
Enumeration of the monomials of a
polynomial

Yann Strozecki

Université Paris Diderot - Paris 7

Dept. of Computer Science, University of Toronto

January 2011, Toronto
Theory Seminar

Introduction to enumeration

Enumeration of monomials

Interpolation algorithms

Limits to efficient interpolation

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)

I]{y|A(x, y)} : counting problem (class]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)

I]{y|A(x, y)} : counting problem (class]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y|A(x, y)} : counting problem (class]P)

I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y|A(x, y)} : counting problem (class]P)

I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y|A(x, y)} : counting problem (class]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y|A(x, y)} : counting problem (class]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y|A(x, y)} : counting problem (class]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions

I polynomial total time: TotalP
2. the delay

I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay

I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay

I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP

I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Introduction to enumeration

Enumeration of monomials

Interpolation algorithms

Limits to efficient interpolation

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

X1 = 1, X2 = 2, X3 = 1

1 ∗ 2 + 1 ∗ 1 + 2 + 1

Output = 6

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

X1 = −1, X2 = 1, X3 = 2

−1 ∗ 1 +−1 ∗ 2 + 1 + 2

Output = 0

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Parameters: number of variables and total degree.

I Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the
other.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Parameters: number of variables and total degree.
I Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the
other.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Parameters: number of variables and total degree.
I Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the
other.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Parameters: number of variables and total degree.
I Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the
other.

Existing interpolation methods

I Zippel (1990): use a dense interpolation on a polynomial with
a restricted number of variables

I Ben Or and Tiwari (1988): evaluation on big power of prime
numbers

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

I Zippel (1990): use a dense interpolation on a polynomial with
a restricted number of variables

I Ben Or and Tiwari (1988): evaluation on big power of prime
numbers

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

I Zippel (1990): use a dense interpolation on a polynomial with
a restricted number of variables

I Ben Or and Tiwari (1988): evaluation on big power of prime
numbers

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

I Zippel (1990): use a dense interpolation on a polynomial with
a restricted number of variables

I Ben Or and Tiwari (1988): evaluation on big power of prime
numbers

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

I Zippel (1990): use a dense interpolation on a polynomial with
a restricted number of variables

I Ben Or and Tiwari (1988): evaluation on big power of prime
numbers

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph

I Determinant of the Kirchoff matrix: spanning trees
I Determinant of the Tutte matrix: perfect matchings of

bipartite graphs
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph
I Determinant of the Kirchoff matrix: spanning trees

I Determinant of the Tutte matrix: perfect matchings of
bipartite graphs

I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:
spanning hypertrees of a 3-uniform hypergraph

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph
I Determinant of the Kirchoff matrix: spanning trees
I Determinant of the Tutte matrix: perfect matchings of

bipartite graphs

I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:
spanning hypertrees of a 3-uniform hypergraph

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph
I Determinant of the Kirchoff matrix: spanning trees
I Determinant of the Tutte matrix: perfect matchings of

bipartite graphs
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph
I Determinant of the Kirchoff matrix: spanning trees
I Determinant of the Tutte matrix: perfect matchings of

bipartite graphs
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph
I Determinant of the Kirchoff matrix: spanning trees
I Determinant of the Tutte matrix: perfect matchings of

bipartite graphs
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph

Only multilinear polynomials.

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

Introduction to enumeration

Enumeration of monomials

Interpolation algorithms

Limits to efficient interpolation

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.

Polynomials whose monomials have distinct
supports

The support of a monomial is the set of indices of variables which
appears in the monomial. The support of X1X2

3 X5 is {1, 3, 5}.

Write PL for the polynomial P where all variables with indices
outside of L set to 0.

Example

P = X1X2
3 X5 + X4

2 X3 + X1X4 + X2

P{2,3,4} = X4
2 X3 + X2

Lemma
Let P be a polynomial without constant term and whose
monomials have different supports and L a minimal set (for
inclusion) of variables such that PL is not identically zero. Then
PL is a monomial of support L.

