

Simple stochastic games: a state of the art

Yann Strozecki

Université de Versailles St-Quentin-en-Yvelines Laboratoire PRiSM

June 2013, Gödel Research Center

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph with:

- ▶ three sets of vertices V_{MAX} , V_{MIN} , V_{AVE} of outdegree 2
- two 'sink' vertices 0 and 1

Two players: MAX and MIN, and randomness.

Simple stochastic game (SSG)

A Simple Stochastic Game (Shapley, Condon) is defined by a directed graph with:

- ▶ three sets of vertices V_{MAX} , V_{MIN} , V_{AVE} of outdegree 2
- two 'sink' vertices 0 and 1

Two players: MAX and MIN, and *randomness*.

A play consists in moving a *pebble* on the graph:

- \blacktriangleright player MAX wants to reach the 1 sink
- player MIN wants to prevent him from doing so

On a ${\rm MAX}$ node player ${\rm MAX}$ decides where to go next.

- \blacktriangleright player MAX wants to reach the 1 sink
- player MIN wants to prevent him from doing so

On a MAX node player MAX decides where to go next.

A play consists in moving a *pebble* on the graph:

- \blacktriangleright player MAX wants to reach the 1 sink
- \blacktriangleright player ${\rm MIN}$ wants to prevent him from doing so

On a AVE node the next vertex is randomly determined.

A play consists in moving a *pebble* on the graph:

- \blacktriangleright player MAX wants to reach the 1 sink
- \blacktriangleright player ${\rm MIN}$ wants to prevent him from doing so

On a MIN node player MIN decides where to go next.

- \blacktriangleright player MAX wants to reach the 1 sink
- \blacktriangleright player ${\rm MIN}$ wants to prevent him from doing so

- \blacktriangleright player MAX wants to reach the 1 sink
- \blacktriangleright player ${\rm MIN}$ wants to prevent him from doing so

- \blacktriangleright player MAX wants to reach the 1 sink
- \blacktriangleright player ${\rm MIN}$ wants to prevent him from doing so

- \blacktriangleright player MAX wants to reach the 1 sink
- \blacktriangleright player ${\rm MIN}$ wants to prevent him from doing so

Strategies and values

General definition of a strategy σ for a player MAX:

 $\sigma:$ partial play ending in $V_{MAX}\longmapsto$ probability distribution on outneighbours

The value of a vertex x is:

Strategies and values

General definition of a strategy σ for a player MAX:

 $\sigma:$ partial play ending in $V_{MAX}\longmapsto$ probability distribution on outneighbours

The value of a vertex x is:

Problem: given a game and a vertex, compute the value of the vertex.

Strategies and values

General definition of a strategy σ for a player MAX:

 $\sigma:$ partial play ending in $V_{MAX}\longmapsto$ probability distribution on outneighbours

The value of a vertex x is:

<u>Problem</u>: given a game and a vertex, compute the value of the vertex.

Played on a graph as SSGs, but no sink vertices nor average vertices.

To each edge is associated a payoff w and a discount factor λ .

Played on a graph as SSGs, but no sink vertices nor average vertices.

To each edge is associated a payoff w and a discount factor λ .

The value of a play $e_{i_0} e_{i_1} e_{i_2} \dots$ is $\sum_{j=0}^{\infty} w(e_{i_j}) \prod_{k < j} \lambda_{i_k}$.

Played on a graph as SSGs, but no sink vertices nor average vertices.

To each edge is associated a payoff w and a discount factor λ .

The value of a play
$$e_{i_0}e_{i_1}e_{i_2}\dots$$
 is $\sum_{j=0}^\infty w(e_{i_j})\prod_{k< j}\lambda_{i_k}.$

Theorem

There is a reduction from DPG to SSG, such that a vertex has payoff 1 in the DPG if the corresponding vertex has value $> \frac{1}{2}$ in the SSG

Played on a graph as SSGs, but no sink vertices nor average vertices.

To each edge is associated a payoff w and a discount factor λ .

The value of a play
$$e_{i_0}e_{i_1}e_{i_2}\dots$$
 is $\sum_{j=0}^\infty w(e_{i_j})\prod_{k< j}\lambda_{i_k}.$

Theorem

There is a reduction from DPG to SSG, such that a vertex has payoff 1 in the DPG if the corresponding vertex has value $> \frac{1}{2}$ in the SSG

<u>Idea:</u> each vertex from the DPG has a probability to go to the sinks chosen to simulate the reward and the discount factor.

