
Simple stochastic games: a state of the art

Yann Strozecki

Université de Versailles St-Quentin-en-Yvelines
Laboratoire PRiSM

June 2013, Gödel Research Center

Simple stochastic game (SSG)
A Simple Stochastic Game (Shapley, Condon) is defined by a
directed graph with:

I three sets of vertices VMAX , VMIN , VAVE of outdegree 2
I two ’sink’ vertices 0 and 1

max A A

0 1

A min A

Two players: MAX and MIN, and randomness.

Simple stochastic game (SSG)
A Simple Stochastic Game (Shapley, Condon) is defined by a
directed graph with:

I three sets of vertices VMAX , VMIN , VAVE of outdegree 2
I two ’sink’ vertices 0 and 1

max A A

0 1

A min A

Two players: MAX and MIN, and randomness.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

On a MAX node player MAX decides where to go next.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

On a MAX node player MAX decides where to go next.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

On a AVE node the next vertex is randomly determined.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

On a MIN node player MIN decides where to go next.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

Etc.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

Etc.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

Etc.

Semantic of SSGs
A play consists in moving a pebble on the graph:

I player MAX wants to reach the 1 sink
I player MIN wants to prevent him from doing so

max A A

0 1

A min A

Etc.

Strategies and values

General definition of a strategy σ for a player MAX:

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is:

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Pσ,τ (1 is reached | game starts in x)︸ ︷︷ ︸
vσ,τ (x)︸ ︷︷ ︸

vσ(x)

Problem: given a game and a vertex, compute the value of the
vertex.

Strategies and values

General definition of a strategy σ for a player MAX:

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is:

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Pσ,τ (1 is reached | game starts in x)︸ ︷︷ ︸
vσ,τ (x)︸ ︷︷ ︸

vσ(x)

Problem: given a game and a vertex, compute the value of the
vertex.

Strategies and values

General definition of a strategy σ for a player MAX:

σ : partial play ending in VMAX 7−→ probability distribution on outneighbours

The value of a vertex x is:

v(x) = sup
σ strategy
for MAX

inf
τ strategy
for MIN

Pσ,τ (1 is reached | game starts in x)︸ ︷︷ ︸
vσ,τ (x)︸ ︷︷ ︸

vσ(x)

Problem: given a game and a vertex, compute the value of the
vertex.

Discounted payoff games

Played on a graph as SSGs, but no sink vertices nor average
vertices.

To each edge is associated a payoff w and a discount factor λ.

The value of a play ei0ei1ei2 . . . is
∞∑

j=0
w(eij)

∏
k<j

λik .

Theorem
There is a reduction from DPG to SSG, such that a vertex has
payoff 1 in the DPG if the corresponding vertex has value > 1

2 in
the SSG

Idea: each vertex from the DPG has a probability to go to the
sinks chosen to simulate the reward and the discount factor.

Discounted payoff games

Played on a graph as SSGs, but no sink vertices nor average
vertices.

To each edge is associated a payoff w and a discount factor λ.

The value of a play ei0ei1ei2 . . . is
∞∑

j=0
w(eij)

∏
k<j

λik .

Theorem
There is a reduction from DPG to SSG, such that a vertex has
payoff 1 in the DPG if the corresponding vertex has value > 1

2 in
the SSG

Idea: each vertex from the DPG has a probability to go to the
sinks chosen to simulate the reward and the discount factor.

Discounted payoff games

Played on a graph as SSGs, but no sink vertices nor average
vertices.

To each edge is associated a payoff w and a discount factor λ.

The value of a play ei0ei1ei2 . . . is
∞∑

j=0
w(eij)

∏
k<j

λik .

Theorem
There is a reduction from DPG to SSG, such that a vertex has
payoff 1 in the DPG if the corresponding vertex has value > 1

2 in
the SSG

Idea: each vertex from the DPG has a probability to go to the
sinks chosen to simulate the reward and the discount factor.

Discounted payoff games

Played on a graph as SSGs, but no sink vertices nor average
vertices.

To each edge is associated a payoff w and a discount factor λ.

The value of a play ei0ei1ei2 . . . is
∞∑

j=0
w(eij)

∏
k<j

λik .

