

Enumeration Complexity: Looking for Tractability

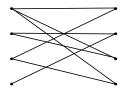
Yann Strozecki with Florent Capelli (and many others)

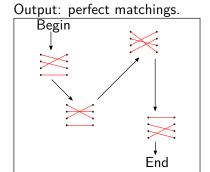
WEPA 2020

Enumeration problems

- ► Enumeration problems: list all solutions rather than deciding whether there is one or finding one.
- ► Complexity measures: total time, delay between solutions, space.
- ► **Motivations**: database, logic, counting, optimization, biology, chemistry, datamining . . .

Input: a graph.





Framework

An enumeration problem A is a function which associates to each input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x) one after the other without repetition.

The computation model for enumeration is a RAM with uniform cost measure and an OUPTPUT instruction. Support efficient data structures.

Complexity measures:

- ▶ total time
- incremental time
- delay
- space

Parameters:

- input size
- output size
- single solution size

Complexity classes

Several complexity classes introduced in the 80's [Johnson et al.] to answer the question **what is tractability** in enumeration?

- 1. Polynomially balanced predicate: EnumP
- 2. Output polynomial: OUTPUTP
- 3. Incremental polynomial time: INCP
- 4. Polynomial delay: DELAYP
- 5. Strong polynomial delay: SDELAYP
- 6. Constant Delay: CD

Polytime testing

Definition

A problem A is in EnumP if deciding whether $y \in A(x)$ is in P and if all $y \in A(x)$ are of polynomial size in |x|.

Equivalent of NP for enumeration.

Polytime testing

Definition

A problem A is in EnumP if deciding whether $y \in A(x)$ is in P and if all $y \in A(x)$ are of polynomial size in |x|.

Equivalent of NP for enumeration.

Definition

A parsimonious reduction from A to B, two enumeration problems, is a pair of polynomial time computable functions f,g such that for all x, g(x) is a bijection from B(f(x)) to A(x).

- Useful to prove hardness of enumerating solutions of NP-complete problems.
- ▶ Not general enough to prove hardness of natural problems.

Tractability and EnumP

Restriction compared to the polynomial hierarchy for enumeration [Creignou et al.].

Tractability and EnumP

Restriction compared to the polynomial hierarchy for enumeration [Creignou et al.].

Not a relevant notion of tractability:

- 1. No algorithm out of bruteforce.
- 2. Finding traces of SAT formulas or maximal H-free edge induced subgraphs are not in ENUMP but easy to solve.
- 3. Useful for hardness.

Output polynomial

An output sensitive algorithm has its complexity depending on both its input and output.

Definition

A problem $A \in \text{EnumP}$ is in OutputP if there is a polynomial p and a machine M which solves A in total time O(p(|x|, |A(x)|)).

Output polynomial

An output sensitive algorithm has its complexity depending on both its input and output.

Definition

A problem $A \in \text{EnumP}$ is in OutputP if there is a polynomial p and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP \neq EnumP iff P \neq NP, using enumeration of solutions of any NP-complete problem.

OutputP and tractability

Relevant measure of tractability because it depends on the number of solutions. Many limitations:

- ► All solutions must be computed (certificate of optimality, building a library).
- Should not be too many solutions and the degree of the polynomial complexity is critical.
- ▶ No hardness result and very few problems known in this class.

OutputP and tractability

Relevant measure of tractability because it depends on the number of solutions. Many limitations:

- ► All solutions must be computed (certificate of optimality, building a library).
- Should not be too many solutions and the degree of the polynomial complexity is critical.
- ▶ No hardness result and very few problems known in this class.

Question: is there a natural problem in OUTPUTP but not in the classes below?

OutputP and tractability

Relevant measure of tractability because it depends on the number of solutions. Many limitations:

- ► All solutions must be computed (certificate of optimality, building a library).
- Should not be too many solutions and the degree of the polynomial complexity is critical.
- ▶ No hardness result and very few problems known in this class.

Question: is there a natural problem in OUTPUTP but not in the classes below?

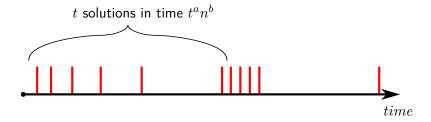
Dualization in distributive lattices [Defrain et al.].

Incremental time

A machine M enumerates A in incremental time f(t)g(n) if on every input x, M enumerates t elements of A(x) in time f(t)g(|x|) for every $t \leq |A(x)|$.