Played on a graph as SSGs, but no sink vertices nor average vertices.

To each edge is associated a payoff w and a discount factor λ .

The value of a play
$$e_{i_0}e_{i_1}e_{i_2}\dots$$
 is $\sum_{j=0}^\infty w(e_{i_j})\prod_{k< j}\lambda_{i_k}.$

Theorem

There is a reduction from DPG to SSG, such that a vertex has payoff 1 in the DPG if the corresponding vertex has value $> \frac{1}{2}$ in the SSG

Idea: each vertex from the DPG has a probability to go to the sinks chosen to simulate the reward and the discount factor.

Parity games

- Two player game on a graph
- Play goes on forever
- Every vertex has a priority
- P set of infinitely seen priority

If the largest value of P is even, player 0 wins otherwise 1 wins.

Reduction from Parity games to SSGs

Theorem

There is a reduction from parity games to simple stochastic games, such that a vertex is winning for 1 in the PG if the corresponding vertex has value $> \frac{1}{2}$ in the SSG

Idea:

- Add two sinks 0 and 1.
- Assign for every transition a small probability to go to sink 0 (nodes of player 0) or sink 1 (nodes of player 1).
- ▶ The transition probability from a node of priority *i* must be superior to the sum of transition probabilities of the nodes of priority less than *i*.

Reduction from Parity games to SSGs

Theorem

There is a reduction from parity games to simple stochastic games, such that a vertex is winning for 1 in the PG if the corresponding vertex has value $> \frac{1}{2}$ in the SSG

Idea:

- Add two sinks 0 and 1.
- Assign for every transition a small probability to go to sink 0 (nodes of player 0) or sink 1 (nodes of player 1).
- ▶ The transition probability from a node of priority *i* must be superior to the sum of transition probabilities of the nodes of priority less than *i*.

Introduction to Games

Fundamental Properties of SSGs and Complexity Classes

Algorithms to solve SSG

A language: $L \subseteq \Sigma^*$

A problem: given an instance $w \in \Sigma^*$ decide whether $w \in L$.

A language: $L \subseteq \Sigma^*$

A problem: given an instance $w \in \Sigma^*$ decide whether $w \in L$.

The SSG value problem is given a SSG and one of its vertices x, is $v(x)>\frac{1}{2}$?

A language: $L \subseteq \Sigma^*$

A problem: given an instance $w \in \Sigma^*$ decide whether $w \in L$.

The SSG value problem is given a SSG and one of its vertices x, is $v(x)>\frac{1}{2}$?

Complexity of a problem: time taken by a Turing machine to solve the problem with regard to the size of the instance.

A language: $L \subseteq \Sigma^*$

A problem: given an instance $w \in \Sigma^*$ decide whether $w \in L$.

The SSG value problem is given a SSG and one of its vertices x, is $v(x) > \frac{1}{2}$?

Complexity of a problem: time taken by a Turing machine to solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

A language: $L \subseteq \Sigma^*$

A problem: given an instance $w \in \Sigma^*$ decide whether $w \in L$.

The SSG value problem is given a SSG and one of its vertices x, is $v(x) > \frac{1}{2}$?

Complexity of a problem: time taken by a Turing machine to solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

Simpler strategies

To compute values we can restrict our strategies to be

- ▶ *pure*: deterministic
- memoryless: does not depend from the memory

We call them positional strategies for short.

$$\sigma: V_{MAX} \longrightarrow V, \quad \tau: V_{MIN} \longrightarrow V$$

Pure:

Let σ be a randomized strategy which on vertex a chooses with probability λ the vertex b and with probability $1 - \lambda$ the vertex c.

The value of strategy σ , $v_{\sigma}(a) = \lambda v_{\sigma}(b) + (1 - \lambda) v_{\sigma}(c)$

Pure:

Let σ be a randomized strategy which on vertex a chooses with probability λ the vertex b and with probability $1 - \lambda$ the vertex c.

