Monadic second-order model-checking on decomposable matroids

Yann Strozecki

Université Paris Diderot - Paris 7

August 2010 - Logic Workshop Brno Introduction to Matroids

Matroid Decomposition

From MSO_M to MSO on enhanced trees

Matroid grammars

Definition

A matroid is a pair (E,\mathcal{I}) , E is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms :

1. $\emptyset \in \mathcal{I}$

Definition

A matroid is a pair (E,\mathcal{I}) , E is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms :

- 1. $\emptyset \in \mathcal{I}$
- 2. If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$

Definition

A matroid is a pair (E,\mathcal{I}) , E is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms:

- 1. $\emptyset \in \mathcal{I}$
- 2. If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$
- 3. If I_1 and I_2 are in $\mathcal I$ and $|I_1|<|I_2|$, then there is an element e of $I_2\setminus I_1$ such that $I_1\cup e\in \mathcal I$.

Definition

A matroid is a pair (E,\mathcal{I}) , E is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms :

- 1. $\emptyset \in \mathcal{I}$
- 2. If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$
- 3. If I_1 and I_2 are in $\mathcal I$ and $|I_1|<|I_2|$, then there is an element e of $I_2\setminus I_1$ such that $I_1\cup e\in \mathcal I$.

Two important objects: bases and circuits.

Definition

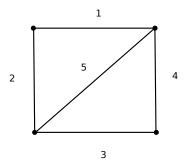
A matroid is a pair (E,\mathcal{I}) , E is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.

A matroid must satisfy the following axioms:

- 1. $\emptyset \in \mathcal{I}$
- 2. If $I \in \mathcal{I}$ and $I' \subseteq I$, then $I' \in \mathcal{I}$
- 3. If I_1 and I_2 are in $\mathcal I$ and $|I_1|<|I_2|$, then there is an element e of $I_2\setminus I_1$ such that $I_1\cup e\in \mathcal I$.

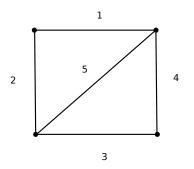
Two important objects: bases and circuits.

Let G be a graph, the ground set of his *cycle matroid* is E the set of his edges. A set is said to be dependent if it contains a cycle.



Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.

Let G be a graph, the ground set of his *cycle matroid* is E the set of his edges. A set is said to be dependent if it contains a cycle.



Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.

Basis are spanning trees and circuits are cycles

Let G be a graph, the ground set of his *cycle matroid* is E the set of his edges. A set is said to be dependent if it contains a cycle.



Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.

Basis are spanning trees and circuits are cycles.

Let A be a matrix, the ground set of the matroid defined on A is the set of the column vectors and a set of column vectors is independent if they are linearly independent. It is called a vector matroid.

$$\mathbf{A} = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent.

Let A be a matrix, the ground set of the matroid defined on A is the set of the column vectors and a set of column vectors is independent if they are linearly independent. It is called a vector matroid.

$$\mathbf{A} = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent. Every cycle matroid is also a vector matroid (over \mathbb{F}_2).

Let A be a matrix, the ground set of the matroid defined on A is the set of the column vectors and a set of column vectors is independent if they are linearly independent. It is called a vector matroid.

$$\mathbf{A} = \left(\begin{array}{cccc} 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 & 1 \end{array}\right)$$

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent. Every cycle matroid is also a vector matroid (over \mathbb{F}_2).

The monadic second-order logic (MSO_M) on matroids is defined from the following relations :

- 1. =, the equality for element and set of the matroid
- 2. $e \in F$, where e is an element of the set F
- 3. indep(F), where F is a set and the predicate is true iff F is an independent set of the matroid

Being a circuit

$$\neg indep(X) \land \forall Y (Y \nsubseteq X \lor X = Y \lor indep(Y))$$

The monadic second-order logic (MSO_M) on matroids is defined from the following relations :

- 1. =, the equality for element and set of the matroid
- 2. $e \in F$, where e is an element of the set F
- 3. indep(F), where F is a set and the predicate is true iff F is an independent set of the matroid