Polynomials whose monomials have distinct
supports

The support of a monomial is the set of indices of variables which
appears in the monomial. The support of X1X2

3 X5 is {1, 3, 5}.

Write PL for the polynomial P where all variables with indices
outside of L set to 0.

Example

P = X1X2
3 X5 + X4

2 X3 + X1X4 + X2

P{2,3,4} = X4
2 X3 + X2

Lemma
Let P be a polynomial without constant term and whose
monomials have different supports and L a minimal set (for
inclusion) of variables such that PL is not identically zero. Then
PL is a monomial of support L.

Polynomials whose monomials have distinct
supports

The support of a monomial is the set of indices of variables which
appears in the monomial. The support of X1X2

3 X5 is {1, 3, 5}.

Write PL for the polynomial P where all variables with indices
outside of L set to 0.

Example

P = X1X2
3 X5 + X4

2 X3 + X1X4 + X2

P{2,3,4} = X4
2 X3 + X2

Lemma
Let P be a polynomial without constant term and whose
monomials have different supports and L a minimal set (for
inclusion) of variables such that PL is not identically zero. Then
PL is a monomial of support L.

Finding one monomial

Hypothesis: polynomials whose monomials have distinct supports

Easy to find a monomial of minimal support with a polynomial
number of calls to the black box

I build a minimal set L such that PL is not zero by successively
setting each variable to 0 while the polynomial is not zero
(property verified by a probabilistic test)

I once we have found the support determine the degree and
coefficient by some appropriate evaluation of PL

This procedure allows to find a monomial in polynomial time in
the number of variables and the degree and with a probability of
error exponentially small.

Finding one monomial

Hypothesis: polynomials whose monomials have distinct supports

Easy to find a monomial of minimal support with a polynomial
number of calls to the black box

I build a minimal set L such that PL is not zero by successively
setting each variable to 0 while the polynomial is not zero
(property verified by a probabilistic test)

I once we have found the support determine the degree and
coefficient by some appropriate evaluation of PL

This procedure allows to find a monomial in polynomial time in
the number of variables and the degree and with a probability of
error exponentially small.

Finding one monomial

Hypothesis: polynomials whose monomials have distinct supports

Easy to find a monomial of minimal support with a polynomial
number of calls to the black box

I build a minimal set L such that PL is not zero by successively
setting each variable to 0 while the polynomial is not zero
(property verified by a probabilistic test)

I once we have found the support determine the degree and
coefficient by some appropriate evaluation of PL

This procedure allows to find a monomial in polynomial time in
the number of variables and the degree and with a probability of
error exponentially small.

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1

→ 1
I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3

→ 4

I L = {4} evaluation of PL on X4 = 2

→ 0

I L = {3} evaluation of PL on X3 = 1

→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3

→ 4

I L = {4} evaluation of PL on X4 = 2

→ 0

I L = {3} evaluation of PL on X3 = 1

→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3

→ 4
I L = {4} evaluation of PL on X4 = 2

→ 0

I L = {3} evaluation of PL on X3 = 1

→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2

→ 0

I L = {3} evaluation of PL on X3 = 1

→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2

→ 0
I L = {3} evaluation of PL on X3 = 1

→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2
→ 0

I L = {3} evaluation of PL on X3 = 1

→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2
→ 0

I L = {3} evaluation of PL on X3 = 1

→ 1
I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2
→ 0

I L = {3} evaluation of PL on X3 = 1
→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2
→ 0

I L = {3} evaluation of PL on X3 = 1
→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2
→ 0

I L = {3} evaluation of PL on X3 = 1
→ 1

I stop

Support: L = {3}

Building L, an example:

P(X1,X2,X3,X4) = X3
1 X2 + X1X3 − 3X2X4 + X2

3

L = {1, 2, 3, 4}

I L = {2, 3, 4} evaluation of PL on X2 = 1,X3 = 1, X4 = 1
→ 1

I L = {3, 4} evaluation of PL on X3 = 2, X4 = 3
→ 4

I L = {4} evaluation of PL on X4 = 2
→ 0

I L = {3} evaluation of PL on X3 = 1
→ 1

I stop

Support: L = {3}

Finding one monomial

Hypothesis: polynomials whose monomials have distinct supports

Easy to find a monomial of minimal support with a polynomial
number of calls to the black box

I build a minimal set L such that PL is not zero by successively
setting each variable to 0 while the polynomial is not zero
(property verified by a probabilistic test)

I once we have found the support determine the degree and
coefficient by some appropriate evaluation of PL

This procedure allows to find a monomial in polynomial time in
the number of variables and the degree and with a probability of
error exponentially small.

Finding one monomial

Hypothesis: polynomials whose monomials have distinct supports

Easy to find a monomial of minimal support with a polynomial
number of calls to the black box

I build a minimal set L such that PL is not zero by successively
setting each variable to 0 while the polynomial is not zero
(property verified by a probabilistic test)

I once we have found the support determine the degree and
coefficient by some appropriate evaluation of PL

This procedure allows to find a monomial in polynomial time in
the number of variables and the degree and with a probability of
error exponentially small.

Theorem
Let P be a polynomial whose monomials have distinct supports
with n variables, t monomials and a total degree D. There is an
algorithm which computes the set of monomials of P with
probability 1− ε. The delay between the ith and i + 1th monomials
is bounded by O(iDn2(n + log(ε−1))) in time and
O(n(n + log(ε−1))) calls to the oracle. The algorithm performs
O(tn(n + log(ε−1))) calls to the oracle on points of size log(2D).

Delay: incremental in time and polynomial in the number of calls
to the oracle.

Partial degree

We want to determine the degree of a subset S of variables of the
polynomial.

1. pick random values for variables outside of S and look at the
remaining polynomial as an univariate one, interpolate it to
get its degree

2. evaluate the polynomial on a large value for the variables of S
and small random values for the others

3. if the polynomial is given by a circuit, transform it into its
homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially
small), and in polynomial time in the number of variables and the
degree.

Partial degree

We want to determine the degree of a subset S of variables of the
polynomial.

1. pick random values for variables outside of S and look at the
remaining polynomial as an univariate one, interpolate it to
get its degree

2. evaluate the polynomial on a large value for the variables of S
and small random values for the others

3. if the polynomial is given by a circuit, transform it into its
homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially
small), and in polynomial time in the number of variables and the
degree.

Partial degree

We want to determine the degree of a subset S of variables of the
polynomial.

1. pick random values for variables outside of S and look at the
remaining polynomial as an univariate one, interpolate it to
get its degree

2. evaluate the polynomial on a large value for the variables of S
and small random values for the others

3. if the polynomial is given by a circuit, transform it into its
homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially
small), and in polynomial time in the number of variables and the
degree.

Partial degree

We want to determine the degree of a subset S of variables of the
polynomial.

1. pick random values for variables outside of S and look at the
remaining polynomial as an univariate one, interpolate it to
get its degree

2. evaluate the polynomial on a large value for the variables of S
and small random values for the others

3. if the polynomial is given by a circuit, transform it into its
homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially
small), and in polynomial time in the number of variables and the
degree.

Partial degree

We want to determine the degree of a subset S of variables of the
polynomial.

1. pick random values for variables outside of S and look at the
remaining polynomial as an univariate one, interpolate it to
get its degree

2. evaluate the polynomial on a large value for the variables of S
and small random values for the others

3. if the polynomial is given by a circuit, transform it into its
homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially
small), and in polynomial time in the number of variables and the
degree.

Improving the delay

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

When the polynomial is multilinear, this problem can be solved by
finding the degree of PL̄1

with regard to L2: test if the degree is
equal to |L2|.

