Monadic second-order model-checking on decomposable matroids

Yann Strozecki
Université Paris Diderot - Paris 7

August 2010 - Logic Workshop Brno

Introduction to Matroids

Matroid Decomposition

From MSO_{M} to MSO on enhanced trees

Matroid grammars

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms :

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms :

1. $\emptyset \in \mathcal{I}$

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms :

1. $\emptyset \in \mathcal{I}$
2. If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms :

1. $\emptyset \in \mathcal{I}$
2. If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$
3. If I_{1} and I_{2} are in \mathcal{I} and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element e of $I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.

Matroids have been design to abstract the notion of dependence.

Definition

A matroid is a pair $(E, \mathcal{I}), E$ is a finite set and \mathcal{I} is included in the power set of E. Elements of \mathcal{I} are said to be independent sets, the others are dependent sets.
A matroid must satisfy the following axioms :

1. $\emptyset \in \mathcal{I}$
2. If $I \in \mathcal{I}$ and $I^{\prime} \subseteq I$, then $I^{\prime} \in \mathcal{I}$
3. If I_{1} and I_{2} are in \mathcal{I} and $\left|I_{1}\right|<\left|I_{2}\right|$, then there is an element e of $I_{2} \backslash I_{1}$ such that $I_{1} \cup e \in \mathcal{I}$.

Two important objects: bases and circuits.

Definition

Let G be a graph, the ground set of his cycle matroid is E the set of his edges. A set is said to be dependent if it contains a cycle.

3

Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.

Definition

Let G be a graph, the ground set of his cycle matroid is E the set of his edges. A set is said to be dependent if it contains a cycle.

3
Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.

Definition

Let G be a graph, the ground set of his cycle matroid is E the set of his edges. A set is said to be dependent if it contains a cycle.

3
Here the set $\{1,2,4\}$ is independent whereas $\{1,2,3,4\}$ and $\{1,2,5\}$ are dependent.
Basis are spanning trees and circuits are cycles.

Definition

Let A be a matrix, the ground set of the matroid defined on A is the set of the column vectors and a set of column vectors is independent if they are linearly independent. It is called a vector matroid.

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent.

Definition

Let A be a matrix, the ground set of the matroid defined on A is the set of the column vectors and a set of column vectors is independent if they are linearly independent. It is called a vector matroid.

$$
\mathbf{A}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent.
Every cycle matroid is also a vector matroid (over \mathbb{F}_{2})

Definition

Let A be a matrix, the ground set of the matroid defined on A is the set of the column vectors and a set of column vectors is independent if they are linearly independent. It is called a vector matroid.

$$
\mathbf{A}=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

Here the set $\{1,2,4\}$ is independent and $\{1,2,3\}$ is dependent.
Every cycle matroid is also a vector matroid (over \mathbb{F}_{2}).

The monadic second-order logic $\left(M S O_{M}\right)$ on matroids is defined from the following relations:

1. $=$, the equality for element and set of the matroid
2. $e \in F$, where e is an element of the set F
3. $\operatorname{indep}(F)$, where F is a set and the predicate is true iff F is an independent set of the matroid

Being a circuit

The monadic second-order logic $\left(M S O_{M}\right)$ on matroids is defined from the following relations:

1. $=$, the equality for element and set of the matroid
2. $e \in F$, where e is an element of the set F
3. $\operatorname{indep}(F)$, where F is a set and the predicate is true iff F is an independent set of the matroid

Being a circuit :

$$
\neg \operatorname{indep}(X) \wedge \forall Y(Y \nsubseteq X \vee X=Y \vee \operatorname{indep}(Y))
$$

Hamiltonicity for a graph
$\exists C \operatorname{circuit}(C) \wedge \exists x \operatorname{basis}(C \backslash\{x\})$

The monadic second-order logic $\left(M S O_{M}\right)$ on matroids is defined from the following relations:

1. $=$, the equality for element and set of the matroid
2. $e \in F$, where e is an element of the set F
3. $\operatorname{indep}(F)$, where F is a set and the predicate is true iff F is an independent set of the matroid

