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Introduction to enumeration

Enumeration and logic

Enumeration and polynomials



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)

I ]{y|A(x, y)} : counting problem (class ]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)

I ]{y|A(x, y)} : counting problem (class ]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I ]{y|A(x, y)} : counting problem (class ]P)

I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I ]{y|A(x, y)} : counting problem (class ]P)

I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I ]{y|A(x, y)} : counting problem (class ]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I ]{y|A(x, y)} : counting problem (class ]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Enumeration problems
Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I ]{y|A(x, y)} : counting problem (class ]P)
I {y|A(x, y)} : enumeration problem (class EnumP)

Example
The predicate A(x, y) means y is a perfect matching in the graph
x.

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to find every perfect matching.



Complexity measures for enumeration

For enumeration problems we have two interesting complexity
measures:

1. the total time related to the number of solutions

I polynomial total time: TotalP
2. the delay

I incremental polynomial time: IncP
I polynomial delay: DelayP (Perfect Matching [Uno])
I precomputation and constant or linear delay

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?
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Enumeration problem defined by a formula

Let F be a subclass of first order formulas and let Φ(z,T) ∈ F .

W.l.o.g. the tuple T contains only one relation T of arity
r = maxi≤h ar(Ti) + 1

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Definition
We denote by Enum·F the collection of problems Enum·Φ for
Φ ∈ F .

Aim: Study of Enum·F , where F is defined by quantifier
alternations, e.g. Enum·Π2.
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Example

Example
A formula for independent sets:

IS(T ) ≡ ∀x∀y T (x) ∧ T (y)⇒ ¬E(x, y).

The formula is in Π1, thus Enum·IS ∈ Enum·Π1.

Example
The hitting sets (vertex covers) of an hypergraph. An hypergraph
H is represented by the incidence structure 〈D, {V ,E ,R}〉, D is
partitioned into V (vertices) and E (edges), R is the incidence
relation.

HS(T ) ≡ ∀x (T (x)⇒ V (x)) ∧ ∀y∃x E(y)⇒ (T (x) ∧ R(x, y))

The problem Enum·HS ∈ Enum·Π2.
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Previous results

Theorem (Durand, Grandjean 2007)
Let ϕ(x) be a formula of the first order logic over bounded-degree
structures. Then Enum·ϕ can be enumerated after a linear
preprocessing with constant delay.

Theorem (Courcelle 2009)
Let ϕ(x,T) be a formula of the monadic second order logic over
trees, or relational structure of tree-width at most k. Then
Enum·ϕ can be enumerated after a preprocessing that takes time
O(n.log(n)) and with delay O(n), where n is the number of
vertices or elements.
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A hierarchy of quantifier alternations

From a formula Φ(z,T), one defines the counting function #Φ
which to a model S associates |Φ(S)|.

Theorem (Saluja, Thakur 1995)
On linearly ordered structures, we have the following inclusions:
#Σ0 ( #Σ1 ( #Π1 ( #Σ2 ( #Π2.

Corollary
On linearly ordered structures, we have the following inclusions:
Enum·Σ0 ( Enum·Σ1 ( Enum·Π1 ( Enum·Σ2 ( Enum·Π2.

Other levels are not interesting: Enum·Π2 is complete under
parsimonious reductions.
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From first order to propositional logic

I a first order formula Φ(z,T ), |z| = k and ar(T ) = r .
I a model S of domain D (size n), an enumeration zi of the

elements of Dk

1. Replace Φ(z,T ) by
∨nk−1

i=0 Φ(zi ,T )

2. In Φ(zi ,T ), inductively replace each sub-formula
∃yϕ(zi ,y,T ) by

∨np−1
j=0 ϕ(zi ,yj ,T ) with |y| = p

3. Replace universal quantification by conjunction
4. Replace every atomic formula R(w) with R ∈ σ by its truth

value in S

A disjunction of propositional formulas Φ̃i , with variables T (w)
where w ∈ Dr .



From first order to propositional logic

I a first order formula Φ(z,T ), |z| = k and ar(T ) = r .
I a model S of domain D (size n), an enumeration zi of the

elements of Dk

1. Replace Φ(z,T ) by
∨nk−1

i=0 Φ(zi ,T )
2. In Φ(zi ,T ), inductively replace each sub-formula
∃yϕ(zi ,y,T ) by

∨np−1
j=0 ϕ(zi ,yj ,T ) with |y| = p

3. Replace universal quantification by conjunction
4. Replace every atomic formula R(w) with R ∈ σ by its truth

value in S

A disjunction of propositional formulas Φ̃i , with variables T (w)
where w ∈ Dr .



From first order to propositional logic

I a first order formula Φ(z,T ), |z| = k and ar(T ) = r .
I a model S of domain D (size n), an enumeration zi of the

elements of Dk

1. Replace Φ(z,T ) by
∨nk−1

i=0 Φ(zi ,T )
2. In Φ(zi ,T ), inductively replace each sub-formula
∃yϕ(zi ,y,T ) by

∨np−1
j=0 ϕ(zi ,yj ,T ) with |y| = p

3. Replace universal quantification by conjunction

4. Replace every atomic formula R(w) with R ∈ σ by its truth
value in S

A disjunction of propositional formulas Φ̃i , with variables T (w)
where w ∈ Dr .