Being a circuit:

$$\neg indep(X) \land \forall Y (Y \nsubseteq X \lor X = Y \lor indep(Y))$$

Hamiltonicity for a graph:

$$\exists C \ circuit(C) \land \exists x \ basis(C \setminus \{x\})$$

The monadic second-order logic (MSO_M) on matroids is defined from the following relations :

- 1. =, the equality for element and set of the matroid
- 2. $e \in F$, where e is an element of the set F
- 3. indep(F), where F is a set and the predicate is true iff F is an independent set of the matroid

Being a circuit :

$$\neg indep(X) \land \forall Y (Y \nsubseteq X \lor X = Y \lor indep(Y))$$

Hamiltonicity for a graph:

$$\exists C \ circuit(C) \land \exists x \ basis(C \setminus \{x\})$$

Introduction to Matroids

Matroid Decomposition

From MSO_M to MSO on enhanced trees

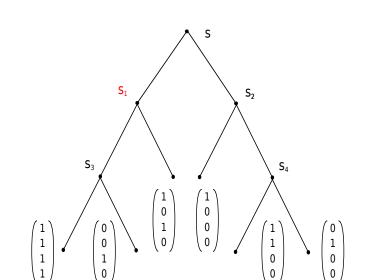
Matroid grammars

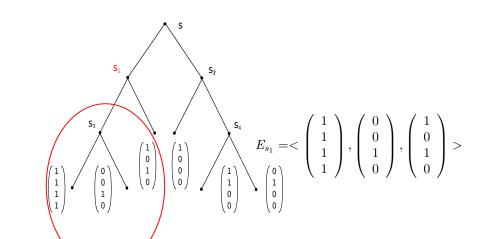
A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

$$X = \begin{pmatrix} 1 & 1 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{pmatrix} \begin{pmatrix} s_1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} s_2 \\ s_3 \\ s_4 \\ 0 \end{pmatrix} \begin{pmatrix} s_4 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} s_4 \\ 0 \\ 0 \\ 0 \end{pmatrix} \begin{pmatrix} s_4 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Three important spaces are defined at each node s of the tree :

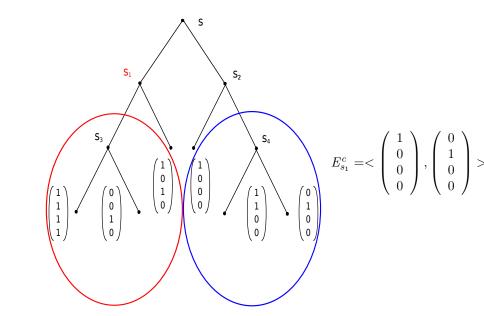
- $lackbox{ } E_s$ is the subspace generated by all the leaves of the tree rooted in s
- \blacktriangleright E_s^c is the subspace generated by all the leaves not in the tree rooted in s





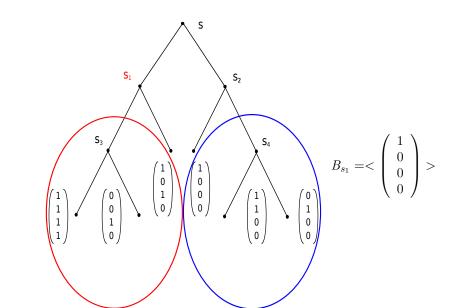
Three important spaces are defined at each node s of the tree :

- $ightharpoonup E_s$ is the subspace generated by all the leaves of the tree rooted in s
- $ightharpoonup E_s^c$ is the subspace generated by all the leaves not in the tree rooted in s
- ▶ B_s is the intersection of E_s and E_s^c



Three important spaces are defined at each node s of the tree :

- $lackbox{ } E_s$ is the subspace generated by all the leaves of the tree rooted in s
- $\blacktriangleright \ E_s^c$ is the subspace generated by all the leaves not in the tree rooted in s
- ▶ B_s is the intersection of E_s and E_s^c



The width at s is the dimension of B_s and the width of the decomposition is the maximum over all nodes.

The *branch-width* of a matroid is the minimum of the widths of its branch decompositions.

The width at s is the dimension of B_s and the width of the decomposition is the maximum over all nodes.

The *branch-width* of a matroid is the minimum of the widths of its branch decompositions.

