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Matroids have been design to abstract the notion of dependence.

Definition
A matroid is a pair (E , I), E is a finite set and I is included in the
power set of E . Elements of I are said to be independent sets, the
others are dependent sets.
A matroid must satisfy the following axioms :

1. ∅ ∈ I

2. If I ∈ I and I ′ ⊆ I , then I ′ ∈ I
3. If I1 and I2 are in I and |I1| < |I2|, then there is an element e

of I2 \ I1 such that I1 ∪ e ∈ I.

Two important objects : bases and circuits.
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Definition
Let G be a graph, the ground set of his cycle matroid is E the set
of his edges. A set is said to be dependent if it contains a cycle.
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Here the set {1, 2, 4} is independent whereas {1, 2, 3, 4} and
{1, 2, 5} are dependent.

Basis are spanning trees and circuits are cycles.
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Definition
Let A be a matrix, the ground set of the matroid defined on A is
the set of the column vectors and a set of column vectors is
independent if they are linearly independent. It is called a vector
matroid.

A =

 1 0 1 0 1
1 1 0 0 1
0 1 1 1 1


Here the set {1, 2, 4} is independent and {1, 2, 3} is dependent.

Every cycle matroid is also a vector matroid (over F2).
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The monadic second-order logic (MSOM ) on matroids is defined
from the following relations :

1. =, the equality for element and set of the matroid
2. e ∈ F , where e is an element of the set F
3. indep(F), where F is a set and the predicate is true iff F is

an independent set of the matroid

Being a circuit :

¬indep(X) ∧ ∀Y (Y * X ∨X = Y ∨ indep(Y ))

Hamiltonicity for a graph :

∃C circuit(C ) ∧ ∃x basis(C \ {x})
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Definition
A branch decomposition of a matroid represented by the matrix X
is a tree whose leaves are in bijection with the columns of X .

X =


1 1 0 0 1 1
0 1 0 1 1 0
1 1 1 0 0 0
0 1 0 0 0 0


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Three important spaces are defined at each node s of the tree :
I Es is the subspace generated by all the leaves of the tree

rooted in s
I Ec

s is the subspace generated by all the leaves not in the tree
rooted in s

I Bs is the intersection of Es and Ec
s
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The width at s is the dimension of Bs and the width of the
decomposition is the maximum over all nodes.

The branch-width of a matroid is the minimum of the widths of its
branch decompositions.

Theorem (Hliněný and Oum)
Let F be a finite field, t a constant and M a F-matroid of size n.
There is an algorithm in time O(n3) which gives a branch
decomposition tree of width at most 3t if the branch-width of M is
at most t + 1. If the branch-width is more than t + 1, the
algorithm may stop with no output.
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Representing the matroid by local information : Enhanced
Tree

A node s with children s1 and s2. A characteristic matrix of s
contains the bases of Bs1 , Bs2 and Bs.

Definition (Enhanced branch decomposition tree)
Let T be a branch decomposition tree of the matroid represented
by A, an enhanced branch decomposition tree is T with, on each
node, a label representing a characteristic matrix at this node.
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We now want to prove the following theorem :

Theorem (Hliněný 2006)
The model checking problem for MSOM is decidable in time
f (t, k, l)× n3 over the set of representable matroids, where f is a
computable function, k the size of the field, t the branch-width
and l the size of the formula.



We now want to prove the following theorem :

Theorem
Let M be a matroid of branch-width less than t, T one of its
enhanced tree and φ(~x) a MSOM formula with free variables ~x, we
have

(M ,~a) |= φ(~x)⇔ (T , f (~a)) |= F(φ(~x))



Aim : a characterization of the dependent sets.

Definition (Signature)
A signature is a sequence of elements of F, denoted
λ = (λ1, . . . , λl).

Definition (Signature of a set)
Let A be a matrix representing a matroid and T one of its
enhanced tree. Let s be a node of T and let X be a subset of the
leaves of Ts which are seen as columns of A. Let v be an element
of Bs, obtained by a nontrivial linear combination of elements of
X . Let c1, . . . , cl denote the column vectors of the third part of Cs.
They form a base of Bs. Thus there is a signature λ = (λ1, . . . , λl)

such that v =
l∑

i=1
λici . We say that X admits the signature λ at s.

The set X also always admits the signature ∅ at s.
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Definition
Let N be a matrix over F divided in three parts (N1|N2|N3), and
let λ, µ, δ be three signatures over F. The submatrix Ni has li
columns, and its jth vector is denoted by N j

i . The relation
R(N , λ, µ, δ) is true if :

I λ = µ = δ = ∅ or
I λ and at least one of µ, δ are not ∅ and the following

equation holds

l1∑
i=1

µiN i
1 +

l2∑
j=1

δjN j
2 =

l3∑
k=1

λkN k
3 (1)

If a signature is ∅, the corresponding sum in Eq. 1 is replaced
by 0.



