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Two important objects : bases and circuits.
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Here the set {1,2,4} is independent whereas {1,2,3,4} and
{1,2,5} are dependent.
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3

Here the set {1,2,4} is independent whereas {1,2,3,4} and
{1,2,5} are dependent.
Basis are spanning trees and circuits are cycles.



Definition




Definition

— = o
=
_— o O
— =

Here the set {1,2,4} is independent and {1, 2,3} is dependent.
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Here the set {1,2,4} is independent and {1, 2,3} is dependent.
Every cycle matroid is also a vector matroid (over Fy).



The monadic second-order logic (MSOy,) on matroids is defined
from the following relations :

1. =, the equality for element and set of the matroid

2. e € F, where ¢ is an element of the set F

3. indep(F), where F is a set and the predicate is true iff F'is
an independent set of the matroid
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The monadic second-order logic (MSOy,) on matroids is defined
from the following relations :

1. =, the equality for element and set of the matroid
2. e € F, where ¢ is an element of the set F

3. indep(F), where F is a set and the predicate is true iff F'is
an independent set of the matroid

Being a circuit :
—indep(X) A\VY (Y € XV X =Y Vindep(Y))
Hamiltonicity for a graph :

3AC circuit(C) A Iz basis(C \ {z})



From MSO); to MSO on enhanced trees
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Three important spaces are defined at each node s of the tree :

» E is the subspace generated by all the leaves of the tree
rooted in s









Three important spaces are defined at each node s of the tree :

» E is the subspace generated by all the leaves of the tree
rooted in s

> E¢ is the subspace generated by all the leaves not in the tree
rooted in s






Three important spaces are defined at each node s of the tree :

» E is the subspace generated by all the leaves of the tree
rooted in s

> E¢ is the subspace generated by all the leaves not in the tree
rooted in s

> B, is the intersection of E; and Ef
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The width at s is the dimension of B, and the width of the
decomposition is the maximum over all nodes.



The width at s is the dimension of B, and the width of the
decomposition is the maximum over all nodes.

The branch-width of a matroid is the minimum of the widths of its
branch decompositions.



The width at s is the dimension of By and the width of the
decomposition is the maximum over all nodes.

The branch-width of a matroid is the minimum of the widths of its
branch decompositions.

Theorem (Hlinény and Oum)




Representing the matroid by local information : Enhanced
Tree



Representing the matroid by local information : Enhanced
Tree

A node s with children s; and so. A characteristic matrix of s
contains the bases of By,, Bs, and Bs.



Representing the matroid by local information : Enhanced
Tree

A node s with children s; and so. A characteristic matrix of s
contains the bases of By, B,, and Bs.

Definition (Enhanced branch decomposition tree)
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Matroid grammars



We now want to prove the following theorem :

Theorem (Hlinény 2006)




We now want to prove the following theorem :
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Aim : a characterization of the dependent sets.



Aim : a characterization of the dependent sets.
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Aim : a characterization of the dependent sets.

Definition (Signature)

Definition (Signature of a set)







— X admits the signature (1)



Definition




Local characterization :

Lemma







Theorem (Characterization of dependency)




> These signatures are represented by the set X of set variables
X), indexed by all signatures A of size at most ¢.
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» X,(s) holds if and only if A is the signature at s.



> These signatures are represented by the set X of set variables
X), indexed by all signatures A of size at most ¢.

» X,(s) holds if and only if A is the signature at s.

» The number of such variables is kt.
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These signatures are represented by the set X of set variables
X), indexed by all signatures A of size at most ¢.

X(s) holds if and only if A is the signature at s.
The number of such variables is k?.

Consistency :

QX)) =Vs \/ (XA(S) A\ ﬂX,\/(s))

A N#£X



First condition, for every node s labeled by N with children s; and
s2, R(N, A5, As;, Asy) holds :

U1 (X) = Vs—leaf(s) = [Ts1, 52 lehild(s, s1) A rehild(s, s2)

/\ (label(s) =NA X,\l(sl) VAN X)\Q(SQ) AN X)\<S)) = R(N, A, A, )\2)]
A1,A2,\, N



Second condition, for every leaf s, Ay % @ only if s is in bijection
with an element of X and s is labeled by the matrix («) with

a#0:
Uy(V, X) = Vs (leaf (s) A ~Xp(s)) = (Y(s) A label(s) # (0))



Third condition, the signature at the root is (0,...,0) :

U3(X) = Is root(s) A X,..,0)(8)



By combination of the three previous formulas we obtain a MSO
formula for Indep(X), of size O((k + 1)9t2+3t)_



By combination of the three previous formulas we obtain a MSO
formula for Indep(X), of size O((k + 1)9t2+3t)_

We build the MSO formula F'(¢) by induction : relativization to
the leaves and the predicate indep is replaced by the formula Indep.



We have then proved

Theorem




An application :

Theorem (Courcelle)




An application :

Theorem (Courcelle)

Corollary




The same theorems can be proved for matroids equipped with
unary predicates (colored matroids).
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A-CirculT
Input : a matroid M and a set A of its elements
Output : accept if there is a circuit C of M such that A C C



The same theorems can be proved for matroids equipped with
unary predicates (colored matroids).

A-CirculT
Input : a matroid M and a set A of its elements
Output : accept if there is a circuit C of M such that A C C

Generalisation of very natural problems and decidable in linear time
over matroids of bounded branch-width. Interesting enumeration
version.
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Build a set of matroids which are not representable.



Build a set of matroids which are not representable.

Definition (Boundaried matroid)




Build a set of matroids which are not representable.

Definition (Boundaried matroid)

We use the series parallel connection.

1

3 3

Series Parallel
Connection Connection
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Aim, prove the following theorem :

Theorem




Definition (Signature)




Definition (Signature)

1. if X is dependent then it is of signature {{},{1}} that we
denote by 2

2. if X is dependent only when we add the boundary element
then it is of signature {{1}} which we denote by 1

3. if X is independent even with the boundary element then it is
of signature () which we denote by 0
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Theorem (Characterization of dependency)




To prove the theorem, two variations :



To prove the theorem, two variations :

1. change R by R,



To prove the theorem, two variations :
1. change R by R,

2. replace each leaf by a subtree with as many leaves as the
matroid which labels the leaf and encode in a formula the
signatures of all subsets of all the matroids of size k



Theorem

Corollary




We can also give an operation on matrices to characterize the
matroids of bounded branch-width.



We can also give an operation on matrices to characterize the
matroids of bounded branch-width.

Use this formalism to study broader classes or different classes
(between the cycle matroids and the vector matroids).



Thanks for listening !
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