Theorem (Hliněný and Oum)

Let $\mathbb F$ be a finite field, t a constant and M a $\mathbb F$ -matroid of size n. There is an algorithm in time $O(n^3)$ which gives a branch decomposition tree of width at most 3t if the branch-width of M is at most t+1. If the branch-width is more than t+1, the algorithm may stop with no output.

The width at s is the dimension of B_s and the width of the decomposition is the maximum over all nodes.

The *branch-width* of a matroid is the minimum of the widths of its branch decompositions.

Theorem (Hliněný and Oum)

Let $\mathbb F$ be a finite field, t a constant and M a $\mathbb F$ -matroid of size n. There is an algorithm in time $O(n^3)$ which gives a branch decomposition tree of width at most 3t if the branch-width of M is at most t+1. If the branch-width is more than t+1, the algorithm may stop with no output.

Representing the matroid by local information : Enhanced Tree

A node s with children s_1 and s_2 . A characteristic matrix of s contains the bases of B_{s_1} , B_{s_2} and B_{s_3} .

Representing the matroid by local information : Enhanced Tree

A node s with children s_1 and s_2 . A characteristic matrix of s contains the bases of B_{s_1} , B_{s_2} and B_s .

Definition (Enhanced branch decomposition tree)

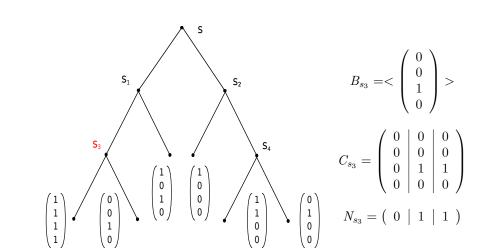
Let T be a branch decomposition tree of the matroid represented by A, an enhanced branch decomposition tree is T with, on each node, a label representing a characteristic matrix at this node.

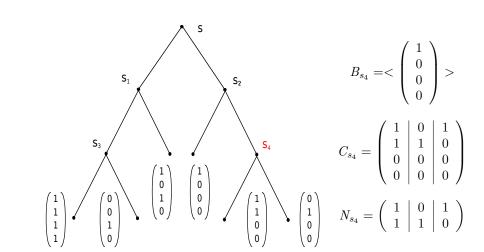
Representing the matroid by local information : Enhanced Tree

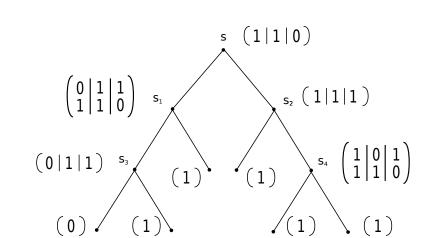
A node s with children s_1 and s_2 . A characteristic matrix of s contains the bases of B_{s_1} , B_{s_2} and B_s .

Definition (Enhanced branch decomposition tree)

Let T be a branch decomposition tree of the matroid represented by A, an enhanced branch decomposition tree is T with, on each node, a label representing a characteristic matrix at this node.







Introduction to Matroids

Matroid Decomposition

From MSO_M to MSO on enhanced trees

Matroid grammars

We now want to prove the following theorem:

Theorem (Hliněný 2006)

The model checking problem for MSO_M is decidable in time $f(t,k,l) \times n^3$ over the set of representable matroids, where f is a computable function, k the size of the field, t the branch-width and l the size of the formula.

We now want to prove the following theorem:

Theorem

Let M be a matroid of branch-width less than t, T one of its enhanced tree and $\phi(\vec{x})$ a MSO_M formula with free variables \vec{x} , we have

$$(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow (T, f(\vec{a})) \models F(\phi(\vec{x}))$$

Aim: a characterization of the dependent sets.

Definition (Signature)

A signature is a sequence of elements of \mathbb{F} , denoted $\lambda = (\lambda_1, \dots, \lambda_l)$.

Aim: a characterization of the dependent sets.

Definition (Signature)

A signature is a sequence of elements of \mathbb{F} , denoted $\lambda = (\lambda_1, \dots, \lambda_l)$.

