward manner.

The operations are now from Dk to D and there are many more of
them. In particular the lattice of clones is uncountable and we
cannot do a case by case proof.

I D = {0, 1, 2}
I f(x, y) = x+ y when x+ y <= 2
I f(x, y) = 2
I Closure<f> is NP-hard
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Tractable cases

1. Near unanimity term still implies a tractable closure problem
because of Baker Pixley theorem. Generalizes to Maltsev ?

2. If the operation is a commutative group operation, the closure
problem is in polynomial time. It can be reduced to solving
several linear systems.

3. Associative operations yields polynomial delay algorithms by
using the reverse search. It is just a depth first traversal of the
solutions which can be organized as a graph of low degree.
However the memory used is exponential.
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Take away

Results:
I ClosureF ∈ P for all sets F of boolean operations.
I Enumeration of ClF with delay O(na) except when
F =< ∨ >.

I ClosureF can be NP-hard for three elements domain.

Open questions:
I Characterize the complexity of ClosureF for larger domains

(dichotomy theorem?).
I Enumerate ClF when F is a single non commutative group

operation.
I Improve the delay of enumerating Cl<∨>.
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Thanks !

Questions ?