Use this procedure for a depth first traversal of a tree whose leaves
are the monomials.

Improving the delay

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

When the polynomial is multilinear, this problem can be solved by
finding the degree of PL̄1

with regard to L2: test if the degree is
equal to |L2|.

Use this procedure for a depth first traversal of a tree whose leaves
are the monomials.

Improving the delay

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

When the polynomial is multilinear, this problem can be solved by
finding the degree of PL̄1

with regard to L2: test if the degree is
equal to |L2|.

Use this procedure for a depth first traversal of a tree whose leaves
are the monomials.

∅, ∅

{X1}, ∅ ∅, {X1}

0 0

5X2 X1X3−X2X3 2X1

{X1,X2}, ∅ ∅, {X1,X2}

5X2 −X2X3 X1 + X1X3

P(X1,X2,X3) = 2X1 −X2X3 + X1X3 + 5X2

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables and a total
degree D. There is an algorithm which computes the set of
monomials of P with probability 1− ε and a delay polynomial in
n, D and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).
I On classes of polynomials given by circuits on which PIT can

be derandomized, this algorithm also can be derandomized.
STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich:
deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables and a total
degree D. There is an algorithm which computes the set of
monomials of P with probability 1− ε and a delay polynomial in
n, D and log(ε)−1.

I The algorithm can be parallelized.

I It works on finite fields of small characteristic (can be used to
speed up computation).

I On classes of polynomials given by circuits on which PIT can
be derandomized, this algorithm also can be derandomized.
STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich:
deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables and a total
degree D. There is an algorithm which computes the set of
monomials of P with probability 1− ε and a delay polynomial in
n, D and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).

I On classes of polynomials given by circuits on which PIT can
be derandomized, this algorithm also can be derandomized.
STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich:
deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables and a total
degree D. There is an algorithm which computes the set of
monomials of P with probability 1− ε and a delay polynomial in
n, D and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).
I On classes of polynomials given by circuits on which PIT can

be derandomized, this algorithm also can be derandomized.
STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich:
deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables and a total
degree D. There is an algorithm which computes the set of
monomials of P with probability 1− ε and a delay polynomial in
n, D and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).
I On classes of polynomials given by circuits on which PIT can

be derandomized, this algorithm also can be derandomized.
STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich:
deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in

Comparison to other algorithms

Ben-Or Tiwari Zippel KS My Algorithm
Algorithm type Deterministic Probabilistic Probabilistic Probabilistic
Number of calls 2T tnD tn7D4 tnD(n + log(ε−1))
Total time Quadratic in T Quadratic in t Quadratic in t Linear in t
Enumeration Exponential TotalPP IncPP DelayPP
Size of points T log(n) log(nT2ε−1) log(nDε−1) log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear
polynomials.

Comparison to other algorithms

Ben-Or Tiwari Zippel KS My Algorithm
Algorithm type Deterministic Probabilistic Probabilistic Probabilistic
Number of calls 2T tnD tn7D4 tnD(n + log(ε−1))
Total time Quadratic in T Quadratic in t Quadratic in t Linear in t
Enumeration Exponential TotalPP IncPP DelayPP
Size of points T log(n) log(nT2ε−1) log(nDε−1) log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear
polynomials.

Higher degree polynomials

Interpolating a polynomial of degree d?

Only known methods use the trick of substracting a monomial:
incremental time.

Aim: reducing the number of calls to the black-box at each step.

I KS algorithm: O(n7D4) calls
I The idea of the two presented algorithms combined to find

the ”highest“ degree polynomial: O(n2Dd−1) calls

Open question: how to efficiently represent and compute the
partial polynomial at each step? Easier with circuits, formula,
polynomial of low degree, over fixed finite fields ?

Higher degree polynomials

Interpolating a polynomial of degree d?