Definition (Signature of a set)

Let A be a matrix representing a matroid and T one of its enhanced tree. Let s be a node of T and let X be a subset of the leaves of T_s which are seen as columns of A. Let v be an element of B_s , obtained by a nontrivial linear combination of elements of X. Let c_1,\ldots,c_l denote the column vectors of the third part of C_s . They form a base of B_s . Thus there is a signature $\lambda=(\lambda_1,\ldots,\lambda_l)$

The set X also always admits the signature \varnothing at s

Aim: a characterization of the dependent sets.

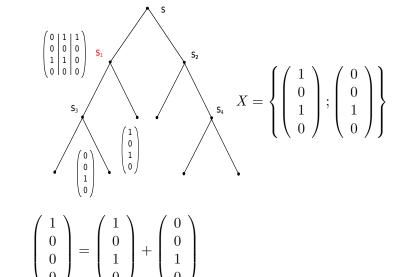
Definition (Signature)

A signature is a sequence of elements of \mathbb{F} , denoted $\lambda = (\lambda_1, \dots, \lambda_l)$.

Definition (Signature of a set)

Let A be a matrix representing a matroid and T one of its enhanced tree. Let s be a node of T and let X be a subset of the leaves of T_s which are seen as columns of A. Let v be an element of B_s , obtained by a nontrivial linear combination of elements of X. Let c_1,\ldots,c_l denote the column vectors of the third part of C_s . They form a base of B_s . Thus there is a signature $\lambda=(\lambda_1,\ldots,\lambda_l)$ such that $v=\sum_{i=1}^l \lambda_i c_i$. We say that X admits the $signature \ \lambda$ at s.

The set X also always admits the signature \varnothing at s.



$$\begin{bmatrix}
\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0
\end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$A T admits the signature (1)$$

 S_2

Let N be a matrix over $\mathbb F$ divided in three parts $(N_1|N_2|N_3)$, and let λ , μ , δ be three signatures over $\mathbb F$. The submatrix N_i has l_i columns, and its j^{th} vector is denoted by N_i^j . The relation

$$R(N, \lambda, \mu, \delta)$$
 is true if :

 \blacktriangleright λ and at least one of μ , δ are not \varnothing and the following equation holds

$$\sum_{i=1}^{l_1} \mu_i N_1^i + \sum_{j=1}^{l_2} \delta_j N_2^j = \sum_{k=1}^{l_3} \lambda_k N_3^k \tag{1}$$

If a signature is \varnothing , the corresponding sum in Eq. 1 is replaced by 0.

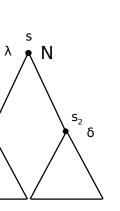
Local characterization:

Lemma

Let T be an enhanced tree, s one of its nodes with children s_1 , s_2 and N the label of s. Let X_1 and X_2 be two sets of leaves chosen amongst the leaves of T_{s_1} and T_{s_2} respectively. If X_1 admits μ at s_1 , X_2 admits δ at s_2 and $R(N,\lambda,\mu,\delta)$ holds then $X=X_1\cup X_2$ admits λ at s.

Lemma

Let T be an enhanced tree, s one of its nodes with children s_1 , s_2 and N the label of s. Let X_1 and X_2 be two sets of leaves chosen amongst the leaves of T_{s_1} and T_{s_2} respectively. If $X = X_1 \cup X_2$ admits λ at s, then there are two signatures μ and δ such that $R(N,\lambda,\mu,\delta)$ holds, X_1 admits μ at s_1 and X_2 admits δ at s_2 .



 μ

Theorem (Characterization of dependency)

Let A be a matrix representing a matroid M, T one of its enhanced tree and X a set of columns of A. The set X is

- dependent if and only if there exists a signature λ_s for each node s
- of the tree T such that : 1. for every node s labeled by N with children s_1 and s_2 , $R(N, \lambda_s, \lambda_{s_1}, \lambda_{s_2})$ holds.
 - 2. for every leaf s, $\lambda_s \neq \emptyset$ only if s is in bijection with an element of X and s is labeled by the matrix (α) with $\alpha \neq 0$.
 - element of X and s is labeled by the matrix (α) with $\alpha \neq 0$. 3. the signature at the root is $(0, \dots, 0)$

- ► These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- $ightharpoonup X_{\lambda}(s)$ holds if and only if λ is the signature at s.