The value of strategy σ , $v_{\sigma}(a) = \lambda v_{\sigma}(b) + (1 - \lambda)v_{\sigma}(c)$

Say that $v_{\sigma}(b) > v_{\sigma}(c)$. The strategy σ' which always chooses bis better than σ .

Pure:

Let σ be a randomized strategy which on vertex a chooses with probability λ the vertex b and with probability $1 - \lambda$ the vertex c.

The value of strategy σ , $v_{\sigma}(a) = \lambda v_{\sigma}(b) + (1 - \lambda)v_{\sigma}(c)$

Say that $v_{\sigma}(b) > v_{\sigma}(c)$. The strategy σ' which always chooses b is better than σ .

Memoryless: Assume you have an optimal strategy which depends on the memory.

Pure:

Let σ be a randomized strategy which on vertex a chooses with probability λ the vertex b and with probability $1 - \lambda$ the vertex c.

The value of strategy σ , $v_{\sigma}(a) = \lambda v_{\sigma}(b) + (1 - \lambda)v_{\sigma}(c)$

Say that $v_{\sigma}(b) > v_{\sigma}(c)$. The strategy σ' which always chooses b is better than σ .

Memoryless:

Assume you have an optimal strategy which depends on the memory.

When the pebble is at vertex v after a sequence of move, play as the optimal strategy assuming v is the starting vertex.

Pure:

Let σ be a randomized strategy which on vertex a chooses with probability λ the vertex b and with probability $1 - \lambda$ the vertex c.

The value of strategy σ , $v_{\sigma}(a) = \lambda v_{\sigma}(b) + (1 - \lambda)v_{\sigma}(c)$

Say that $v_{\sigma}(b) > v_{\sigma}(c)$. The strategy σ' which always chooses b is better than σ .

Memoryless:

Assume you have an optimal strategy which depends on the memory.

When the pebble is at vertex v after a sequence of move, play as the optimal strategy assuming v is the starting vertex.

The number of optimal strategies is bounded: the value problem is decidable.

Pure:

Let σ be a randomized strategy which on vertex a chooses with probability λ the vertex b and with probability $1 - \lambda$ the vertex c.

The value of strategy σ , $v_{\sigma}(a) = \lambda v_{\sigma}(b) + (1 - \lambda)v_{\sigma}(c)$

Say that $v_{\sigma}(b) > v_{\sigma}(c)$. The strategy σ' which always chooses b is better than σ .

Memoryless:

Assume you have an optimal strategy which depends on the memory.

When the pebble is at vertex v after a sequence of move, play as the optimal strategy assuming v is the starting vertex.

The number of optimal strategies is bounded: the value problem is decidable.

Minimax Theorem

Theorem (Condon 89)

For all vertices x,

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

max_{pos} min_{pos} = max_{pos} min_{gen} ≤ max_{gen} min_{gen} ≤ min_{gen} max_{gen} ≤ min_{pos} max_{gen} = min_{pos} max_{pos}

4. Finite number of strategies \rightarrow zero-sum matrix game

 $\max_{pos} \min_{pos} = \min_{pos} \max_{pos}$

- 1. Sups and infs are maxs and mins: optimal strategies and best responses exists (compacity and continuity arguments)
- 2. Against a positional strategy σ , MIN might as well respond positional:

$$\min_{\tau \text{ general}} v_{\sigma,\tau}(x) = \min_{\tau \text{ positional}} v_{\sigma,\tau}(x)$$

- max_{pos} min_{pos} = max_{pos} min_{gen} ≤ max_{gen} min_{gen} ≤ min_{gen} max_{gen} ≤ min_{pos} max_{gen} = min_{pos} max_{pos}
- 4. Finite number of strategies \rightarrow zero-sum matrix game

$$\max_{pos} \min_{pos} = \min_{pos} \max_{pos} \max_{pos}$$

Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink vertex almost surely.