Definition (Incremental polynomial time)

INCP is the set of enumeration problems such that there is an algorithm in incremental time $O(t^a n^b)$, for inputs of size n and a,b constants.



Saturation algorithm

Many incremental polynomial time algorithms are saturation algorithms:

- begin with a polynomial number of simple solutions
- for each tuple of already generated solutions apply a rule to produce a new solution
- **stop** when no new solution is found

Saturation algorithm

Many incremental polynomial time algorithms are saturation algorithms:

- begin with a polynomial number of simple solutions
- ► for each tuple of already generated solutions apply a rule to produce a new solution
- **stop** when no new solution is found
- 1. Accessible vertices in a graph by flooding.
- 2. Determinization of an automata.
- 3. Generating all the circuits of a matroid.
- 4. Generate all possible unions of sets.

Relation to a search problem

Search problem AnotherSol $\cdot A$

Input: x and a set of solutions $S \subset A(x)$ **Output:** $y \in A(x) \setminus S$ or \sharp if there is none.

Relation to a search problem

Search problem AnotherSol $\cdot A$

Input: x and a set of solutions $S \subset A(x)$ **Output:** $y \in A(x) \setminus S$ or \sharp if there is none.

$\mathsf{Theorem}$

An enumeration problem A is in IncP if and only if

ANOTHERSOL $A \in \mathsf{FP}$.

Hardness proofs: maximal models of Horn formulas [Kavvadias et al.], dualization in distributive lattice [Babin and Kuznetsov, Defrain and Nourine], repairs in databases [Kimfield et al.].

Relationship with total functions

Definition

A problem in TFNP is a polynomially balanced polynomial time predicate A such that for all x, A(x) is not empty. An algorithm solving A must produce an element of A(x) on input x.

 $\mathsf{TFNP} = \mathsf{FP}^{\mathsf{NP} \cap \mathsf{coNP}}$

Relationship with total functions

Definition

A problem in TFNP is a polynomially balanced polynomial time predicate A such that for all x, A(x) is not empty. An algorithm solving A must produce an element of A(x) on input x.

$$\mathsf{TFNP} = \mathsf{FP}^{\mathsf{NP} \cap \mathsf{coNP}}$$

Proposition (Capelli, S. 2019)

INCP \neq OUTPUTP if and only if TFNP \neq FP.

Proof: (\Rightarrow)Remark that ANOTHERSOL·A is a TFNP problem when $A \in \text{OUTPUTP}$.

(\Leftarrow) Use many distinct copies of A(x) to obtain an OUTPUTP problem, an INCP algorithm allows to find one solution in FP.

Incremental Hierarchy

Definition (Incremental polynomial time hierarchy)

A problem $A \in \text{EnumP}$ is in IncP_a if there is a machine M which solves it in incremental time $O(t^a n^b)$ for some constant b.

Incremental Hierarchy

Definition (Incremental polynomial time hierarchy)

A problem $A \in \text{EnumP}$ is in IncP_a if there is a machine M which solves it in incremental time $O(t^a n^b)$ for some constant b.

Theorem (Capelli, S. 2019)

If ETH holds, then $INCP_a \subseteq INCP_b$ for all a < b.

Proof sketch: Problem Pad_t , input φ a CNF, with 2^{nt} trivial solutions and the models of φ duplicated 2^n times.

Since INCP $_a=$ INCP $_b,$ $Pad_{b^{-1}}$ gives a $O(2^{\frac{a}{b}n})$ algorithm to solve SAT.

Using the better SAT algorithm, we have $Pad_{\frac{a}{b^2}} \in INCP_b$. Repeat this trick to contradict ETH.

Complete enumeration problem

Corollary

If ETH holds, then there is no problem complete for parsimonious reduction in INCP.

Proof: A complete problem implies a collapse of the ${\rm INCP}$ hierarchy to some level.

Complete enumeration problem

Corollary

If ETH holds, then there is no problem complete for parsimonious reduction in INCP.

Proof: A complete problem implies a collapse of the ${\it INCP}$ hierarchy to some level.

The result is true for most reductions (as soon as $INCP_a$ is stable under the reduction).

IncP and Tractability

Relevant notion of tractability for several reasons:

- Partial enumeration: more time means more guaranteed solutions.
- ► Hardness results using Another $Sol \cdot A$.
- ► A strict hierarchy to classify the complexity of problems inside INCP.
- ► The class INCP₁ as the *really tractable* problems: *linear incremental time* i.e. polynomial time per solution.