- ► These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- ▶ $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- ▶ The number of such variables is k^t .

- ► These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- ▶ $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- ▶ The number of such variables is k^t .
- ► Consistency:

$$\Omega(\vec{X_{\lambda}}) = \forall s \bigvee_{\lambda} \left(X_{\lambda}(s) \bigwedge_{\lambda' \neq \lambda} \neg X_{\lambda'}(s) \right)$$

- ► These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- $\blacktriangleright X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- The number of such variables is k^t
- Consistency :

$$\Omega(\vec{X_{\lambda}}) = \forall s \bigvee_{\lambda} \left(X_{\lambda}(s) \bigwedge_{\lambda' \neq \lambda} \neg X_{\lambda'}(s) \right)$$

First condition, for every node s labeled by N with children s_1 and

$$s_2$$
, $R(N,\lambda_s,\lambda_{s_1},\lambda_{s_2})$ holds :

 $\Psi_1(\vec{X}) \equiv \forall s \neg leaf(s) \Rightarrow [\exists s_1, s_2 \ lchild(s, s_1) \land rchild(s, s_2)]$

 $\bigwedge_{\lambda_1,\lambda_2,\lambda,N} (label(s) = N \wedge X_{\lambda_1}(s_1) \wedge X_{\lambda_2}(s_2) \wedge X_{\lambda}(s)) \Rightarrow R(N,\lambda,\lambda_1,\lambda_2)]$

 s_2 , $R(N, \lambda_s, \lambda_{s_1}, \lambda_{s_2})$ holds:

Second condition, for every leaf $s,\ \lambda_s \neq \varnothing$ only if s is in bijection with an element of X and s is labeled by the matrix (α) with $\alpha \neq 0$:

$$\Psi_2(Y, \vec{X}) \equiv \forall s (leaf(s) \land \neg X_{\varnothing}(s)) \Rightarrow (Y(s) \land label(s) \neq (0))$$

Third condition, the signature at the root is $(0,\dots,0)$:

$$\Psi_3(\vec{X}) \equiv \exists s \ root(s) \land X_{(0,\dots,0)}(s)$$

By combination of the three previous formulas we obtain a MSO formula for Indep(X), of size $O((k+1)^{9t^2+3t})$.

We build the MSO formula $F(\phi)$ by induction : relativization to the leaves and the predicate indep is replaced by the formula Indep

By combination of the three previous formulas we obtain a MSO formula for Indep(X), of size $O((k+1)^{9t^2+3t})$.

We build the MSO formula $F(\phi)$ by induction : relativization to the leaves and the predicate indep is replaced by the formula Indep.

We have then proved

Theorem

Let M be a matroid of branch-width less than t, \bar{T} one of its enhanced tree and $\phi(\vec{x})$ a MSO_M formula with free variables \vec{x} , we have $(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow (\bar{T}, f(\vec{a})) \models F(\phi(\vec{x}))$

An application :

Theorem (Courcelle)

Let $\phi(X_1, \ldots, X_n)$ be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the X_1, \ldots, X_n such that $t \models \phi(X_1, \ldots, X_n)$ with preprocessing time $\mathcal{O}(|t| \times ht(t))$.

Corollary

Let $\phi(X_1, ..., X_n)$ be an MSO_M formula, for every matroid of branch-width t, the enumeration of the sets satisfying ϕ can be done with linear delay after a cubic preprocessing time.

An application:

Theorem (Courcelle)

Let $\phi(X_1, ..., X_n)$ be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the $X_1, ..., X_n$ such that $t \models \phi(X_1, ..., X_n)$ with preprocessing time $\mathcal{O}(|t| \times ht(t))$.

Corollary

Let $\phi(X_1, ..., X_n)$ be an MSO_M formula, for every matroid of branch-width t, the enumeration of the sets satisfying ϕ can be done with linear delay after a cubic preprocessing time.

The same theorems can be proved for matroids equipped with unary predicates (colored matroids).

A-Circuit

Input: a matroid M and a set A of its elements

The same theorems can be proved for matroids equipped with unary predicates (colored matroids).