Theorem (Condon 89)

For every SSG G, there is a polynomial-time computable SSG G' such that

- ► G' is stopping
- size of G' = poly(size of G)
- for all vertices x, $v_{G'}(x) > \frac{1}{2}$ if and only if $v_G(x) > \frac{1}{2}$

Idea of proof:

1. $v_G(x) > \frac{1}{2} \iff v_G(x) \ge \frac{1}{2} + 4^{-n}$

2. values are stable under perturbations,

Idea of proof:

- 1. $v_G(x) > \frac{1}{2} \iff v_G(x) \ge \frac{1}{2} + 4^{-n}$
- 2. values are stable under perturbations,

3. replace all arcs

Idea of proof:

1.
$$v_G(x) > \frac{1}{2} \iff v_G(x) \ge \frac{1}{2} + 4^{-n}$$

- 2. values are stable under perturbations,
- 3. replace all arcs

Idea of proof:

1.
$$v_G(x) > \frac{1}{2} \iff v_G(x) \ge \frac{1}{2} + 4^{-n}$$

- 2. values are stable under perturbations,
- 3. replace all arcs

by

Optimality conditions

A language L is in NP if there is a language $C\in\mathsf{P}$ such that $x\in L\Leftrightarrow \exists y\in\Sigma^{poly(|x|)},(x,y)\in C$

Lemma

G stopping SSG, and σ, τ are optimal strategies if and only if for all $x \in V_{MIN}$, $v_{\sigma,\tau}(x) = \min(v_{\sigma,\tau}(x_1), v_{\sigma,\tau}(x_2))$ for all $x \in V_{MAX}$, $v_{\sigma,\tau}(x) = \max(v_{\sigma,\tau}(x_1), v_{\sigma,\tau}(x_2))$

Optimality conditions

A language L is in NP if there is a language $C \in P$ such that $x \in L \Leftrightarrow \exists y \in \Sigma^{poly(|x|)}, (x, y) \in C$

Lemma

G stopping SSG, and σ, τ are optimal strategies if and only if for all $x \in V_{MIN}$, $v_{\sigma,\tau}(x) = \min(v_{\sigma,\tau}(x_1), v_{\sigma,\tau}(x_2))$ for all $x \in V_{MAX}$, $v_{\sigma,\tau}(x) = \max(v_{\sigma,\tau}(x_1), v_{\sigma,\tau}(x_2))$

Theorem (Condon 89)

The SSG value problem is in NP.

Optimality conditions

A language L is in NP if there is a language $C \in P$ such that $x \in L \Leftrightarrow \exists y \in \Sigma^{poly(|x|)}, (x, y) \in C$

Lemma

G stopping SSG, and σ, τ are optimal strategies if and only if for all $x \in V_{MIN}$, $v_{\sigma,\tau}(x) = \min(v_{\sigma,\tau}(x_1), v_{\sigma,\tau}(x_2))$ for all $x \in V_{MAX}$, $v_{\sigma,\tau}(x) = \max(v_{\sigma,\tau}(x_1), v_{\sigma,\tau}(x_2))$

Theorem (Condon 89)

The SSG value problem is in NP.

The symmetry between MAX and MIN put the SSG value problem in coNP.

Another problem in NP \cap coNP: PRIME.

The symmetry between MAX and MIN put the SSG value problem in coNP.

Another problem in NP \cap coNP: PRIME.

_emma

Stopping game hypothesis \Rightarrow unique pair of optimal strategies.

The symmetry between MAX and MIN put the SSG value problem in coNP.

Another problem in NP \cap coNP: PRIME.

Lemma

Stopping game hypothesis \Rightarrow unique pair of optimal strategies.

The problem is in $UP \cap coUP$ (unique certificate).

The symmetry between MAX and MIN put the SSG value problem in coNP.

Another problem in NP \cap coNP: PRIME.

Lemma

Stopping game hypothesis \Rightarrow unique pair of optimal strategies.

The problem is in UP \cap coUP (unique certificate).

The problem is complete for logspace alternating randomized Turing machine or game against nature.

The symmetry between MAX and MIN put the SSG value problem in coNP.

Another problem in NP \cap coNP: PRIME.

Lemma

Stopping game hypothesis \Rightarrow unique pair of optimal strategies.

The problem is in UP \cap coUP (unique certificate).

The problem is complete for logspace alternating randomized Turing machine or game against nature.

Open question: is the value problem in P?

The symmetry between MAX and MIN put the SSG value problem in coNP.

Another problem in NP \cap coNP: PRIME.

Lemma

Stopping game hypothesis \Rightarrow unique pair of optimal strategies.

The problem is in UP \cap coUP (unique certificate).