Local characterization :

Lemma

Let T be an enhanced tree, s one of its nodes with children s1, s2
and N the label of s. Let X1 and X2 be two sets of leaves chosen
amongst the leaves of Ts1 and Ts2 respectively. If X1 admits µ at
s1, X2 admits δ at s2 and R(N , λ, µ, δ) holds then X = X1 ∪X2
admits λ at s.

Lemma

Let T be an enhanced tree, s one of its nodes with children s1, s2
and N the label of s. Let X1 and X2 be two sets of leaves chosen
amongst the leaves of Ts1 and Ts2 respectively. If X = X1 ∪X2
admits λ at s, then there are two signatures µ and δ such that
R(N , λ, µ, δ) holds, X1 admits µ at s1 and X2 admits δ at s2.



s

s1 s2

Nλ

μ δ



Theorem (Characterization of dependency)

Let A be a matrix representing a matroid M , T one of its
enhanced tree and X a set of columns of A. The set X is
dependent if and only if there exists a signature λs for each node s
of the tree T such that :
1. for every node s labeled by N with children s1 and s2,

R(N , λs, λs1 , λs2) holds.
2. for every leaf s, λs 6= ∅ only if s is in bijection with an

element of X and s is labeled by the matrix (α) with α 6= 0.
3. the signature at the root is (0, . . . , 0)



I These signatures are represented by the set ~X of set variables
Xλ indexed by all signatures λ of size at most t.

I Xλ(s) holds if and only if λ is the signature at s.

I The number of such variables is kt .
I Consistency :

Ω( ~Xλ) = ∀s
∨
λ

Xλ(s)
∧
λ′ 6=λ
¬Xλ′(s)


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First condition, for every node s labeled by N with children s1 and
s2, R(N , λs, λs1 , λs2) holds :

Ψ1(~X) ≡ ∀s ¬leaf (s)⇒ [∃s1, s2 lchild(s, s1) ∧ rchild(s, s2)∧
λ1,λ2,λ,N

(label(s) = N ∧Xλ1(s1) ∧Xλ2(s2) ∧Xλ(s))⇒ R(N , λ, λ1, λ2)]



Second condition, for every leaf s, λs 6= ∅ only if s is in bijection
with an element of X and s is labeled by the matrix (α) with
α 6= 0 :

Ψ2(Y , ~X) ≡ ∀s (leaf (s) ∧ ¬X∅(s))⇒ (Y (s) ∧ label(s) 6= (0))



Third condition, the signature at the root is (0, . . . , 0) :

Ψ3(~X) ≡ ∃s root(s) ∧X(0,...,0)(s)



By combination of the three previous formulas we obtain a MSO
formula for Indep(X), of size O((k + 1)9t2+3t).

We build the MSO formula F(φ) by induction : relativization to
the leaves and the predicate indep is replaced by the formula Indep.
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We have then proved

Theorem
Let M be a matroid of branch-width less than t, T̄ one of its
enhanced tree and φ(~x) a MSOM formula with free variables ~x, we
have

(M ,~a) |= φ(~x)⇔ (T̄ , f (~a)) |= F(φ(~x))



An application :

Theorem (Courcelle)
Let φ(X1, . . . ,Xn) be a MSO formula with free variables. For
every tree t, there exists a linear delay enumeration algorithm of
the X1, . . . ,Xn such that t |= φ(X1, . . . ,Xn) with preprocessing
time O(|t| × ht(t)).

Corollary
Let φ(X1, . . . ,Xn) be an MSOM formula, for every matroid of
branch-width t, the enumeration of the sets satisfying φ can be
done with linear delay after a cubic preprocessing time.
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The same theorems can be proved for matroids equipped with
unary predicates (colored matroids).

A-Circuit
Input : a matroid M and a set A of its elements
Output : accept if there is a circuit C of M such that A ⊆ C

Generalisation of very natural problems and decidable in linear time
over matroids of bounded branch-width. Interesting enumeration
version.
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Build a set of matroids which are not representable.

Definition (Boundaried matroid)
A pair (M , γ) is called a t boundaried matroid if M is a matroid
and γ is an injective function from [1, t] to M whose image is an
independent set. The elements of the image of γ are called
boundary elements and the others are called internal elements.