Being a circuit :

$$
\neg \operatorname{indep}(X) \wedge \forall Y(Y \nsubseteq X \vee X=Y \vee \operatorname{indep}(Y))
$$

Hamiltonicity for a graph :

$$
\exists C \operatorname{circuit}(C) \wedge \exists x \operatorname{basis}(C \backslash\{x\})
$$

Introduction to Matroids

Matroid Decomposition

From MSO_{M} to MSO on enhanced trees

Matroid grammars

Definition

A branch decomposition of a matroid represented by the matrix X is a tree whose leaves are in bijection with the columns of X.

$$
X=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 & 1 & 0 \\
1 & 1 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Three important spaces are defined at each node s of the tree :

- E_{s} is the subspace generated by all the leaves of the tree rooted in s
$\Rightarrow E_{s}^{c}$ is the subspace generated by all the leaves not in the tree rooted in s

Three important spaces are defined at each node s of the tree :

- E_{s} is the subspace generated by all the leaves of the tree rooted in s
- E_{s}^{c} is the subspace generated by all the leaves not in the tree rooted in s
- B_{s} is the intersection of E_{s} and E_{s}^{c}

Three important spaces are defined at each node s of the tree :

- E_{s} is the subspace generated by all the leaves of the tree rooted in s
- E_{s}^{c} is the subspace generated by all the leaves not in the tree rooted in s
- B_{s} is the intersection of E_{s} and E_{s}^{c}

The width at s is the dimension of B_{s} and the width of the decomposition is the maximum over all nodes.

The branch-width of a matroid is the minimum of the widths of its branch decompositions.

The width at s is the dimension of B_{s} and the width of the decomposition is the maximum over all nodes.

The branch-width of a matroid is the minimum of the widths of its branch decompositions.

The width at s is the dimension of B_{s} and the width of the decomposition is the maximum over all nodes.

The branch-width of a matroid is the minimum of the widths of its branch decompositions.

Theorem (Hliněný and Oum)

Let \mathbb{F} be a finite field, t a constant and M a \mathbb{F}-matroid of size n. There is an algorithm in time $O\left(n^{3}\right)$ which gives a branch decomposition tree of width at most $3 t$ if the branch-width of M is at most $t+1$. If the branch-width is more than $t+1$, the algorithm may stop with no output.

Representing the matroid by local information : Enhanced Tree

A node s with children s_{1} and s_{2}. A characteristic matrix of s contains the bases of $B_{s 1}, B_{s \text {, }}$ and B_{s}

Representing the matroid by local information : Enhanced Tree

A node s with children s_{1} and s_{2}. A characteristic matrix of s contains the bases of $B_{s_{1}}, B_{s_{2}}$ and B_{s}.

Representing the matroid by local information : Enhanced Tree

A node s with children s_{1} and s_{2}. A characteristic matrix of s contains the bases of $B_{s_{1}}, B_{s_{2}}$ and B_{s}.

Definition (Enhanced branch decomposition tree)

Let T be a branch decomposition tree of the matroid represented by A, an enhanced branch decomposition tree is T with, on each node, a label representing a characteristic matrix at this node.

$$
\left(\begin{array}{l|l|l}
0 & 1 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

Introduction to Matroids

Matroid Decomposition

From MSO_{M} to MSO on enhanced trees

Matroid grammars

We now want to prove the following theorem :

Theorem (Hliněný 2006)

The model checking problem for $M S O_{M}$ is decidable in time $f(t, k, l) \times n^{3}$ over the set of representable matroids, where f is a computable function, k the size of the field, t the branch-width and l the size of the formula.

We now want to prove the following theorem :

Theorem

Let M be a matroid of branch-width less than t, T one of its enhanced tree and $\phi(\vec{x})$ a $M S O_{M}$ formula with free variables \vec{x}, we have

$$
(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow(T, f(\vec{a})) \models F(\phi(\vec{x}))
$$

Aim : a characterization of the dependent sets.

Definition (Signature)

A signature is a sequence of elements of \mathbb{F}, denoted

Aim : a characterization of the dependent sets.
Definition (Signature)
A signature is a sequence of elements of \mathbb{F}, denoted $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$.