Theorem
There is a reduction from DPG to SSG, such that a vertex has
payoff 1 in the DPG if the corresponding vertex has value > 1

2 in
the SSG

Idea: each vertex from the DPG has a probability to go to the
sinks chosen to simulate the reward and the discount factor.

Discounted payoff games

Played on a graph as SSGs, but no sink vertices nor average
vertices.

To each edge is associated a payoff w and a discount factor λ.

The value of a play ei0ei1ei2 . . . is
∞∑

j=0
w(eij)

∏
k<j

λik .

Theorem
There is a reduction from DPG to SSG, such that a vertex has
payoff 1 in the DPG if the corresponding vertex has value > 1

2 in
the SSG

Idea: each vertex from the DPG has a probability to go to the
sinks chosen to simulate the reward and the discount factor.

Parity games

I Two player
game on a
graph

I Play goes on
forever

I Every vertex
has a priority

I P set of
infinitely seen
priority

If the largest value of P is even, player 0 wins otherwise 1 wins.

Reduction from Parity games to SSGs

Theorem
There is a reduction from parity games to simple stochastic games,
such that a vertex is winning for 1 in the PG if the corresponding
vertex has value > 1

2 in the SSG

Idea:
I Add two sinks 0 and 1.
I Assign for every transition a small probability to go to sink 0

(nodes of player 0) or sink 1 (nodes of player 1).
I The transition probability from a node of priority i must be

superior to the sum of transition probabilities of the nodes of
priority less than i.

Reduction from Parity games to SSGs

Theorem
There is a reduction from parity games to simple stochastic games,
such that a vertex is winning for 1 in the PG if the corresponding
vertex has value > 1

2 in the SSG

Idea:
I Add two sinks 0 and 1.
I Assign for every transition a small probability to go to sink 0

(nodes of player 0) or sink 1 (nodes of player 1).
I The transition probability from a node of priority i must be

superior to the sum of transition probabilities of the nodes of
priority less than i.

Introduction to Games

Fundamental Properties of SSGs and Complexity Classes

Algorithms to solve SSG

Complexity basics

A language: L ⊆ Σ∗

A problem: given an instance w ∈ Σ∗ decide whether w ∈ L.

The SSG value problem is given a SSG and one of its vertices x, is
v(x) > 1

2 ?

Complexity of a problem: time taken by a Turing machine to
solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

Complexity basics

A language: L ⊆ Σ∗

A problem: given an instance w ∈ Σ∗ decide whether w ∈ L.

The SSG value problem is given a SSG and one of its vertices x, is
v(x) > 1

2 ?

Complexity of a problem: time taken by a Turing machine to
solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

Complexity basics

A language: L ⊆ Σ∗

A problem: given an instance w ∈ Σ∗ decide whether w ∈ L.

The SSG value problem is given a SSG and one of its vertices x, is
v(x) > 1

2 ?

Complexity of a problem: time taken by a Turing machine to
solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

Complexity basics

A language: L ⊆ Σ∗

A problem: given an instance w ∈ Σ∗ decide whether w ∈ L.

The SSG value problem is given a SSG and one of its vertices x, is
v(x) > 1

2 ?

Complexity of a problem: time taken by a Turing machine to
solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

Complexity basics

A language: L ⊆ Σ∗

A problem: given an instance w ∈ Σ∗ decide whether w ∈ L.

The SSG value problem is given a SSG and one of its vertices x, is
v(x) > 1

2 ?

Complexity of a problem: time taken by a Turing machine to
solve the problem with regard to the size of the instance.

A time polynomial in the size of the instance: the language is in P

Simpler strategies

To compute values we can restrict our strategies to be
I pure: deterministic
I memoryless: does not depend from the memory

We call them positional strategies for short.

σ : VMAX −→ V , τ : VMIN −→ V

max

min

Forgetting the past makes it simpler

Pure:
Let σ be a randomized strategy
which on vertex a chooses with
probability λ the vertex b and with
probability 1− λ the vertex c.

The value of strategy σ,
vσ(a) = λvσ(b) + (1− λ)vσ(c)

Say that vσ(b) > vσ(c). The
strategy σ′ which always chooses b
is better than σ.

Memoryless:
Assume you have an optimal
strategy which depends on
the memory.

When the pebble is at vertex
v after a sequence of move,
play as the optimal strategy
assuming v is the starting
vertex.