A-Circuit

 $\textit{Input}: a \ \mathsf{matroid}\ M \ \mathsf{and}\ \mathsf{a}\ \mathsf{set}\ A \ \mathsf{of}\ \mathsf{its}\ \mathsf{elements}$

Output : accept if there is a circuit C of M such that $A\subseteq C$

Generalisation of very natural problems and decidable in linear time over matroids of bounded branch-width. Interesting enumeration version.

The same theorems can be proved for matroids equipped with unary predicates (colored matroids).

A-CIRCUIT

Input : a matroid M and a set A of its elements Output : accept if there is a circuit C of M such that $A \subseteq C$

Generalisation of very natural problems and decidable in linear time over matroids of bounded branch-width. Interesting enumeration version.

Introduction to Matroids

Matroid Decomposition

From MSO_M to MSO on enhanced trees

Matroid grammars

Build a set of matroids which are not representable.

Definition (Boundaried matroid

A pair (M,γ) is called a t boundaried matroid if M is a matroid and γ is an injective function from [1,t] to M whose image is an independent set. The elements of the image of γ are called boundary elements and the others are called internal elements.

Build a set of matroids which are not representable.

Definition (Boundaried matroid)

A pair (M,γ) is called a t boundaried matroid if M is a matroid and γ is an injective function from [1,t] to M whose image is an independent set. The elements of the image of γ are called boundary elements and the others are called internal elements.

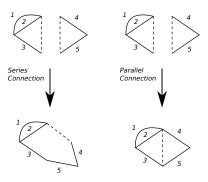
We use the series parallel connection.

Build a set of matroids which are not representable.

Definition (Boundaried matroid)

A pair (M,γ) is called a t boundaried matroid if M is a matroid and γ is an injective function from [1,t] to M whose image is an independent set. The elements of the image of γ are called boundary elements and the others are called internal elements.

We use the series parallel connection.



Let M_1 and M_2 be two 1 boundaried matroids of ground set S_1 and S_2 . Their respective boundaries are $\{p_1\}$ and $\{p_2\}$. We denote by

$$S_2$$
. Their respective boundaries are $\{p_1\}$ and $\{p_2\}$. We denote by $\mathcal{C}(M)$ the collection of circuits of the matroid M . Let E be the set $S_1 \cup S_2 \cup \{p\} \setminus \{p_1, p_2\}$. We define two collections of subsets of E :

$$S_1 \cup S_2 \cup \{p\} \setminus \{p_1, p_2\}$$
. We define two collections of subsets of E :

$$\mathcal{C}(M)$$
 the collection of circuits of the matroid M . Let E be the set $S_1 \cup S_2 \cup \{p\} \setminus \{p_1, p_2\}$. We define two collections of subsets of E :
$$C_S = \left\{ \begin{array}{l} \mathcal{C}(M_1 \setminus \{p_1\}) \cup \mathcal{C}(M_2 \setminus \{p_2\}) \\ \cup \{C_1 \setminus \{p_1\} \cup C_2 \setminus \{p_2\} \cup \{p\} \mid p_i \in C_i \in \mathcal{C}(M_i) \} \end{array} \right.$$

 $C_{P} = \begin{cases} C(M_{1} \setminus \{p_{1}\}) \cup C(M_{2} \setminus \{p_{2}\}) \\ \cup_{i=1,2} \{C_{i} \setminus \{p_{i}\} \cup \{p\} \mid p_{i} \in C_{i} \in C(M_{i})\} \\ \cup \{C_{1} \setminus \{p_{1}\} \cup C_{2} \setminus \{p_{2}\} \mid p_{i} \in C_{i} \in C(M_{i})\} \end{cases}$

We write $M_1 \oplus_p M_2$ for the parallel connection of M_1 and M_2 restricted to the ground set $S_1 \cup S_2 \setminus \{p_1, p_2\}$ (one removes the boundary $\{p\}$).

Definition

Let M be a matroid and let γ_i^M for i=1,2,3 be three injective functions from $[1,t_i]$ to the ground set of M. If the sets $\gamma_i^M([1,t_i])$ are independent and form a partition of the columns of M, then $(M,\{\gamma_i^M\}_{i=1,2,3})$ is called a 3-partitioned matroid.