IncP and Tractability

Relevant notion of tractability for several reasons:

- Partial enumeration: more time means more guaranteed solutions.
- ► Hardness results using Another $Sol \cdot A$.
- ► A strict hierarchy to classify the complexity of problems inside INCP.
- ► The class INCP₁ as the *really tractable* problems: *linear incremental time* i.e. polynomial time per solution.

Drawbacks:

- No complete problem for the class.
- Weak regularity of the enumeration process

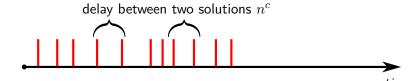
Polynomial Delay

The delay is the maximum time between the production of two consecutive solutions given by an enumeration algorithm.

Definition (Polynomial delay)

A problem $A \in \text{EnumP}$ is in DelayP if there is a machine M which solves it on any input x with delay $O(|x|^a)$.

$$DelayP \subseteq IncP_1$$



Algorithmic Tricks for DelayP

Proposition (Durand, S.)

Let A and B be two problems in DelayP then $A \cup B$ is in DelayP.

Algorithmic Tricks for DelayP

Proposition (Durand, S.)

Let A and B be two problems in DelayP then $A \cup B$ is in DelayP.

Proof sketch: Compute the next solution of A and output it if it is not a solution of B otherwise output the next solution of B.

If the solutions are generated in the same order, just merge them dynamically.

Algorithmic Tricks for DelayP

Proposition (Durand, S.)

Let A and B be two problems in DelayP then $A \cup B$ is in DelayP.

Proof sketch: Compute the next solution of A and output it if it is not a solution of B otherwise output the next solution of B.

If the solutions are generated in the same order, just merge them dynamically.

Definition (Polynomial delay reduction)

Reduction with only cartesian products and unions keeps $\mathrm{DELAY}\mathrm{P}$ stable.

Similar to d-DNNF set circuits [Amarilli et al.].

Also in automata tools [Courcelle et al.], listing equivalence classes [Mary et al.].

Tricks using space

Trading space for regularity.

Proposition (Regularization with space)

 $IncP_1 = DelayP$.

Proof: Amortize the generation of solutions, using a large queue: exponential space.

Tricks using space

Trading space for regularity.

Proposition (Regularization with space)

 $IncP_1 = DelayP$.

Proof: Amortize the generation of solutions, using a large queue: exponential space.

Eliminating polynomial number of repetitions of solutions in a polynomial delay algorithm: exponential space.

Cheater's lemma [Carmeli et al.] and sampling to enumeration [Goldberg, Capelli and S.].

DelayP and tractability

Most common notion of tractability in enumeration. Advantages:

- ▶ Most algorithms are naturally analyzable in term of delay.
- ► Regularity of enumeration?

DelayP and tractability

Most common notion of tractability in enumeration. Advantages:

- Most algorithms are naturally analyzable in term of delay.
- ► Regularity of enumeration?

Drawbacks:

- No method to prove hardness.
- Should restrict space to be relevant in practice.

Are IncP₁ and DelayP really equal?

Let us call \mathcal{C}^{poly} the class of problems in \mathcal{C} which can be solved using polynomial space.

Are IncP₁ and DelayP really equal?

Let us call \mathcal{C}^{poly} the class of problems in \mathcal{C} which can be solved using polynomial space.

Difference between ${\rm INCP_1}$ and ${\rm DELAYP}$: regularity of enumeration or memory usage.

$$DELAYP^{poly} = INCP_1^{poly}?$$

Are IncP₁ and DelayP really equal?

Let us call \mathcal{C}^{poly} the class of problems in \mathcal{C} which can be solved using polynomial space.

Difference between $INCP_1$ and DELAYP: regularity of enumeration or memory usage.

$$DELAYP^{poly} = INCP_1^{poly}?$$

Theorem (Capelli, S. 2019)

Let A be a problem with a polynomial space incremental linear algorithm such that $\forall t < |A(x)|$, a polynomial fraction of the first t solutions are generated with polynomial delay. Then $A \in \mathrm{DELAYP}^{poly}$.

Proof sketch: Simulate the algorithm at different points in time and use the parts with high density of solutions to compensate for parts with low density.