The number of optimal strategies is bounded: the value problem is
decidable.

Forgetting the past makes it simpler

Pure:
Let σ be a randomized strategy
which on vertex a chooses with
probability λ the vertex b and with
probability 1− λ the vertex c.

The value of strategy σ,
vσ(a) = λvσ(b) + (1− λ)vσ(c)

Say that vσ(b) > vσ(c). The
strategy σ′ which always chooses b
is better than σ.

Memoryless:
Assume you have an optimal
strategy which depends on
the memory.

When the pebble is at vertex
v after a sequence of move,
play as the optimal strategy
assuming v is the starting
vertex.

The number of optimal strategies is bounded: the value problem is
decidable.

Forgetting the past makes it simpler

Pure:
Let σ be a randomized strategy
which on vertex a chooses with
probability λ the vertex b and with
probability 1− λ the vertex c.

The value of strategy σ,
vσ(a) = λvσ(b) + (1− λ)vσ(c)

Say that vσ(b) > vσ(c). The
strategy σ′ which always chooses b
is better than σ.

Memoryless:
Assume you have an optimal
strategy which depends on
the memory.

When the pebble is at vertex
v after a sequence of move,
play as the optimal strategy
assuming v is the starting
vertex.

The number of optimal strategies is bounded: the value problem is
decidable.

Forgetting the past makes it simpler

Pure:
Let σ be a randomized strategy
which on vertex a chooses with
probability λ the vertex b and with
probability 1− λ the vertex c.

The value of strategy σ,
vσ(a) = λvσ(b) + (1− λ)vσ(c)

Say that vσ(b) > vσ(c). The
strategy σ′ which always chooses b
is better than σ.

Memoryless:
Assume you have an optimal
strategy which depends on
the memory.

When the pebble is at vertex
v after a sequence of move,
play as the optimal strategy
assuming v is the starting
vertex.

The number of optimal strategies is bounded: the value problem is
decidable.

Forgetting the past makes it simpler

Pure:
Let σ be a randomized strategy
which on vertex a chooses with
probability λ the vertex b and with
probability 1− λ the vertex c.

The value of strategy σ,
vσ(a) = λvσ(b) + (1− λ)vσ(c)

Say that vσ(b) > vσ(c). The
strategy σ′ which always chooses b
is better than σ.

Memoryless:
Assume you have an optimal
strategy which depends on
the memory.

When the pebble is at vertex
v after a sequence of move,
play as the optimal strategy
assuming v is the starting
vertex.

The number of optimal strategies is bounded: the value problem is
decidable.

Forgetting the past makes it simpler

Pure:
Let σ be a randomized strategy
which on vertex a chooses with
probability λ the vertex b and with
probability 1− λ the vertex c.

The value of strategy σ,
vσ(a) = λvσ(b) + (1− λ)vσ(c)

Say that vσ(b) > vσ(c). The
strategy σ′ which always chooses b
is better than σ.

Memoryless:
Assume you have an optimal
strategy which depends on
the memory.

When the pebble is at vertex
v after a sequence of move,
play as the optimal strategy
assuming v is the starting
vertex.

The number of optimal strategies is bounded: the value problem is
decidable.

Minimax Theorem

Theorem (Condon 89)
For all vertices x,

v(x) = max
σ positional strategy

for MAX

min
τ positional strategy

for MIN

vσ,τ (x)

= min
τ positional strategy

for MIN

max
σ positional strategy

for MAX

vσ,τ (x)

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Main lines of a proof ...

1. Sups and infs are maxs and mins: optimal strategies and best
responses exists (compacity and continuity arguments)

2. Against a positional strategy σ, MIN might as well respond
positional:

min
τ general

vσ,τ (x) = min
τ positional

vσ,τ (x)

3. maxpos minpos = maxpos mingen ≤ maxgen mingen ≤
mingen maxgen ≤ minpos maxgen = minpos maxpos

4. Finite number of strategies → zero-sum matrix game

max
pos

min
pos

= min
pos

max
pos

Stopping SSGs

A SSG is stopping if for all strategies, the game reaches a sink
vertex almost surely.