Definition (Signature of a set)
 enhanced tree. Let s be a node of T and let X be a subset of the leaves of T_{s} which are seen as columns of A. Let v be an element of B_{s}, obtained by a nontrivial linear combination of elements of X. Let c_{1}, \ldots, c_{l} denote the column vectors of the third part of C_{S} They form a base of B_{s}. Thus there is a signature $\lambda=\left(\lambda_{1}, \ldots\right.$ such that $v=\sum \lambda_{i} c_{i}$. We say that X admits the signature λ at s The set X also always admits the signature \varnothing at s

Aim : a characterization of the dependent sets.

Definition (Signature)

A signature is a sequence of elements of \mathbb{F}, denoted $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$.

Definition (Signature of a set)

Let A be a matrix representing a matroid and T one of its enhanced tree. Let s be a node of T and let X be a subset of the leaves of T_{s} which are seen as columns of A. Let v be an element of B_{s}, obtained by a nontrivial linear combination of elements of X. Let c_{1}, \ldots, c_{l} denote the column vectors of the third part of C_{s}. They form a base of B_{s}. Thus there is a signature $\lambda=\left(\lambda_{1}, \ldots, \lambda_{l}\right)$ such that $v=\sum_{i=1}^{l} \lambda_{i} c_{i}$. We say that X admits the signature λ at s. The set X also always admits the signature \varnothing at s.

$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right)$

$\left(\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right)=\left(\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right)+\left(\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right) \quad \rightarrow \quad X$ admits the signature (1)

Definition

Let N be a matrix over \mathbb{F} divided in three parts $\left(N_{1}\left|N_{2}\right| N_{3}\right)$, and let λ, μ, δ be three signatures over \mathbb{F}. The submatrix N_{i} has l_{i} columns, and its $j^{\text {th }}$ vector is denoted by N_{i}^{j}. The relation $R(N, \lambda, \mu, \delta)$ is true if :

- $\lambda=\mu=\delta=\varnothing$ or
- λ and at least one of μ, δ are not \varnothing and the following equation holds

$$
\begin{equation*}
\sum_{i=1}^{l_{1}} \mu_{i} N_{1}^{i}+\sum_{j=1}^{l_{2}} \delta_{j} N_{2}^{j}=\sum_{k=1}^{l_{3}} \lambda_{k} N_{3}^{k} \tag{1}
\end{equation*}
$$

If a signature is \varnothing, the corresponding sum in Eq. 1 is replaced by 0 .

Local characterization :

Lemma

Let T be an enhanced tree, s one of its nodes with children s_{1}, s_{2} and N the label of s. Let X_{1} and X_{2} be two sets of leaves chosen amongst the leaves of $T_{s_{1}}$ and $T_{s_{2}}$ respectively. If X_{1} admits μ at s_{1}, X_{2} admits δ at s_{2} and $R(N, \lambda, \mu, \delta)$ holds then $X=X_{1} \cup X_{2}$ admits λ at s.

Lemma

Let T be an enhanced tree, s one of its nodes with children s_{1}, s_{2} and N the label of s. Let X_{1} and X_{2} be two sets of leaves chosen amongst the leaves of $T_{s_{1}}$ and $T_{s_{2}}$ respectively. If $X=X_{1} \cup X_{2}$ admits λ at s, then there are two signatures μ and δ such that $R(N, \lambda, \mu, \delta)$ holds, X_{1} admits μ at s_{1} and X_{2} admits δ at s_{2}.

Theorem (Characterization of dependency)

Let A be a matrix representing a matroid M, T one of its enhanced tree and X a set of columns of A. The set X is dependent if and only if there exists a signature λ_{s} for each node s of the tree T such that :

1. for every node s labeled by N with children s_{1} and s_{2}, $R\left(N, \lambda_{s}, \lambda_{s_{1}}, \lambda_{s_{2}}\right)$ holds.
2. for every leaf $s, \lambda_{s} \neq \varnothing$ only if s is in bijection with an element of X and s is labeled by the matrix (α) with $\alpha \neq 0$.
3. the signature at the root is $(0, \ldots, 0)$

- These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- The number of such variables is k^{t}
- These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- The number of such variables is k^{t}.
-Consistency