We use the series parallel connection.
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Definition
Let M1 and M2 be two 1 boundaried matroids of ground set S1 and
S2. Their respective boundaries are {p1} and {p2}. We denote by
C(M ) the collection of circuits of the matroid M . Let E be the set
S1 ∪ S2 ∪{p} \ {p1, p2}. We define two collections of subsets of E :

CS =
{
C(M1 \ {p1}) ∪ C(M2 \ {p2})
∪{C1 \ {p1} ∪ C2 \ {p2} ∪ {p} | pi ∈ Ci ∈ C(Mi)}

CP =


C(M1 \ {p1}) ∪ C(M2 \ {p2})
∪i=1,2 {Ci \ {pi} ∪ {p} | pi ∈ Ci ∈ C(Mi)}
∪ {C1 \ {p1} ∪ C2 \ {p2} | pi ∈ Ci ∈ C(Mi)}



Definition
We write M1 ⊕p M2 for the parallel connection of M1 and M2
restricted to the ground set S1 ∪ S2 \ {p1, p2} (one removes the
boundary {p}).

Definition
Let M be a matroid and let γM

i for i = 1, 2, 3 be three injective
functions from [1, ti ] to the ground set of M . If the sets γM

i ([1, ti ])
are independent and form a partition of the columns of M , then
(M , {γM

i }i=1,2,3) is called a 3-partitioned matroid.
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Definition

Let M1 = (M1, γ1) and M2 = (M2, γ2) be respectively a t1 and a
t2 boundaried matroid and let M be a 3-partitioned matroid. We
call M1 �M M2 the t3 boundaried matroid defined by
(M1 ⊕p (M , γM

1 ), γM
2 )⊕p M2 with boundary γM

3 .
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Definition
Let Lk be the set of 1 boundaried matroids of size at most k and
letM be the set of 3-partitioned matroids of size 3. We write Tk
for the set of terms T (Lk ,M).

Aim, prove the following theorem :

Theorem

Let T be a term of T̃k which represents the matroid M . Let f be
the bijection between the leaves of T and the elements of M then
M |= φ(~a)⇔ T |= F(φ(f (~a))).
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Definition (Signature)
Let T be a term whose value is a boundaried matroid M and let X
be a set of internal elements of M . The signature of the set X in
T is the set of all the subsets S of the boundary such that X ∪ S
is a dependent set in M .

1. if X is dependent then it is of signature {{}, {1}} that we
denote by 2

2. if X is dependent only when we add the boundary element
then it is of signature {{1}} which we denote by 1

3. if X is independent even with the boundary element then it is
of signature ∅ which we denote by 0
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N1
Rp(·, ·, 2, N1) = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}
Rp(·, ·, 1, N1) = {}

N2
Rp(·, ·, 2, N2) = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}
Rp(·, ·, 1, N2) = {(1, 1)}

N3
Rp(·, ·, 2, N3) = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2), (1, 1)}
Rp(·, ·, 1, N3) = {}

N4
Rp(·, ·, 2, N4) = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}
Rp(·, ·, 1, N4) = {(1, 1), (1, 0)}

N5
Rp(·, ·, 2, N5) = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}
Rp(·, ·, 1, N5) = {(1, 1), (0, 1)}

N6
Rp(·, ·, 2, N5) = {(0, 2), (2, 0), (1, 2), (2, 1), (2, 2), (1, 1)}
Rp(·, ·, 1, N5) = {(0, 1), (1, 0)}



Theorem (Characterization of dependency)
Let T be a term of T̃k which represents the matroid M and let X
be a set of elements of M . The set X is dependent if and only if
there exists a signature λs at each node s of T seen as a labeled
tree :
1. if s1 and s2 are the children of s of label �N then

Rp(λs1 , λs2 , λs,N )
2. if s is labeled by an abstract boundaried matroid N , then

X ∩N is a set of signature λs in N
3. the signature at the root is 2



To prove the theorem, two variations :

1. change R by Rp

2. replace each leaf by a subtree with as many leaves as the
matroid which labels the leaf and encode in a formula the
signatures of all subsets of all the matroids of size k
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Theorem

Let T be a term of T̃k which represents the matroid M . Let f be
the bijection between the leaves of T and the elements of M then
M |= φ(~a)⇔ T |= F(φ(f (~a))).

Corollary
The model-checking problem of MSOM is decidable in time
f (k, l)× n over the set of matroids given by a term of Tk , where n
is the number of elements in the matroid, l is the size of the
formula and f is a computable function.



We can also give an operation on matrices to characterize the
matroids of bounded branch-width.

Use this formalism to study broader classes or different classes
(between the cycle matroids and the vector matroids).
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Thanks for listening !
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