We write $M_1\oplus_p M_2$ for the parallel connection of M_1 and M_2 restricted to the ground set $S_1\cup S_2\setminus\{p_1,p_2\}$ (one removes the boundary $\{p\}$).

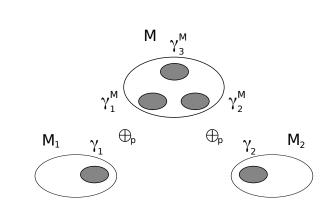
Definition

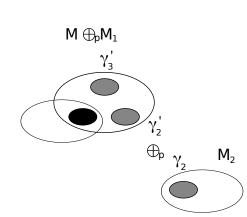
Let M be a matroid and let γ_i^M for i=1,2,3 be three injective functions from $[1,t_i]$ to the ground set of M. If the sets $\gamma_i^M([1,t_i])$ are independent and form a partition of the columns of M, then $(M,\{\gamma_i^M\}_{i=1,2,3})$ is called a 3-partitioned matroid.

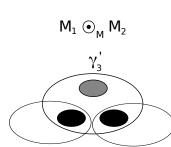
Let $\overline{M_1} = (M_1, \gamma_1)$ and $\overline{M_2} = (M_2, \gamma_2)$ be respectively a t_1 and a t_2 boundaried matroid and let M be a 3-partitioned matroid. We

$$t_2$$
 boundaried matroid and let M be a 3-partitioned matroid. We call $\overline{M_1} \odot_M \overline{M_2}$ the t_3 boundaried matroid defined by

 $(\overline{M_1} \oplus_p (M, \gamma_1^M), \gamma_2^M) \oplus_p \overline{M_2}$ with boundary γ_3^M .







Definition

Let \mathcal{L}_k be the set of 1 boundaried matroids of size at most k and let \mathcal{M} be the set of 3-partitioned matroids of size 3. We write \mathcal{T}_k for the set of terms $T(\mathcal{L}_k, \mathcal{M})$.

Aim, prove the following theorem :

Theorem

Let T be a term of \widetilde{T}_k which represents the matroid M. Let f be the bijection between the leaves of T and the elements of M then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Definition

Let \mathcal{L}_k be the set of 1 boundaried matroids of size at most k and let \mathcal{M} be the set of 3-partitioned matroids of size 3. We write \mathcal{T}_k for the set of terms $T(\mathcal{L}_k, \mathcal{M})$.

Aim, prove the following theorem:

Theorem

Let T be a term of $\tilde{\mathcal{T}}_k$ which represents the matroid M. Let f be the bijection between the leaves of T and the elements of M then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Definition (Signature)

Let T be a term whose value is a boundaried matroid M and let X be a set of internal elements of M. The signature of the set X in T is the set of all the subsets S of the boundary such that $X \cup S$ is a dependent set in M.

- 1. if X is dependent then it is of signature $\{\{\},\{1\}\}$ that we denote by ${\bf 2}$
- 2. if X is dependent only when we add the boundary element then it is of signature $\{\{1\}\}$ which we denote by ${\bf 1}$
- 3. if X is independent even with the boundary element then it is of signature \emptyset which we denote by $\mathbf{0}$

Definition (Signature)

Let T be a term whose value is a boundaried matroid M and let X be a set of internal elements of M. The signature of the set X in T is the set of all the subsets S of the boundary such that $X \cup S$ is a dependent set in M.

- 1. if X is dependent then it is of signature $\{\{\},\{1\}\}$ that we denote by ${\bf 2}$
- 2. if X is dependent only when we add the boundary element then it is of signature $\{\{1\}\}$ which we denote by ${\bf 1}$
- 3. if X is independent even with the boundary element then it is of signature \emptyset which we denote by $\mathbf{0}$

$$N_{2} \qquad R_{p}(\cdot, \cdot, \mathbf{2}, N_{2}) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2})\}$$

$$R_{p}(\cdot, \cdot, \mathbf{1}, N_{2}) = \{(\mathbf{1}, \mathbf{1})\}$$

$$N_{3} \qquad R_{p}(\cdot, \cdot, \mathbf{2}, N_{3}) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2}), (\mathbf{1}, \mathbf{1})\}$$

$$R_{p}(\cdot, \cdot, \mathbf{1}, N_{3}) = \{\}$$

$$R_{p}(\cdot, \cdot, \mathbf{2}, N_{4}) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2})\}$$