- These signatures are represented by the set \vec{X} of set variables X_{λ} indexed by all signatures λ of size at most t.
- $X_{\lambda}(s)$ holds if and only if λ is the signature at s.
- The number of such variables is k^{t}.
- Consistency :

$$
\Omega\left(\vec{X}_{\lambda}\right)=\forall s \bigvee_{\lambda}\left(X_{\lambda}(s) \bigwedge_{\lambda^{\prime} \neq \lambda} \neg X_{\lambda^{\prime}}(s)\right)
$$

First condition, for every node s labeled by N with children s_{1} and $s_{2}, R\left(N, \lambda_{s}, \lambda_{s_{1}}, \lambda_{s_{2}}\right)$ holds:

$$
\begin{gathered}
\Psi_{1}(\vec{X}) \equiv \forall s \neg \operatorname{leaf}(s) \Rightarrow\left[\exists s_{1}, s_{2} \operatorname{lchild}\left(s, s_{1}\right) \wedge \operatorname{rchild}\left(s, s_{2}\right)\right. \\
\left.\bigwedge_{\lambda_{1}, \lambda_{2}, \lambda, N}\left(\operatorname{label}(s)=N \wedge X_{\lambda_{1}}\left(s_{1}\right) \wedge X_{\lambda_{2}}\left(s_{2}\right) \wedge X_{\lambda}(s)\right) \Rightarrow R\left(N, \lambda, \lambda_{1}, \lambda_{2}\right)\right]
\end{gathered}
$$

Second condition, for every leaf $s, \lambda_{s} \neq \varnothing$ only if s is in bijection with an element of X and s is labeled by the matrix (α) with $\alpha \neq 0$:

$$
\Psi_{2}(Y, \vec{X}) \equiv \forall s\left(\operatorname{leaf}(s) \wedge \neg X_{\varnothing}(s)\right) \Rightarrow(Y(s) \wedge \operatorname{label}(s) \neq(0))
$$

Third condition, the signature at the root is $(0, \ldots, 0)$:

$$
\Psi_{3}(\vec{X}) \equiv \exists s \operatorname{root}(s) \wedge X_{(0, \ldots, 0)}(s)
$$

By combination of the three previous formulas we obtain a $M S O$ formula for $\operatorname{Indep}(X)$, of size $O\left((k+1)^{9 t^{2}+3 t}\right)$.

We build the MSO formula $F(\phi)$ by induction : relativization to the leaves and the predicate indep is replaced by the formula Indep.

By combination of the three previous formulas we obtain a MSO formula for $\operatorname{Indep}(X)$, of size $O\left((k+1)^{9 t^{2}+3 t}\right)$.

We build the $M S O$ formula $F(\phi)$ by induction : relativization to the leaves and the predicate indep is replaced by the formula Indep.

We have then proved

Theorem

Let M be a matroid of branch-width less than t, \bar{T} one of its enhanced tree and $\phi(\vec{x})$ a MSO_{M} formula with free variables \vec{x}, we have

$$
(M, \vec{a}) \models \phi(\vec{x}) \Leftrightarrow(\bar{T}, f(\vec{a})) \models F(\phi(\vec{x}))
$$

An application :

> Theorem (Courcelle)
> Let $\phi\left(X_{1}, \ldots, X_{n}\right)$ be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the X_{1}, \ldots, X_{n} such that $t \models \phi\left(X_{1}, \ldots, X_{n}\right)$ with preprocessing time $\mathcal{O}(|t| \times h t(t))$.
\square
Let $\phi\left(X_{1} \ldots X_{n}\right)$ be an MSO formula, for every matroid of branch-width t, the enumeration of the sets satisfying ϕ can be done with linear delay after a cubic preprocessing time.

An application :

Theorem (Courcelle)

Let $\phi\left(X_{1}, \ldots, X_{n}\right)$ be a MSO formula with free variables. For every tree t, there exists a linear delay enumeration algorithm of the X_{1}, \ldots, X_{n} such that $t \models \phi\left(X_{1}, \ldots, X_{n}\right)$ with preprocessing time $\mathcal{O}(|t| \times h t(t))$.