Only known methods use the trick of substracting a monomial:
incremental time.

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls

I The idea of the two presented algorithms combined to find
the ”highest“ degree polynomial: O(n2Dd−1) calls

Open question: how to efficiently represent and compute the
partial polynomial at each step? Easier with circuits, formula,
polynomial of low degree, over fixed finite fields ?

Higher degree polynomials

Interpolating a polynomial of degree d?

Only known methods use the trick of substracting a monomial:
incremental time.

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls
I The idea of the two presented algorithms combined to find

the ”highest“ degree polynomial: O(n2Dd−1) calls

Open question: how to efficiently represent and compute the
partial polynomial at each step? Easier with circuits, formula,
polynomial of low degree, over fixed finite fields ?

Higher degree polynomials

Interpolating a polynomial of degree d?

Only known methods use the trick of substracting a monomial:
incremental time.

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls
I The idea of the two presented algorithms combined to find

the ”highest“ degree polynomial: O(n2Dd−1) calls

Open question: how to efficiently represent and compute the
partial polynomial at each step? Easier with circuits, formula,
polynomial of low degree, over fixed finite fields ?

Higher degree polynomials

Interpolating a polynomial of degree d?

Only known methods use the trick of substracting a monomial:
incremental time.

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls
I The idea of the two presented algorithms combined to find

the ”highest“ degree polynomial: O(n2Dd−1) calls

Open question: how to efficiently represent and compute the
partial polynomial at each step? Easier with circuits, formula,
polynomial of low degree, over fixed finite fields ?

Introduction to enumeration

Enumeration of monomials

Interpolation algorithms

Limits to efficient interpolation

Limits to efficient interpolation

Non-Zero-Monomial
Input: a polynomial and a term ~X~e

Output: accept if ~X~e has a coefficient different from zero in the
polynomial

Monomial-Coefficient
Input: a polynomial given as a circuit and a term ~X~e

Output: return the coefficient of ~X~e in the polynomial

Algorithm similar to the polynomial delay one can solve both these
problems.

Idea: if they are hard for some family of easy to compute
polynomials, the polynomial delay interpolation should also be hard

Limits to efficient interpolation

Non-Zero-Monomial
Input: a polynomial and a term ~X~e

Output: accept if ~X~e has a coefficient different from zero in the
polynomial

Monomial-Coefficient
Input: a polynomial given as a circuit and a term ~X~e

Output: return the coefficient of ~X~e in the polynomial

Algorithm similar to the polynomial delay one can solve both these
problems.

Idea: if they are hard for some family of easy to compute
polynomials, the polynomial delay interpolation should also be hard

Limits to efficient interpolation

Non-Zero-Monomial
Input: a polynomial and a term ~X~e

Output: accept if ~X~e has a coefficient different from zero in the
polynomial

Monomial-Coefficient
Input: a polynomial given as a circuit and a term ~X~e

Output: return the coefficient of ~X~e in the polynomial

Algorithm similar to the polynomial delay one can solve both these
problems.

Idea: if they are hard for some family of easy to compute
polynomials, the polynomial delay interpolation should also be hard

Limits to efficient interpolation

Non-Zero-Monomial
Input: a polynomial and a term ~X~e

Output: accept if ~X~e has a coefficient different from zero in the
polynomial

Monomial-Coefficient
Input: a polynomial given as a circuit and a term ~X~e

Output: return the coefficient of ~X~e in the polynomial

Algorithm similar to the polynomial delay one can solve both these
problems.

Idea: if they are hard for some family of easy to compute
polynomials, the polynomial delay interpolation should also be hard

Degree n polynomial

Proposition
The problem Monomial-Coefficient is #P-hard.

Proof.

Q(X ,Y) =
n∏

i=1
(

n∑
j=1

Xi,jYj)

The term T =
n∏

j=1
Yj has

∑
σ∈Σn

n∏
i=1

Xi,σ(i) for coefficient, which is

the Permanent in the variables Xi,j .