 $R_n(\cdot, \cdot, \mathbf{1}, N_1) = \{\}$

 $R_{p}(\cdot, \cdot, \mathbf{2}, N_{1}) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2})\}$

$$R_{p}(\cdot,\cdot,\mathbf{1},N_{4}) = \{(\mathbf{0},\mathbf{2}),(\mathbf{2},\mathbf{0}),(\mathbf{1},\mathbf{2}),(\mathbf{2},\mathbf{2})\}$$

$$R_{p}(\cdot,\cdot,\mathbf{1},N_{4}) = \{(\mathbf{1},\mathbf{1}),(\mathbf{1},\mathbf{0})\}$$

$$R_{p}(\cdot,\cdot,\mathbf{2},N_{5}) = \{(\mathbf{0},\mathbf{2}),(\mathbf{2},\mathbf{0}),(\mathbf{1},\mathbf{2}),(\mathbf{2},\mathbf{1}),(\mathbf{2},\mathbf{2})\}$$

$$R_{p}(\cdot,\cdot,\mathbf{1},N_{5}) = \{(\mathbf{1},\mathbf{1}),(\mathbf{0},\mathbf{1})\}$$

$$N_5$$

$$R_p(\cdot, \cdot, \mathbf{2}, N_5) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2})\}$$
$$R_p(\cdot, \cdot, \mathbf{1}, N_5) = \{(\mathbf{1}, \mathbf{1}), (\mathbf{0}, \mathbf{1})\}$$

$$R_p(\cdot, \cdot, \mathbf{2}, N_5) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2})\}$$
 $R_p(\cdot, \cdot, \mathbf{1}, N_5) = \{(\mathbf{1}, \mathbf{1}), (\mathbf{0}, \mathbf{1})\}$
 $R_p(\cdot, \cdot, \mathbf{2}, N_5) = \{(\mathbf{0}, \mathbf{2}), (\mathbf{2}, \mathbf{0}), (\mathbf{1}, \mathbf{2}), (\mathbf{2}, \mathbf{1}), (\mathbf{2}, \mathbf{2}), (\mathbf{1}, \mathbf{1})\}$

 $R_n(\cdot, \cdot, \mathbf{1}, N_5) = \{(\mathbf{0}, \mathbf{1}), (\mathbf{1}, \mathbf{0})\}$

Theorem (Characterization of dependency)

Let T be a term of $\tilde{\mathcal{T}}_k$ which represents the matroid M and let X be a set of elements of M. The set X is dependent if and only if there exists a signature λ_s at each node s of T seen as a labeled

- 1. if s_1 and s_2 are the children of s of label \odot_N then
- $R_p(\lambda_{s_1},\lambda_{s_2},\lambda_s,N)$
- 2. if s is labeled by an abstract boundaried matroid N, then $X \cap N$ is a set of signature λ_s in N
 - 3. the signature at the root is ${f 2}$

tree:

To prove the theorem, two variations :

1. change R by R_p

To prove the theorem, two variations:

- 1. change R by R_p
- 2. replace each leaf by a subtree with as many leaves as the matroid which labels the leaf and encode in a formula the signatures of all subsets of all the matroids of size k

To prove the theorem, two variations:

- 1. change R by R_n
- 2. replace each leaf by a subtree with as many leaves as the matroid which labels the leaf and encode in a formula the signatures of all subsets of all the matroids of size k

Theorem

Let T be a term of $\tilde{\mathcal{T}}_k$ which represents the matroid M. Let f be the bijection between the leaves of T and the elements of M then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Corollary

The model-checking problem of MSO_M is decidable in time $f(k,l) \times n$ over the set of matroids given by a term of \mathcal{T}_k , where n is the number of elements in the matroid, l is the size of the formula and f is a computable function.

We can also give an operation on matrices to characterize the matroids of bounded branch-width.

Use this formalism to study broader classes or different classes (between the cycle matroids and the vector matroids).

We can also give an operation on matrices to characterize the	е

(between the cycle matroids and the vector matroids).

Use this formalism to study broader classes or different classes

matroids of bounded branch-width.

Thanks for listening!