Corollary

Let $\phi\left(X_{1}, \ldots, X_{n}\right)$ be an $M S O_{M}$ formula, for every matroid of branch-width t, the enumeration of the sets satisfying ϕ can be done with linear delay after a cubic preprocessing time.

The same theorems can be proved for matroids equipped with unary predicates (colored matroids).

A-Circuit
Input : a matroid M and a set A of its elements Output : accept if there is a circuit C of M such that $A \subseteq C$

The same theorems can be proved for matroids equipped with unary predicates (colored matroids).

A-Circuit
Input : a matroid M and a set A of its elements
Output : accept if there is a circuit C of M such that $A \subseteq C$

Generalisation of very natural problems and decidable in linear time
over matroids of bounded branch-width. Interesting enumeration
version.

The same theorems can be proved for matroids equipped with unary predicates (colored matroids).

A-Circuit
Input : a matroid M and a set A of its elements
Output : accept if there is a circuit C of M such that $A \subseteq C$

Generalisation of very natural problems and decidable in linear time over matroids of bounded branch-width. Interesting enumeration version.

Introduction to Matroids

Matroid Decomposition

From MSO_{M} to MSO on enhanced trees

Matroid grammars

Build a set of matroids which are not representable. Definition (Boundaried matroid)
A pair (M, γ) is called a t boundaried matroid if M is a matroid
and γ is an injective function from $[1, t]$ to M whose image is an
independent set. The elements of the image of γ are called
boundary elements and the others are called internal elements.

Build a set of matroids which are not representable.

Definition (Boundaried matroid)

A pair (M, γ) is called a t boundaried matroid if M is a matroid and γ is an injective function from $[1, t]$ to M whose image is an independent set. The elements of the image of γ are called boundary elements and the others are called internal elements.

We use the series parallel connection.

Build a set of matroids which are not representable.

Definition (Boundaried matroid)

A pair (M, γ) is called a t boundaried matroid if M is a matroid and γ is an injective function from $[1, t]$ to M whose image is an independent set. The elements of the image of γ are called boundary elements and the others are called internal elements.

We use the series parallel connection.

Parallel Connection

Definition

Let M_{1} and M_{2} be two 1 boundaried matroids of ground set S_{1} and S_{2}. Their respective boundaries are $\left\{p_{1}\right\}$ and $\left\{p_{2}\right\}$. We denote by $\mathcal{C}(M)$ the collection of circuits of the matroid M. Let E be the set $S_{1} \cup S_{2} \cup\{p\} \backslash\left\{p_{1}, p_{2}\right\}$. We define two collections of subsets of E :

$$
\begin{aligned}
& C_{S}=\left\{\begin{array}{l}
\mathcal{C}\left(M_{1} \backslash\left\{p_{1}\right\}\right) \cup \mathcal{C}\left(M_{2} \backslash\left\{p_{2}\right\}\right) \\
\cup\left\{C_{1} \backslash\left\{p_{1}\right\} \cup C_{2} \backslash\left\{p_{2}\right\} \cup\{p\} \mid p_{i} \in C_{i} \in \mathcal{C}\left(M_{i}\right)\right\}
\end{array}\right. \\
& C_{P}=\left\{\begin{array}{l}
\mathcal{C}\left(M_{1} \backslash\left\{p_{1}\right\}\right) \cup \mathcal{C}\left(M_{2} \backslash\left\{p_{2}\right\}\right) \\
\cup_{i=1,2}\left\{C_{i} \backslash\left\{p_{i}\right\} \cup\{p\} \mid p_{i} \in C_{i} \in \mathcal{C}\left(M_{i}\right)\right\} \\
\cup\left\{C_{1} \backslash\left\{p_{1}\right\} \cup C_{2} \backslash\left\{p_{2}\right\} \mid p_{i} \in C_{i} \in \mathcal{C}\left(M_{i}\right)\right\}
\end{array}\right.
\end{aligned}
$$

Definition

We write $M_{1} \oplus_{p} M_{2}$ for the parallel connection of M_{1} and M_{2} restricted to the ground set $S_{1} \cup S_{2} \backslash\left\{p_{1}, p_{2}\right\}$ (one removes the boundary $\{p\}$).