Regularization without space

Theorem (Capelli, S. (unpublished))

An enumerator in incremental time p(n)t and space s(n) can be turned into an enumerator of delay O(p(n)*log(N)) and space O(s(n)*log(N)), where N is the number of produced solutions.

Regularization without space

Theorem (Capelli, S. (unpublished))

An enumerator in incremental time p(n)t and space s(n) can be turned into an enumerator of delay O(p(n)*log(N)) and space O(s(n)*log(N)), where N is the number of produced solutions.

Very Short Proof Sketch:

Run $\log(N)$ copies of the enumerator. Each is in charge of the solutions in the interval of time $[2^i,2^{i+1}]$. When a solution is found by one enumerator, it gives time to the enumerators in charge of larger intervals. Do not need to know N nor s(n) in advance.

Complexity consequence

Theorem (Capelli, S. (unpublished))

$$Delay P^{poly} = Inc P_1^{poly}$$

Three different takeaways:

- Incremental time is more relevant than delay.
- ▶ DELAYP is not relevant as a tractability notion: could be replaced by INCP₁.
- ► There is a good trick to help prove a problem is in DELAYP^{poly}.

Faster, better, tractabler

- ► DELAYP or INCP₁: the canonical notion of tractability for enumeration.
- ► SDELAYP: polynomial delay in the size of the last solution.
- ► CD: constant delay [Segoufin, Durand, Ruskey].

Faster, better, tractabler

- ▶ DELAYP or INCP₁: the canonical notion of tractability for enumeration.
- ► SDELAYP: polynomial delay in the size of the last solution.
- ► CD: constant delay [Segoufin, Durand, Ruskey].
- Polynomial space.
- Polynomial time sampling.

Faster, better, tractabler

- ▶ DELAYP or INCP₁: the canonical notion of tractability for enumeration.
- SDELAYP: polynomial delay in the size of the last solution.
- CD: constant delay [Segoufin, Durand, Ruskey].
- Polynomial space.
- Polynomial time sampling.

Help through relaxations:

- Randomized algorithms.
- Average delay: Total time / Number of solutions.
- ► Approximate enumeration.

The class SDelayP

A precomputation time polynomial in the input is allowed.

Definition (Strong polynomial delay)

A problem $A \in \text{EnumP}$ is in SDelayP if there is a machine M which solves A with delay p(k), with p a polynomial and k the size of a solution.

The class SDelayP

A precomputation time polynomial in the input is allowed.

Definition (Strong polynomial delay)

A problem $A \in \text{EnumP}$ is in SDelayP if there is a machine M which solves A with delay p(k), with p a polynomial and k the size of a solution.

Proposition (Informal)

Incremental linear time tp(k) is equivalent to SDELAYP.

The class SDelayP

A precomputation time polynomial in the input is allowed.

Definition (Strong polynomial delay)

A problem $A \in \text{EnumP}$ is in SDelayP if there is a machine M which solves A with delay p(k), with p a polynomial and k the size of a solution.

Proposition (Informal)

Incremental linear time tp(k) is equivalent to SDELAYP.

A few examples in SDELAYP:

- 1. s-t paths in a DAG
- 2. MSO on graphs of bounded width [Courcelle]
- 3. $\exists FO + \text{free second order variables [Durand, S.]}$
- 4. Saturation by set operations [Mary, S.]

Obstruction to SDelayP

One major problem to obtain a ${\rm SDELAYP}$ algorithm is dealing with non disjoint unions and repetitions in general.

Obstruction to SDelayP

One major problem to obtain a ${\rm SDELAYP}$ algorithm is dealing with non disjoint unions and repetitions in general.

- ▶ A term is a conjunction of literals over *n* variables.
- ightharpoonup A DNF formula is a disjunction of m terms.
- ightharpoonup ENUM·DNF is the problem of enumerating satisfying assignments of a DNF.

Obstruction to SDelayP

One major problem to obtain a ${\rm SDELAYP}$ algorithm is dealing with non disjoint unions and repetitions in general.

- ightharpoonup A term is a conjunction of literals over n variables.
- ightharpoonup A DNF formula is a disjunction of m terms.
- ightharpoonup ENUM·DNF is the problem of enumerating satisfying assignments of a DNF.

 $E_{NUM} \cdot DNF$ is an interesting model to study the problem of non disjoint union:

- models of terms generated in constant delay and very structured
- ▶ interesting DNF subclasses
- ightharpoonup ENUM·DNF related to knowledge representation, minimal transversal enumeration, subset membership queries, CQ + SO variables, DNF model counting . . .