Degree n polynomial

Proposition
The problem Monomial-Coefficient is #P-hard.

Proof.

Q(X ,Y) =
n∏

i=1
(

n∑
j=1

Xi,jYj)

The term T =
n∏

j=1
Yj has

∑
σ∈Σn

n∏
i=1

Xi,σ(i) for coefficient, which is

the Permanent in the variables Xi,j .

Degree 3 polynomial

Proposition
The problem Non-Zero-Monomial restricted to degree 3
polynomials is NP-hard.

Proof.
Reduction from Exact-Cover:∏

{i,j,k}∈C
(XiXjXk + 1)

There is an exact cover if
∏

i∈[n] Xi has a coefficient different from
zero

Degree 3 polynomial

Proposition
The problem Non-Zero-Monomial restricted to degree 3
polynomials is NP-hard.

Proof.
Reduction from Exact-Cover:∏

{i,j,k}∈C
(XiXjXk + 1)

There is an exact cover if
∏

i∈[n] Xi has a coefficient different from
zero

Degree 2 polynomial
Proposition
The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed
graphs. Use a polynomial derived from the Matrix Tree theorem.
Use Non-Zero-Monomial on a polynomial number of terms of
this polynomial, if one is in there is a spanning tree which is also
an Hamiltonian path.

I These proofs are for polynomials of small degree and (except
the last) given by small depth circuits!

I Conclusion: some monomials are harder than others.
I Question of Kayal: what is the complexity of computing the

leading monomial of a depth three circuit?

Degree 2 polynomial
Proposition
The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed
graphs. Use a polynomial derived from the Matrix Tree theorem.
Use Non-Zero-Monomial on a polynomial number of terms of
this polynomial, if one is in there is a spanning tree which is also
an Hamiltonian path.

I These proofs are for polynomials of small degree and (except
the last) given by small depth circuits!

I Conclusion: some monomials are harder than others.
I Question of Kayal: what is the complexity of computing the

leading monomial of a depth three circuit?

Degree 2 polynomial
Proposition
The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed
graphs. Use a polynomial derived from the Matrix Tree theorem.
Use Non-Zero-Monomial on a polynomial number of terms of
this polynomial, if one is in there is a spanning tree which is also
an Hamiltonian path.

I These proofs are for polynomials of small degree and (except
the last) given by small depth circuits!

I Conclusion: some monomials are harder than others.

I Question of Kayal: what is the complexity of computing the
leading monomial of a depth three circuit?

Degree 2 polynomial
Proposition
The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed
graphs. Use a polynomial derived from the Matrix Tree theorem.
Use Non-Zero-Monomial on a polynomial number of terms of
this polynomial, if one is in there is a spanning tree which is also
an Hamiltonian path.

I These proofs are for polynomials of small degree and (except
the last) given by small depth circuits!

I Conclusion: some monomials are harder than others.
I Question of Kayal: what is the complexity of computing the

leading monomial of a depth three circuit?

Degree 2 polynomial
Proposition
The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed
graphs. Use a polynomial derived from the Matrix Tree theorem.
Use Non-Zero-Monomial on a polynomial number of terms of
this polynomial, if one is in there is a spanning tree which is also
an Hamiltonian path.

I These proofs are for polynomials of small degree and (except
the last) given by small depth circuits!

I Conclusion: some monomials are harder than others.
I Question of Kayal: what is the complexity of computing the

leading monomial of a depth three circuit?

Thank for listening!

Shameless self-promotion

I am a new Post-doc here, working with Pascal Koiran and
Natacha Portier.
Interested to work in complexity in general and especially:

I decomposition of matroids, hypergraphs and other structures
(width notions)

I circuit complexity
I enumeration complexity
I implicit complexity

	Introduction to enumeration
	Enumeration of monomials
	Interpolation algorithms
	Limits to efficient interpolation