Theorem (Condon 89)
For every SSG G, there is a polynomial-time computable SSG G’
such that

I G’ is stopping
I size of G’ = poly(size of G)
I for all vertices x, vG′(x) > 1

2 if and only if vG(x) > 1
2

How to stop a game?
Idea of proof:
1. vG(x) > 1

2 ⇐⇒ vG(x) ≥ 1
2 + 4−n

2. values are stable under perturbations,

3. replace all arcs

How to stop a game?
Idea of proof:
1. vG(x) > 1

2 ⇐⇒ vG(x) ≥ 1
2 + 4−n

2. values are stable under perturbations,
3. replace all arcs

How to stop a game?
Idea of proof:
1. vG(x) > 1

2 ⇐⇒ vG(x) ≥ 1
2 + 4−n

2. values are stable under perturbations,
3. replace all arcs

a b

How to stop a game?
Idea of proof:
1. vG(x) > 1

2 ⇐⇒ vG(x) ≥ 1
2 + 4−n

2. values are stable under perturbations,
3. replace all arcs

a b

by

a
.

.
.

.
.

0

b

Optimality conditions

A language L is in NP if there is a language C ∈ P such that

x ∈ L ⇔ ∃y ∈ Σpoly(|x|), (x, y) ∈ C

Lemma
G stopping SSG, and σ, τ are optimal strategies if and only if

for all x ∈ VMIN , vσ,τ (x) = min(vσ,τ (x1), vσ,τ (x2))

for all x ∈ VMAX , vσ,τ (x) = max(vσ,τ (x1), vσ,τ (x2))

Theorem (Condon 89)
The SSG value problem is in NP.

Optimality conditions

A language L is in NP if there is a language C ∈ P such that

x ∈ L ⇔ ∃y ∈ Σpoly(|x|), (x, y) ∈ C

Lemma
G stopping SSG, and σ, τ are optimal strategies if and only if

for all x ∈ VMIN , vσ,τ (x) = min(vσ,τ (x1), vσ,τ (x2))

for all x ∈ VMAX , vσ,τ (x) = max(vσ,τ (x1), vσ,τ (x2))

Theorem (Condon 89)
The SSG value problem is in NP.

Optimality conditions

A language L is in NP if there is a language C ∈ P such that

x ∈ L ⇔ ∃y ∈ Σpoly(|x|), (x, y) ∈ C

Lemma
G stopping SSG, and σ, τ are optimal strategies if and only if

for all x ∈ VMIN , vσ,τ (x) = min(vσ,τ (x1), vσ,τ (x2))

for all x ∈ VMAX , vσ,τ (x) = max(vσ,τ (x1), vσ,τ (x2))

Theorem (Condon 89)
The SSG value problem is in NP.

Further Complexity Considerations

The symmetry between MAX and MIN put the SSG value
problem in coNP.

Another problem in NP ∩ coNP: PRIME.

Lemma
Stopping game hypothesis ⇒ unique pair of optimal strategies.

The problem is in UP ∩ coUP (unique certificate).

The problem is complete for logspace alternating randomized
Turing machine or game against nature.

Open question: is the value problem in P ?

Further Complexity Considerations

The symmetry between MAX and MIN put the SSG value
problem in coNP.

Another problem in NP ∩ coNP: PRIME.

Lemma
Stopping game hypothesis ⇒ unique pair of optimal strategies.

The problem is in UP ∩ coUP (unique certificate).

The problem is complete for logspace alternating randomized
Turing machine or game against nature.

Open question: is the value problem in P ?

Further Complexity Considerations

The symmetry between MAX and MIN put the SSG value
problem in coNP.

Another problem in NP ∩ coNP: PRIME.

Lemma
Stopping game hypothesis ⇒ unique pair of optimal strategies.

The problem is in UP ∩ coUP (unique certificate).

The problem is complete for logspace alternating randomized
Turing machine or game against nature.

Open question: is the value problem in P ?

Further Complexity Considerations

The symmetry between MAX and MIN put the SSG value
problem in coNP.

Another problem in NP ∩ coNP: PRIME.

Lemma
Stopping game hypothesis ⇒ unique pair of optimal strategies.

The problem is in UP ∩ coUP (unique certificate).

The problem is complete for logspace alternating randomized
Turing machine or game against nature.

Open question: is the value problem in P ?

Further Complexity Considerations

The symmetry between MAX and MIN put the SSG value
problem in coNP.

Another problem in NP ∩ coNP: PRIME.