Lower Bound Conjectures for SDelayP

Delay linear in O(mn) by binary partition (similar to monotone CNF [Uno]).

Can we get rid of m in the complexity?

Lower Bound Conjectures for SDelayP

Delay linear in O(mn) by binary partition (similar to monotone CNF [Uno]).

Can we get rid of m in the complexity?

DNF Enumeration Conjecture

 $\text{Enum} \cdot DNF \notin \text{SDelayP}.$

Strong DNF Enumeration Conjecture

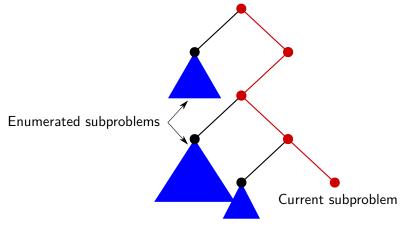
There is no algorithm generating the models of a DNF in delay o(m) where m is the number of terms.

Results [Capelli, S. 2020]

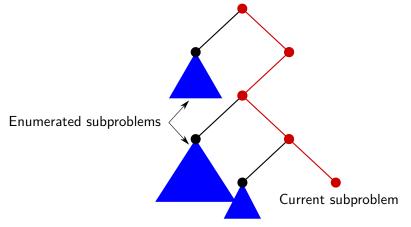
Class	Delay	Space
DNF	O(D)	O(D)
DNF	$O(nm^{1-\gamma})$ average delay	O(D)
k-DNF	$k^{3/2}2^{2k}$	O(D)
Monotone DNF	$O(n^2)$, m^2 preprocessing	O(sn)
Monotone DNF	$O(\log(mn))$ average delay	O(mn)

Table: Overview of the results. In this table, D is a DNF, n its number of variables, m its number of terms and s its number of models.

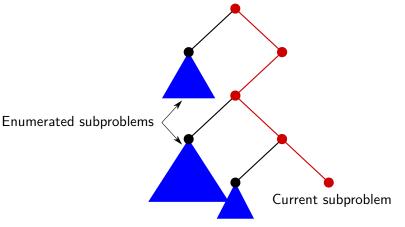
$$\gamma = \log_3(2) > 0,63$$



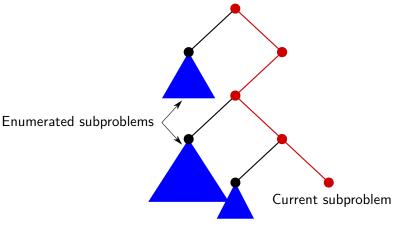
lacktriangle Flashlight algorithm with average delay a and delay d.



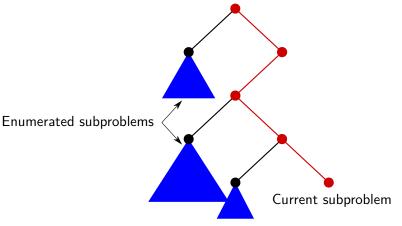
- ightharpoonup Flashlight algorithm with average delay a and delay d.
- ▶ Blue parts: a subproblem with s_i solutions, time as_i .



- ▶ Flashlight algorithm with average delay a and delay d.
- ▶ Blue parts: a subproblem with s_i solutions, time as_i .
- ightharpoonup Red part: a path, time bounded by d.



- ightharpoonup Flashlight algorithm with average delay a and delay d.
- ▶ Blue parts: a subproblem with s_i solutions, time as_i .
- ightharpoonup Red part: a path, time bounded by d.
- $ightharpoonup \sum s_i$ solutions in $a \sum s_i + d$: INCP₁-enumerator.



- ightharpoonup Flashlight algorithm with average delay a and delay d.
- ▶ Blue parts: a subproblem with s_i solutions, time as_i .
- ightharpoonup Red part: a path, time bounded by d.
- $\triangleright \sum s_i$ solutions in $a \sum s_i + d$: INCP₁-enumerator.
- ightharpoonup Regularized to a delay in $O(\log(N)a)$.

Solving Enum $\cdot DNF$ with regularity

Applying the method of the previous slide to the algorithms designed for $\mathrm{Enum} \cdot DNF$, we obtain the following theorems.

Strong DNF Enumeration Conjecture is false

There is an algorithm solving $\text{Enum} \cdot DNF$ in delay $O(n^2 m^{1-\gamma})$ and linear space.