Definition

functions from $\left[1, t_{i}\right]$ to the ground set of M. If the sets $\gamma_{i}^{M}\left(\left[1, t_{i}\right]\right)$ are independent and form a partition of the columns of M, then ($M,\left\{\gamma_{i}^{M}\right\}_{i=1,2,3}$) is called a 3-partitioned matroid.

Definition

We write $M_{1} \oplus_{p} M_{2}$ for the parallel connection of M_{1} and M_{2} restricted to the ground set $S_{1} \cup S_{2} \backslash\left\{p_{1}, p_{2}\right\}$ (one removes the boundary $\{p\}$).

Definition

Let M be a matroid and let γ_{i}^{M} for $i=1,2,3$ be three injective functions from $\left[1, t_{i}\right]$ to the ground set of M. If the sets $\gamma_{i}^{M}\left(\left[1, t_{i}\right]\right)$ are independent and form a partition of the columns of M, then ($M,\left\{\gamma_{i}^{M}\right\}_{i=1,2,3}$) is called a 3-partitioned matroid.

Definition

Let $\overline{M_{1}}=\left(M_{1}, \gamma_{1}\right)$ and $\overline{M_{2}}=\left(M_{2}, \gamma_{2}\right)$ be respectively a t_{1} and a t_{2} boundaried matroid and let M be a 3-partitioned matroid. We call $\overline{M_{1}} \odot_{M} \overline{M_{2}}$ the t_{3} boundaried matroid defined by $\left(\overline{M_{1}} \oplus_{p}\left(M, \gamma_{1}^{M}\right), \gamma_{2}^{M}\right) \oplus_{p} \overline{M_{2}}$ with boundary γ_{3}^{M}.

Definition

Let \mathcal{L}_{k} be the set of 1 boundaried matroids of size at most k and let \mathcal{M} be the set of 3 -partitioned matroids of size 3 . We write \mathcal{T}_{k} for the set of terms $T\left(\mathcal{L}_{k}, \mathcal{M}\right)$.

Aim, prove the following theorem
\square
Theorem
Let T be a term of $\tilde{\mathcal{T}}_{k}$ which represents the matroid M. Let f be the bijection between the leaves of T and the elements of M then $M=\phi(\vec{a}) \Leftrightarrow T=F(\phi(f(\vec{a})))$

Definition

Let \mathcal{L}_{k} be the set of 1 boundaried matroids of size at most k and let \mathcal{M} be the set of 3 -partitioned matroids of size 3 . We write \mathcal{T}_{k} for the set of terms $T\left(\mathcal{L}_{k}, \mathcal{M}\right)$.

Aim, prove the following theorem :

Theorem

Let T be a term of $\tilde{\mathcal{T}}_{k}$ which represents the matroid M. Let f be the bijection between the leaves of T and the elements of M then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Definition (Signature)

Let T be a term whose value is a boundaried matroid M and let X be a set of internal elements of M. The signature of the set X in T is the set of all the subsets S of the boundary such that $X \cup S$ is a dependent set in M.

1. if X is dependent then it is of signature $\{\},\{1\}\}$ that we denote by 2
2. if X is dependent only when we add the boundary element then it is of signature $\{\{1\}\}$ which we denote by 1
3. if X is independent even with the boundary element then it is of signature \emptyset which we denote by 0

Definition (Signature)

Let T be a term whose value is a boundaried matroid M and let X be a set of internal elements of M. The signature of the set X in T is the set of all the subsets S of the boundary such that $X \cup S$ is a dependent set in M.

1. if X is dependent then it is of signature $\{\},\{1\}\}$ that we denote by $\mathbf{2}$
2. if X is dependent only when we add the boundary element then it is of signature $\{\{1\}\}$ which we denote by 1
3. if X is independent even with the boundary element then it is of signature \emptyset which we denote by $\mathbf{0}$
N_{1}