The problem is complete for logspace alternating randomized Turing machine or game against nature.

Open question: is the value problem in P ?

Introduction to Games

Fundamental Properties of SSGs and Complexity Classes

Algorithms to solve SSG

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed strategy for $\rm MIN$ and $\rm MAX.$

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed strategy for $\rm MIN$ and $\rm MAX.$

Values can be represented by a linear system and solved in polynomial time. For each vertex x with outvertices x_1 and x_2 ,

$$v(x) = \frac{1}{2}v(x_1) + \frac{1}{2}v(x_2)$$

where the values of sinks are replaced by 0 or 1.

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed strategy for $\rm MIN$ and $\rm MAX.$

Values can be represented by a linear system and solved in polynomial time. For each vertex x with outvertices x_1 and x_2 ,

$$v(x) = \frac{1}{2}v(x_1) + \frac{1}{2}v(x_2)$$

where the values of sinks are replaced by 0 or 1.

We use that to compute $v_{\sigma,\tau}(x)$.

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed strategy for $\rm MIN$ and $\rm MAX.$

Values can be represented by a linear system and solved in polynomial time. For each vertex x with outvertices x_1 and x_2 ,

$$v(x) = \frac{1}{2}v(x_1) + \frac{1}{2}v(x_2)$$

where the values of sinks are replaced by 0 or 1.

We use that to compute $v_{\sigma,\tau}(x)$.

Average and MIN

We consider SSG with $\rm MIN$ and average vertices only. Equivalent to a SSG with a fixed strategy for $\rm MAX.$

The switch: Let x be a MIN vertex. Suppose $v_{\tau}(x) = v_{\tau}(x_1) > v_{\tau}(x_2)$

Average and MIN

We consider SSG with MIN and average vertices only. Equivalent to a SSG with a fixed strategy for MAX.

The switch:

Let x be a MIN vertex. Suppose $v_\tau(x) = v_\tau(x_1) > v_\tau(x_2))$

Switching au at x : $au'(x)=x_2$ and equal to au'= au elsewhere

Average and MIN

We consider SSG with MIN and average vertices only. Equivalent to a SSG with a fixed strategy for MAX.

The switch:

Let x be a MIN vertex. Suppose $v_{\tau}(x) = v_{\tau}(x_1) > v_{\tau}(x_2))$

Switching τ at x: $\tau'(x) = x_2$ and equal to $\tau' = \tau$ elsewhere.

A switch is profitable for MIN: $\tau' < \tau$

Average and MIN

We consider SSG with $\rm MIN$ and average vertices only. Equivalent to a SSG with a fixed strategy for $\rm MAX.$

The switch:

Let x be a MIN vertex. Suppose $v_{\tau}(x) = v_{\tau}(x_1) > v_{\tau}(x_2))$

Switching τ at x: $\tau'(x) = x_2$ and equal to $\tau' = \tau$ elsewhere.

A switch is profitable for MIN: $\tau' < \tau$

Algorithm to find an optimal strategy: keep switching.

Average and MIN

We consider SSG with $\rm MIN$ and average vertices only. Equivalent to a SSG with a fixed strategy for $\rm MAX.$

The switch:

Let x be a MIN vertex. Suppose $v_{\tau}(x) = v_{\tau}(x_1) > v_{\tau}(x_2))$

Switching τ at x: $\tau'(x) = x_2$ and equal to $\tau' = \tau$ elsewhere.

A switch is profitable for MIN: $\tau' < \tau$

Algorithm to find an optimal strategy: keep switching.

$F_{\sigma}: \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ v_{x} \longmapsto \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ \min(v_{x_{1}}, v_{x_{2}}) \text{ if } x \in V_{MIN} \\ v_{\sigma(x)} \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_{1}} + \frac{1}{2}v_{x_{2}} \text{ if } x \in V_{AVE} \end{cases}$

where the values of sinks are replaced by 0 or 1.

Operator F_σ is contracting (sup norm) → single fixed point = value vector of σ

$F_{\sigma}: \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ v_{x} \longmapsto \end{cases} \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ \min(v_{x_{1}}, v_{x_{2}}) \text{ if } x \in V_{MIN} \\ v_{\sigma(x)} \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_{1}} + \frac{1}{2}v_{x_{2}} \text{ if } x \in V_{AVE} \end{cases}$

where the values of sinks are replaced by 0 or 1.