Lemma
Stopping game hypothesis ⇒ unique pair of optimal strategies.

The problem is in UP ∩ coUP (unique certificate).

The problem is complete for logspace alternating randomized
Turing machine or game against nature.

Open question: is the value problem in P ?

Further Complexity Considerations

The symmetry between MAX and MIN put the SSG value
problem in coNP.

Another problem in NP ∩ coNP: PRIME.

Lemma
Stopping game hypothesis ⇒ unique pair of optimal strategies.

The problem is in UP ∩ coUP (unique certificate).

The problem is complete for logspace alternating randomized
Turing machine or game against nature.

Open question: is the value problem in P ?

Introduction to Games

Fundamental Properties of SSGs and Complexity Classes

Algorithms to solve SSG

Average Only

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed
strategy for MIN and MAX.

Values can be represented by a linear system and solved in
polynomial time. For each vertex x with outvertices x1 and x2,

v(x) = 1
2v(x1) + 1

2v(x2)

where the values of sinks are replaced by 0 or 1.

We use that to compute vσ,τ (x).

Average Only

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed
strategy for MIN and MAX.

Values can be represented by a linear system and solved in
polynomial time. For each vertex x with outvertices x1 and x2,

v(x) = 1
2v(x1) + 1

2v(x2)

where the values of sinks are replaced by 0 or 1.

We use that to compute vσ,τ (x).

Average Only

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed
strategy for MIN and MAX.

Values can be represented by a linear system and solved in
polynomial time. For each vertex x with outvertices x1 and x2,

v(x) = 1
2v(x1) + 1

2v(x2)

where the values of sinks are replaced by 0 or 1.

We use that to compute vσ,τ (x).

Average Only

A simple case: a SSG with only average vertices.

It is equivalent to a Markov process and a SSG with a fixed
strategy for MIN and MAX.

Values can be represented by a linear system and solved in
polynomial time. For each vertex x with outvertices x1 and x2,

v(x) = 1
2v(x1) + 1

2v(x2)

where the values of sinks are replaced by 0 or 1.

We use that to compute vσ,τ (x).

Average and MIN
We consider SSG with MIN and average vertices only.
Equivalent to a SSG with a fixed strategy for MAX.

The switch:
Let x be a MIN vertex. Suppose
vτ (x) = vτ (x1) > vτ (x2))

Switching τ at x :
τ ′(x) = x2 and equal to τ ′ = τ elsewhere.

A switch is profitable for MIN: τ ′ < τ

x
vσ,τ = 0.7

x1
vσ,τ = 0.7

x2

vσ,τ = 0.4

x
x1

x2

Algorithm to find an optimal strategy: keep switching.

Average and MIN
We consider SSG with MIN and average vertices only.
Equivalent to a SSG with a fixed strategy for MAX.

The switch:
Let x be a MIN vertex. Suppose
vτ (x) = vτ (x1) > vτ (x2))

Switching τ at x :
τ ′(x) = x2 and equal to τ ′ = τ elsewhere.

A switch is profitable for MIN: τ ′ < τ

x
vσ,τ = 0.7

x1
vσ,τ = 0.7

x2

vσ,τ = 0.4

x
x1

x2

Algorithm to find an optimal strategy: keep switching.

Average and MIN
We consider SSG with MIN and average vertices only.
Equivalent to a SSG with a fixed strategy for MAX.

The switch:
Let x be a MIN vertex. Suppose
vτ (x) = vτ (x1) > vτ (x2))

Switching τ at x :
τ ′(x) = x2 and equal to τ ′ = τ elsewhere.

A switch is profitable for MIN: τ ′ < τ

x
vσ,τ = 0.7

x1
vσ,τ = 0.7

x2

vσ,τ = 0.4

x
x1

x2

Algorithm to find an optimal strategy: keep switching.

Average and MIN
We consider SSG with MIN and average vertices only.
Equivalent to a SSG with a fixed strategy for MAX.

The switch:
Let x be a MIN vertex. Suppose
vτ (x) = vτ (x1) > vτ (x2))

Switching τ at x :
τ ′(x) = x2 and equal to τ ′ = τ elsewhere.

A switch is profitable for MIN: τ ′ < τ

x
vσ,τ = 0.7

x1
vσ,τ = 0.7

x2

vσ,τ = 0.4

x
x1

x2

Algorithm to find an optimal strategy: keep switching.