N_{2}

N_{3}

N_{4}

N_{5}

N_{6}

$R_{p}\left(\cdot, \cdot, \mathbf{2}, N_{1}\right)=\{(\mathbf{0}, \mathbf{2}),(\mathbf{2}, \mathbf{0}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2})\}$
$R_{p}\left(\cdot, \cdot, \mathbf{1}, N_{1}\right)=\{ \}$
$R_{p}\left(\cdot, \cdot, \mathbf{2}, N_{2}\right)=\{(\mathbf{0}, \mathbf{2}),(\mathbf{2}, \mathbf{0}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2})\}$ $R_{p}\left(\cdot, \cdot, \mathbf{1}, N_{2}\right)=\{(\mathbf{1}, \mathbf{1})\}$
$R_{p}\left(\cdot, \cdot, \mathbf{2}, N_{3}\right)=\{(\mathbf{0}, \mathbf{2}),(\mathbf{2}, \mathbf{0}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{1}, \mathbf{1})\}$ $R_{p}\left(\cdot, \cdot, \mathbf{1}, N_{3}\right)=\{ \}$
$R_{p}\left(\cdot \cdot, \cdot \mathbf{2}, N_{4}\right)=\{(\mathbf{0}, \mathbf{2}),(\mathbf{2}, \mathbf{0}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2})\}$ $R_{p}\left(\cdot, \cdot, \mathbf{1}, N_{4}\right)=\{(\mathbf{1}, \mathbf{1}),(\mathbf{1}, \mathbf{0})\}$
$R_{p}\left(\cdot, \cdot, \mathbf{2}, N_{5}\right)=\{(\mathbf{0}, \mathbf{2}),(\mathbf{2}, \mathbf{0}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2})\}$ $R_{p}\left(\cdot, \cdot, \mathbf{1}, N_{5}\right)=\{(\mathbf{1}, \mathbf{1}),(\mathbf{0}, \mathbf{1})\}$
$R_{p}\left(\cdot, \cdot, \mathbf{2}, N_{5}\right)=\{(\mathbf{0}, \mathbf{2}),(\mathbf{2}, \mathbf{0}),(\mathbf{1}, \mathbf{2}),(\mathbf{2}, \mathbf{1}),(\mathbf{2}, \mathbf{2}),(\mathbf{1}, \mathbf{1})\}$ $R_{p}\left(\cdot, \cdot, \mathbf{1}, N_{5}\right)=\{(\mathbf{0}, \mathbf{1}),(\mathbf{1}, \mathbf{0})\}$

Theorem (Characterization of dependency)

Let T be a term of $\tilde{\mathcal{T}}_{k}$ which represents the matroid M and let X be a set of elements of M. The set X is dependent if and only if there exists a signature λ_{s} at each node s of T seen as a labeled tree :

1. if s_{1} and s_{2} are the children of s of label \odot_{N} then $R_{p}\left(\lambda_{s_{1}}, \lambda_{s_{2}}, \lambda_{s}, N\right)$
2. if s is labeled by an abstract boundaried matroid N, then $X \cap N$ is a set of signature λ_{s} in N
3. the signature at the root is $\mathbf{2}$

To prove the theorem, two variations :

1. change R by R_{p}

To prove the theorem, two variations :

1. change R by R_{p}
2. replace each leaf by a subtree with as many leaves as the matroid which labels the leaf and encode in a formula the signatures of all subsets of all the matroids of size k

To prove the theorem, two variations :

1. change R by R_{p}
2. replace each leaf by a subtree with as many leaves as the matroid which labels the leaf and encode in a formula the signatures of all subsets of all the matroids of size k

Theorem

Let T be a term of $\tilde{\mathcal{T}}_{k}$ which represents the matroid M. Let f be the bijection between the leaves of T and the elements of M then $M \models \phi(\vec{a}) \Leftrightarrow T \models F(\phi(f(\vec{a})))$.

Corollary

The model-checking problem of MSO_{M} is decidable in time $f(k, l) \times n$ over the set of matroids given by a term of \mathcal{T}_{k}, where n is the number of elements in the matroid, l is the size of the formula and f is a computable function.

We can also give an operation on matrices to characterize the matroids of bounded branch-width.

Use this formalism to study broader classes or different classes (between the cycle matroids and the vector matroids).

We can also give an operation on matrices to characterize the matroids of bounded branch-width.

Use this formalism to study broader classes or different classes (between the cycle matroids and the vector matroids).

Thanks for listening !