Operator F_σ is contracting (sup norm) → single fixed point = value vector of σ

• Solving $F_{\sigma}v = v$ by linear programing

$$\max\sum_{i} v_i$$
$$F_{\sigma}(v) \le v$$

$F_{\sigma}: \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ v_{x} \longmapsto \end{cases} \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ \min(v_{x_{1}}, v_{x_{2}}) \text{ if } x \in V_{MIN} \\ v_{\sigma(x)} \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_{1}} + \frac{1}{2}v_{x_{2}} \text{ if } x \in V_{AVE} \end{cases}$

where the values of sinks are replaced by 0 or 1.

- Operator F_σ is contracting (sup norm) → single fixed point = value vector of σ
- Solving $F_{\sigma}v = v$ by linear programing

$$\max \sum_{i} v_i$$
$$F_{\sigma}(v) \le v$$

Polytime algorithm to compute $v_{\sigma}(x)$.
$F_{\sigma}: \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ v_{x} \longmapsto \end{cases} \begin{cases} [0,1]^{V} \longrightarrow [0,1]^{V} \\ \min(v_{x_{1}}, v_{x_{2}}) \text{ if } x \in V_{MIN} \\ v_{\sigma(x)} \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_{1}} + \frac{1}{2}v_{x_{2}} \text{ if } x \in V_{AVE} \end{cases}$

where the values of sinks are replaced by 0 or 1.

- Operator F_σ is contracting (sup norm) → single fixed point = value vector of σ
- Solving $F_{\sigma}v = v$ by linear programing

$$\max \sum_{i} v_i$$
$$F_{\sigma}(v) \le v$$

Polytime algorithm to compute $v_{\sigma}(x)$.

A generalization of the fixpoint method to SSG:

where the values of sinks are replaced by $0 \mbox{ or } 1.$

The operator F is contracting and its fixpoint is the optimal value vector.

A generalization of the fixpoint method to SSG:

$$F: \begin{cases} [0,1]^V \longrightarrow [0,1]^V \\ v_x \longmapsto \begin{cases} \min(v_{x_1}, v_{x_2}) \text{ if } x \in V_{MIN} \\ \max(v_{x_1}, v_{x_2}) \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_1} + \frac{1}{2}v_{x_2} \text{ if } x \in V_{AVE} \end{cases}$$

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value vector.

Computing the values is in the class PPAD. Does **not** converge fast.

A generalization of the fixpoint method to SSG:

$$F: \begin{cases} [0,1]^V \longrightarrow [0,1]^V \\ v_x \longmapsto \begin{cases} \min(v_{x_1}, v_{x_2}) \text{ if } x \in V_{MIN} \\ \max(v_{x_1}, v_{x_2}) \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_1} + \frac{1}{2}v_{x_2} \text{ if } x \in V_{AVE} \end{cases}$$

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value vector.

Computing the values is in the class PPAD. Does not converge fast.

A generalization of the fixpoint method to SSG:

$$F: \begin{cases} [0,1]^V \longrightarrow [0,1]^V \\ v_x \longmapsto \begin{cases} \min(v_{x_1}, v_{x_2}) \text{ if } x \in V_{MIN} \\ \max(v_{x_1}, v_{x_2}) \text{ if } x \in V_{MAX} \\ \frac{1}{2}v_{x_1} + \frac{1}{2}v_{x_2} \text{ if } x \in V_{AVE} \end{cases}$$

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value vector.

Computing the values is in the class PPAD.

Does not converge fast.

Hoffman-Karp Algorithm

The strategy improvement algorithm or Hoffman-Karp algorithm:

- 1. choose σ_0 and let $\tau_0 = \tau(\sigma_0)$ (best response)
- 2. while (σ_k, τ_k) is not optimal, obtain σ_{k+1} by switching σ_k ; let $\tau_{k+1} = \tau(\sigma_{k+1})$

Lemma

For all k, $v_{\sigma_{k+1},\tau_{k+1}} > v_{\sigma_k,\tau_k}$

Hoffman-Karp Algorithm

The strategy improvement algorithm or Hoffman-Karp algorithm:

- 1. choose σ_0 and let $\tau_0 = \tau(\sigma_0)$ (best response)
- 2. while (σ_k, τ_k) is not optimal, obtain σ_{k+1} by switching σ_k ; let $\tau_{k+1} = \tau(\sigma_{k+1})$

Lemma

For all k, $v_{\sigma_{k+1},\tau_{k+1}} > v_{\sigma_k,\tau_k}$

Theorem (Tripathi, Valkanova, Kumar)

The HK algorithm makes at most $O(2^n/n)$ iterations

Computing the value is thus in PLS but the algorithm can take exponential time:

- ► Friedmann (2009) gives a counter-example for parity game with 2^{√n} iterations, claimed 2^{cn}.
- Andersson (2009) shows that this counterexample survives the reduction

Hoffman-Karp Algorithm

The strategy improvement algorithm or Hoffman-Karp algorithm:

- 1. choose σ_0 and let $\tau_0 = \tau(\sigma_0)$ (best response)
- 2. while (σ_k, τ_k) is not optimal, obtain σ_{k+1} by switching σ_k ; let $\tau_{k+1} = \tau(\sigma_{k+1})$

Lemma

For all k, $v_{\sigma_{k+1},\tau_{k+1}} > v_{\sigma_k,\tau_k}$

Theorem (Tripathi, Valkanova, Kumar)

The HK algorithm makes at most $O(2^n/n)$ iterations

Computing the value is thus in PLS but the algorithm can take exponential time:

- ► Friedmann (2009) gives a counter-example for parity game with 2^{√n} iterations, claimed 2^{cn}.
- Andersson (2009) shows that this counterexample survives the reduction

Counter-Example

No average vertices

Deterministic graphical games (Washburn 1966, Andersson et al. 2012)

 $\begin{array}{l} \mbox{Definition} = \mbox{SSG without} \\ \mbox{average vertices, but allow} \\ \mbox{sinks with arbitrary payoffs} \end{array}$

Solving DGG in linear time by backtracking While possible :

- 1. sink *s* with maximal payoff: incoming MIN arcs never go there if they have a choice: delete arc or merge
- 2. Do the opposite for the minimum payoff sink.

In the end, the vertices with no connection to sinks have value 0.

No average vertices

Deterministic graphical games (Washburn 1966, Andersson et al. 2012)

 $\begin{array}{l} \mbox{Definition} = \mbox{SSG without} \\ \mbox{average vertices, but allow} \\ \mbox{sinks with arbitrary payoffs} \end{array}$

Solving DGG in linear time by backtracking While possible :

- 1. sink *s* with maximal payoff: incoming MIN arcs never go there if they have a choice: delete arc or merge
- 2. Do the opposite for the minimum payoff sink.

In the end, the vertices with no connection to sinks have value 0.

Few average vertices

Theorem (Gimbert and Horn 2009)

There is an algorithm which computes values and optimal strategies of SSGs with n vertices and k average vertices in time O(k!n).

(Moreover the outdegree of nodes is unlimited)

A strategy consists in choosing among nodes. Hence a preference order on all nodes yields a strategy.

Few average vertices

Theorem (Gimbert and Horn 2009)

There is an algorithm which computes values and optimal strategies of SSGs with n vertices and k average vertices in time O(k!n).

(Moreover the outdegree of nodes is unlimited)

A strategy consists in choosing among nodes. Hence a preference order on all nodes yields a strategy.

• An order on V_{AVE} is enough.

$$0 < a_1 < a_2 \cdots a_k < 1$$

MAX tries to force the next average vertex to be large. MIN tries to force the next average vertex to be small.

Few average vertices

Theorem (Gimbert and Horn 2009)

There is an algorithm which computes values and optimal strategies of SSGs with n vertices and k average vertices in time O(k!n).

(Moreover the outdegree of nodes is unlimited)

- A strategy consists in choosing among nodes. Hence a preference order on all nodes yields a strategy.
- An order on V_{AVE} is enough.

$$0 < a_1 < a_2 \cdots a_k < 1$$

MAX tries to force the next average vertex to be large. MIN tries to force the next average vertex to be small.

Directed Acyclic Graphs

A directed acyclic graph is a graph without a directed cycle.