Average and MIN
We consider SSG with MIN and average vertices only.
Equivalent to a SSG with a fixed strategy for MAX.

The switch:
Let x be a MIN vertex. Suppose
vτ (x) = vτ (x1) > vτ (x2))

Switching τ at x :
τ ′(x) = x2 and equal to τ ′ = τ elsewhere.

A switch is profitable for MIN: τ ′ < τ

x
vσ,τ = 0.7

x1
vσ,τ = 0.7

x2

vσ,τ = 0.4

x
x1

x2

Algorithm to find an optimal strategy: keep switching.

Faster Computation of a Best Response

Fσ :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN

vσ(x) if x ∈ VMAX
1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

I Operator Fσ is contracting (sup norm)
→ single fixed point = value vector of σ

I Solving Fσv = v by linear programing

max
∑

i
vi

Fσ(v) ≤ v

Polytime algorithm to compute vσ(x).

Faster Computation of a Best Response

Fσ :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN

vσ(x) if x ∈ VMAX
1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

I Operator Fσ is contracting (sup norm)
→ single fixed point = value vector of σ

I Solving Fσv = v by linear programing

max
∑

i
vi

Fσ(v) ≤ v

Polytime algorithm to compute vσ(x).

Faster Computation of a Best Response

Fσ :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN

vσ(x) if x ∈ VMAX
1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

I Operator Fσ is contracting (sup norm)
→ single fixed point = value vector of σ

I Solving Fσv = v by linear programing

max
∑

i
vi

Fσ(v) ≤ v

Polytime algorithm to compute vσ(x).

Faster Computation of a Best Response

Fσ :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN

vσ(x) if x ∈ VMAX
1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

I Operator Fσ is contracting (sup norm)
→ single fixed point = value vector of σ

I Solving Fσv = v by linear programing

max
∑

i
vi

Fσ(v) ≤ v

Polytime algorithm to compute vσ(x).

Fixpoint
A generalization of the fixpoint method to SSG:

F :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN
max(vx1 , vx2) if x ∈ VMAX

1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value
vector.

Computing the values is in the class PPAD.
Does not converge fast.

A A A A 1

Fixpoint
A generalization of the fixpoint method to SSG:

F :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN
max(vx1 , vx2) if x ∈ VMAX

1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value
vector.

Computing the values is in the class PPAD.
Does not converge fast.

A A A A 1

Fixpoint
A generalization of the fixpoint method to SSG:

F :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN
max(vx1 , vx2) if x ∈ VMAX

1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value
vector.

Computing the values is in the class PPAD.
Does not converge fast.

A A A A 1

Fixpoint
A generalization of the fixpoint method to SSG:

F :


[0, 1]V −→ [0, 1]V

vx 7−→


min(vx1 , vx2) if x ∈ VMIN
max(vx1 , vx2) if x ∈ VMAX

1
2vx1 + 1

2vx2 if x ∈ VAVE

where the values of sinks are replaced by 0 or 1.

The operator F is contracting and its fixpoint is the optimal value
vector.

Computing the values is in the class PPAD.
Does not converge fast.

A A A A 1

Hoffman-Karp Algorithm
The strategy improvement algorithm or Hoffman-Karp algorithm:
1. choose σ0 and let τ0 = τ(σ0) (best response)
2. while (σk , τk) is not optimal, obtain σk+1 by switching σk ; let
τk+1 = τ(σk+1)

Lemma
For all k, vσk+1,τk+1 > vσk ,τk

Theorem (Tripathi, Valkanova, Kumar)
The HK algorithm makes at most O(2n/n) iterations

Computing the value is thus in PLS but the algorithm can take
exponential time:

I Friedmann (2009) gives a counter-example for parity game
with 2

√
n iterations, claimed 2cn .

I Andersson (2009) shows that this counterexample survives the
reduction

Hoffman-Karp Algorithm
The strategy improvement algorithm or Hoffman-Karp algorithm:
1. choose σ0 and let τ0 = τ(σ0) (best response)
2. while (σk , τk) is not optimal, obtain σk+1 by switching σk ; let
τk+1 = τ(σk+1)

Lemma
For all k, vσk+1,τk+1 > vσk ,τk

Theorem (Tripathi, Valkanova, Kumar)
The HK algorithm makes at most O(2n/n) iterations

Computing the value is thus in PLS but the algorithm can take
exponential time:

I Friedmann (2009) gives a counter-example for parity game
with 2

√
n iterations, claimed 2cn .