Solving Enum $\cdot DNF$ with regularity

Applying the method of the previous slide to the algorithms designed for $\mathrm{Enum} \cdot DNF$, we obtain the following theorems.

Strong DNF Enumeration Conjecture is false

There is an algorithm solving $\text{Enum} \cdot DNF$ in delay $O(n^2 m^{1-\gamma})$ and linear space.

Theorem

There is an algorithm solving $\mathrm{Enum} \cdot DNF$ for monotone formulas, in delay $\tilde{O}(n)$ and linear space.

SDelayP and tractability

It is a relevant notion of tractability when:

- 1. Large input with regard to the size of one solution: hypergraph problems, implicit input.
- 2. When solution size is "constant", could replace the "FPT" constant delay.
- 3. Doing infinite enumeration, the size of the solutions grows arbitrarily.
- 4. Proving lower bound of the form $A \notin SDELAYP$ should be easier.

SDelayP and tractability

It is a relevant notion of tractability when:

- 1. Large input with regard to the size of one solution: hypergraph problems, implicit input.
- When solution size is "constant", could replace the "FPT" constant delay.
- 3. Doing infinite enumeration, the size of the solutions grows arbitrarily.
- 4. Proving lower bound of the form $A \notin \mathrm{SDELAYP}$ should be easier.

Drawbacks:

- 1. In graph problems, the instance is typically of size $m=O(n^2)$ and the solutions are of size n: not a complexity problem.
- 2. Harder to obtain: not allowed to check the complete input between two solutions.
- 3. People are not familiar with this notion.

Summary

 $\mathrm{SDelayP}\subseteq \mathrm{DelayP}=\mathrm{IncP}_1\subsetneq \mathrm{IncP}\subsetneq \mathrm{OutputP}\subsetneq \mathrm{EnumP}$

Conditional separation under complexity hypotheses: $P \neq NP$, TFNP \neq FP and ETH.

Summary

 $\mathrm{SDelayP} \subsetneq \mathrm{DelayP} \subsetneq \mathrm{IncP} \subsetneq \mathrm{OutputP}$

If we remove the condition to be in $\mathrm{Enum}\mathrm{P}$: unconditional separation.

Open problems: hardness

- 1. DelayP \neq SDelayP?
- 2. Existence of a complete problem in OutputP or $IncP_1$?
- 3. Logical characterization of $INCP_1$, SDELAYP?

Open problems: hardness

- 1. DelayP \neq SDelayP?
- 2. Existence of a complete problem in OutputP or $IncP_1$?
- 3. Logical characterization of $INCP_1$, SDELAYP?

Lower bounds (SDELAYP, INCP $_i$) or fine grained complexity for real problems:

- 1. Minimal hitting sets of hypergraphs: delay of $m^{O(\log(m))}$.
- 2. Minimal hitting sets of k-regular hypergraphs in $INCP_{k+2}$.
- 3. Maximal cliques of a graph in $INCP_1$.
- 4. Circuits of a binary matroids in $INCP_2$.
- 5. Models of a DNF in $INCP_1$.

Questions ???

The term constant delay is used to denote different things.

► **Real** constant delay, Gray code like algorithms. Enumeration goes from a solution to the next while changing a constant number of bits.

The term constant delay is used to denote different things.

- ► **Real** constant delay, Gray code like algorithms. Enumeration goes from a solution to the next while changing a constant number of bits.
- Allow dynamic amortization (generalized OUPTUT instruction).

The term constant delay is used to denote different things.

- ► Real constant delay, Gray code like algorithms. Enumeration goes from a solution to the next while changing a constant number of bits.
- Allow dynamic amortization (generalized OUPTUT instruction).
- Constant amortized time (CAT) algorithms. Generation of combinatorial structures of a given size, subgraphs of graphs.
 Pushout amortization [Uno].

The term constant delay is used to denote different things.

- ► Real constant delay, Gray code like algorithms. Enumeration goes from a solution to the next while changing a constant number of bits.
- Allow dynamic amortization (generalized OUPTUT instruction).
- Constant amortized time (CAT) algorithms. Generation of combinatorial structures of a given size, subgraphs of graphs. Pushout amortization [Uno].
- ► FPT algorithm, arbitrary dependency in the parameter. Many examples from logic/database (data complexity)in surveys by [Segoufin, Durand]. Often polynomial number of solutions: restricting preprocessing is fundamental.