Algorithm: The sinks are initialized to 0 and 1 While possible:

- ▶ $x \in V_{MAX}$, $v(x) = \max(v(x_1), v(x_2))$
- ▶ $x \in V_{MIN}$, $v(x) = \min(v(x_1), v(x_2))$
- $x \in V_{AVE}$, $v(x) = \frac{1}{2}v(x_1) + \frac{1}{2}v(x_2)$

Directed Acyclic Graphs

A directed acyclic graph is a graph without a directed cycle.

Algorithm:

The sinks are initialized to 0 and 1 While possible:

▶
$$x \in V_{MAX}$$
, $v(x) = \max(v(x_1), v(x_2))$

•
$$x \in V_{MIN}$$
, $v(x) = \min(v(x_1), v(x_2))$

•
$$x \in V_{AVE}$$
, $v(x) = \frac{1}{2}v(x_1) + \frac{1}{2}v(x_2)$

Almost Acyclic: Tree-Width

Definition (Tree Decomposition)

A tree decomposition of a graph G is a pair (T, X) where $X = \{X_1, \ldots, X_n\}$ is a family of subsets (or bags) of V(G) and T is a tree whose nodes are the X_i such that:

- the union of the X_i equals V(G)
- ► every edge (u, v) ∈ E(G) is included in some X_i.
- ▶ for each u in V(G) the set of X_i which contains u is connex.

width $= \max_i |X_i|$

Almost Acyclic: Tree-Width

Definition (Tree Decomposition)

A tree decomposition of a graph G is a pair (T, X) where $X = \{X_1, \ldots, X_n\}$ is a family of subsets (or bags) of V(G) and T is a tree whose nodes are the X_i such that:

- the union of the X_i equals V(G)
- ► every edge (u, v) ∈ E(G) is included in some X_i.
- ▶ for each u in V(G) the set of X_i which contains u is connex.

width $= \max_i |X_i|$

treewidth = $\min_{(T,X)} width(T,X)$

Almost Acyclic: Tree-Width

Definition (Tree Decomposition)

A tree decomposition of a graph G is a pair (T, X) where $X = \{X_1, \ldots, X_n\}$ is a family of subsets (or bags) of V(G) and T is a tree whose nodes are the X_i such that:

- the union of the X_i equals V(G)
- ► every edge (u, v) ∈ E(G) is included in some X_i.
- ▶ for each u in V(G) the set of X_i which contains u is connex.

width = $\max_i |X_i|$

treewidth = $\min_{(T,X)} width(T,X)$

Theorem (Work in progress)

For all $k \in \mathbb{N}$, the SSG value problem is in P when restricted to SSGs of treewidth bounded by k.

The complexity of the algorithm is in $O(k2^{k^2}n)$.

Notion of directed treewidth to capture DAG and adaptation to the SSG case.

Theorem (Work in progress)

For all $k \in \mathbb{N}$, the SSG value problem is in P when restricted to SSGs of treewidth bounded by k.

- Notion of directed treewidth to capture DAG and adaptation to the SSG case.
- ▶ Improve the algorithm to be less dependent of *k*.

Theorem (Work in progress)

For all $k \in \mathbb{N}$, the SSG value problem is in P when restricted to SSGs of treewidth bounded by k.

- Notion of directed treewidth to capture DAG and adaptation to the SSG case.
- ▶ Improve the algorithm to be less dependent of *k*.
- Use ideas to get another way to solve SSG with few average vertices.

Theorem (Work in progress)

For all $k \in \mathbb{N}$, the SSG value problem is in P when restricted to SSGs of treewidth bounded by k.

- Notion of directed treewidth to capture DAG and adaptation to the SSG case.
- ▶ Improve the algorithm to be less dependent of *k*.
- Use ideas to get another way to solve SSG with few average vertices.
- ▶ Is the SSG value problem expressible in *MSO* over graph?

Theorem (Work in progress)

For all $k \in \mathbb{N}$, the SSG value problem is in P when restricted to SSGs of treewidth bounded by k.

- Notion of directed treewidth to capture DAG and adaptation to the SSG case.
- ▶ Improve the algorithm to be less dependent of *k*.
- Use ideas to get another way to solve SSG with few average vertices.
- ▶ Is the SSG value problem expressible in *MSO* over graph?

Thanks.