I Andersson (2009) shows that this counterexample survives the
reduction

Hoffman-Karp Algorithm
The strategy improvement algorithm or Hoffman-Karp algorithm:
1. choose σ0 and let τ0 = τ(σ0) (best response)
2. while (σk , τk) is not optimal, obtain σk+1 by switching σk ; let
τk+1 = τ(σk+1)

Lemma
For all k, vσk+1,τk+1 > vσk ,τk

Theorem (Tripathi, Valkanova, Kumar)
The HK algorithm makes at most O(2n/n) iterations

Computing the value is thus in PLS but the algorithm can take
exponential time:

I Friedmann (2009) gives a counter-example for parity game
with 2

√
n iterations, claimed 2cn .

I Andersson (2009) shows that this counterexample survives the
reduction

Counter-Example

No average vertices

Deterministic graphical games
(Washburn 1966, Andersson
et al. 2012)

Definition = SSG without
average vertices, but allow
sinks with arbitrary payoffs

Solving DGG in linear time by backtracking
While possible :
1. sink s with maximal payoff: incoming MIN arcs never go

there if they have a choice: delete arc or merge
2. Do the opposite for the minimum payoff sink.

In the end, the vertices with no connection to sinks have value 0.

No average vertices

Deterministic graphical games
(Washburn 1966, Andersson
et al. 2012)

Definition = SSG without
average vertices, but allow
sinks with arbitrary payoffs

Solving DGG in linear time by backtracking
While possible :
1. sink s with maximal payoff: incoming MIN arcs never go

there if they have a choice: delete arc or merge
2. Do the opposite for the minimum payoff sink.

In the end, the vertices with no connection to sinks have value 0.

Few average vertices

Theorem (Gimbert and Horn 2009)
There is an algorithm which computes values and optimal
strategies of SSGs with n vertices and k average vertices in time
O (k!n).

(Moreover the outdegree of nodes is unlimited)

I A strategy consists in choosing among nodes. Hence a
preference order on all nodes yields a strategy.

I An order on VAVE is enough.

0 < a1 < a2 · · · ak < 1

MAX tries to force the next average vertex to be large.
MIN tries to force the next average vertex to be small.

Few average vertices

Theorem (Gimbert and Horn 2009)
There is an algorithm which computes values and optimal
strategies of SSGs with n vertices and k average vertices in time
O (k!n).

(Moreover the outdegree of nodes is unlimited)

I A strategy consists in choosing among nodes. Hence a
preference order on all nodes yields a strategy.

I An order on VAVE is enough.

0 < a1 < a2 · · · ak < 1

MAX tries to force the next average vertex to be large.
MIN tries to force the next average vertex to be small.

Few average vertices

Theorem (Gimbert and Horn 2009)
There is an algorithm which computes values and optimal
strategies of SSGs with n vertices and k average vertices in time
O (k!n).

(Moreover the outdegree of nodes is unlimited)

I A strategy consists in choosing among nodes. Hence a
preference order on all nodes yields a strategy.

I An order on VAVE is enough.

0 < a1 < a2 · · · ak < 1

MAX tries to force the next average vertex to be large.
MIN tries to force the next average vertex to be small.

Directed Acyclic Graphs

A directed acyclic graph is a graph without a directed cycle.

Algorithm:
The sinks are initialized to 0 and 1
While possible:

I x ∈ VMAX , v(x) = max(v(x1), v(x2))
I x ∈ VMIN , v(x) = min(v(x1), v(x2))
I x ∈ VAVE , v(x) = 1

2v(x1) + 1
2v(x2)

Directed Acyclic Graphs

A directed acyclic graph is a graph without a directed cycle.

Algorithm:
The sinks are initialized to 0 and 1
While possible:

I x ∈ VMAX , v(x) = max(v(x1), v(x2))
I x ∈ VMIN , v(x) = min(v(x1), v(x2))
I x ∈ VAVE , v(x) = 1

2v(x1) + 1
2v(x2)

Almost Acyclic: Tree-Width

Definition (Tree Decomposition)
A tree decomposition of a graph G is a
pair (T ,X) where X = {X1, . . . ,Xn} is
a family of subsets (or bags) of V (G)
and T is a tree whose nodes are the Xi
such that:

I the union of the Xi equals V (G)
I every edge (u, v) ∈ E(G) is

included in some Xi .
I for each u in V (G) the set of Xi

which contains u is connex.

width = maxi |Xi |

treewidth = min(T ,X) width(T ,X)

1

2
3

4 5 6

7

1

2

2

37 3 75

3 54

567

Almost Acyclic: Tree-Width

Definition (Tree Decomposition)
A tree decomposition of a graph G is a
pair (T ,X) where X = {X1, . . . ,Xn} is
a family of subsets (or bags) of V (G)
and T is a tree whose nodes are the Xi
such that:

I the union of the Xi equals V (G)
I every edge (u, v) ∈ E(G) is

included in some Xi .
I for each u in V (G) the set of Xi

which contains u is connex.

width = maxi |Xi |

treewidth = min(T ,X) width(T ,X)

1

2
3

4 5 6

7

1

2

2

37 3 75

3 54

567

Almost Acyclic: Tree-Width

Definition (Tree Decomposition)
A tree decomposition of a graph G is a
pair (T ,X) where X = {X1, . . . ,Xn} is
a family of subsets (or bags) of V (G)
and T is a tree whose nodes are the Xi
such that:

I the union of the Xi equals V (G)
I every edge (u, v) ∈ E(G) is

included in some Xi .
I for each u in V (G) the set of Xi

which contains u is connex.

width = maxi |Xi |

treewidth = min(T ,X) width(T ,X)

1

2
3

4 5 6

7

1

2

2

37 3 75

3 54

567

Solving Bounded Treewidth SSGs

Theorem (Work in progress)
For all k ∈ N, the SSG value problem is in P when restricted to
SSGs of treewidth bounded by k.

The complexity of the algorithm is in O(k2k2n).

I Notion of directed treewidth to capture DAG and adaptation
to the SSG case.

I Improve the algorithm to be less dependent of k.

I Use ideas to get another way to solve SSG with few average
vertices.

I Is the SSG value problem expressible in MSO over graph?

Solving Bounded Treewidth SSGs

Theorem (Work in progress)
For all k ∈ N, the SSG value problem is in P when restricted to
SSGs of treewidth bounded by k.

The complexity of the algorithm is in O(k2k2n).

I Notion of directed treewidth to capture DAG and adaptation
to the SSG case.

I Improve the algorithm to be less dependent of k.

I Use ideas to get another way to solve SSG with few average
vertices.

I Is the SSG value problem expressible in MSO over graph?

Solving Bounded Treewidth SSGs

Theorem (Work in progress)
For all k ∈ N, the SSG value problem is in P when restricted to
SSGs of treewidth bounded by k.

The complexity of the algorithm is in O(k2k2n).

I Notion of directed treewidth to capture DAG and adaptation
to the SSG case.

I Improve the algorithm to be less dependent of k.

I Use ideas to get another way to solve SSG with few average
vertices.

I Is the SSG value problem expressible in MSO over graph?

Solving Bounded Treewidth SSGs

Theorem (Work in progress)
For all k ∈ N, the SSG value problem is in P when restricted to
SSGs of treewidth bounded by k.

The complexity of the algorithm is in O(k2k2n).

I Notion of directed treewidth to capture DAG and adaptation
to the SSG case.

I Improve the algorithm to be less dependent of k.

I Use ideas to get another way to solve SSG with few average
vertices.

I Is the SSG value problem expressible in MSO over graph?

Solving Bounded Treewidth SSGs

Theorem (Work in progress)
For all k ∈ N, the SSG value problem is in P when restricted to
SSGs of treewidth bounded by k.

The complexity of the algorithm is in O(k2k2n).

I Notion of directed treewidth to capture DAG and adaptation
to the SSG case.

I Improve the algorithm to be less dependent of k.

I Use ideas to get another way to solve SSG with few average
vertices.

I Is the SSG value problem expressible in MSO over graph?

Thanks.

	Introduction to Games
	Fundamental Properties of SSGs and Complexity Classes
	Algorithms to solve SSG