From first order to propositional logic

I a first order formula Φ(z,T ), |z| = k and ar(T ) = r .
I a model S of domain D (size n), an enumeration zi of the

elements of Dk

1. Replace Φ(z,T ) by
∨nk−1

i=0 Φ(zi ,T )
2. In Φ(zi ,T ), inductively replace each sub-formula
∃yϕ(zi ,y,T ) by

∨np−1
j=0 ϕ(zi ,yj ,T ) with |y| = p

3. Replace universal quantification by conjunction
4. Replace every atomic formula R(w) with R ∈ σ by its truth

value in S

A disjunction of propositional formulas Φ̃i , with variables T (w)
where w ∈ Dr .



From first order to propositional logic

I a first order formula Φ(z,T ), |z| = k and ar(T ) = r .
I a model S of domain D (size n), an enumeration zi of the

elements of Dk

1. Replace Φ(z,T ) by
∨nk−1

i=0 Φ(zi ,T )
2. In Φ(zi ,T ), inductively replace each sub-formula
∃yϕ(zi ,y,T ) by

∨np−1
j=0 ϕ(zi ,yj ,T ) with |y| = p

3. Replace universal quantification by conjunction
4. Replace every atomic formula R(w) with R ∈ σ by its truth

value in S

A disjunction of propositional formulas Φ̃i , with variables T (w)
where w ∈ Dr .



From first order to propositional logic

I a first order formula Φ(z,T ), |z| = k and ar(T ) = r .
I a model S of domain D (size n), an enumeration zi of the

elements of Dk

1. Replace Φ(z,T ) by
∨nk−1

i=0 Φ(zi ,T )
2. In Φ(zi ,T ), inductively replace each sub-formula
∃yϕ(zi ,y,T ) by

∨np−1
j=0 ϕ(zi ,yj ,T ) with |y| = p

3. Replace universal quantification by conjunction
4. Replace every atomic formula R(w) with R ∈ σ by its truth

value in S

A disjunction of propositional formulas Φ̃i , with variables T (w)
where w ∈ Dr .



The first level: Enum·Σ0

Theorem
For ϕ ∈ Σ0, Enum·ϕ can be enumerated with precomputation
O(|D|k) and delay O(1) where k is the number of free first order
variables of ϕ and D is the domain of the input structure.

Idea of proof:
Remark that each Φ̃i is of constant size.

I Compute the set of solutions of each Φ̃i which are satisfiable
(preprocessing).

I A solution of Φ̃i gives a T ∗ such that Φ(zi ,T ∗) holds.
I Enumerate by Gray code all extensions of T (they are all

solutions).
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Bounded degree structure

Not possible to improve the preprocessing: computing if there is a
k-clique should depend on k.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:

I Do not replace each free variable by an element of the domain.
I An abstract formula whose variables are the atoms of Φ.
I From each solution, create a new Σ0 formula without free

second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].
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Union: elimination of some existential
quantifiers

Proposition
Let R and S be two polynomially balanced predicates such that

S can be decided in time O(h(n)). Assume that one can solve
Enum·R and Enum·S with preprocessing f (n) and delay g(n),
then one can solve Enum·R ∪ S with preprocessing 2f (n) + c and
delay 2g(n) + h(n) + c, where c is a constant.

Idea: run in parallel an algorithm for Enum·R and Enum·S

Remark
This proposition allows to remove the first block of existential
quantifier at the cost of a polynomial (the exponent being the size
of the block) increase of the delay.
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Second level: Enum·Σ1

Theorem
Enum·Σ1 ⊆ DelayP. More precisely, Enum·Σ1 can be computed
with precomputation O(|D|h+k) and delay O(|D|k) where h is the
number of free first order variables of the formula, k the number of
existentially quantified variables and D is the domain of the input
structure.

I Problem: is it possible to improve the delay, such that is
independent or less dependent on k?

I Bounded degree improve the preprocessing but not the delay.
I Somewhat equivalent to the enumeration of the models of a

DNF formula with n variables and clauses of fixed size.
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Introduction to enumeration

Enumeration and logic

Enumeration and polynomials



Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3



Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

X1 = 1, X2 = 2, X3 = 1

1 ∗ 2 + 1 ∗ 1 + 2 + 1

Output = 6



Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

X1 = −1, X2 = 1, X3 = 2

−1 ∗ 1 +−1 ∗ 2 + 1 + 2

Output = 0



Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Parameters: number of variables and total degree.

I Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the
other.
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Existing interpolation methods

I Zippel (1990): use a dense interpolation on a polynomial with
a restricted number of variables

I Ben Or and Tiwari (1988): evaluation on big power of prime
numbers

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.
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Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.

I Determinant of the Kirchoff matrix: spanning trees .
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph.
I A polynomial given by the multiplication of several matrices

which represents the language accepted by a probabilistic
automaton.

Only multilinear polynomials.
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The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!
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From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.



From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.



From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.



From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of
the generated monomials and to evaluate it at each step.

Incremental time.



Finding one monomial

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls, n number of variables and D

I Question: is it possible to decrease the number of calls to a
more manageable polynomial.

I Yes for polynomial of fixed degree d. One can find the
”highest“ degree polynomial with O(n2Dd−1) calls.

Open question: how to efficiently represent and compute the
partial polynomial at each step? Easier with circuits, formulas,
polynomials of low degree, over fixed finite fields ?
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Improving the delay

How to achieve a polynomial delay ?

We want to determine the degree of a subset S of variables of the
polynomial.

1. pick random values for variables outside of S and look at the
remaining polynomial as an univariate one, interpolate it to
get its degree

2. evaluate the polynomial on a large value for the variables of S
and small random values for the others

3. if the polynomial is given by a circuit, transform it into its
homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially
small), and in polynomial time in the number of variables and the
degree.
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Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

When the polynomial is multilinear, this problem can be solved by
finding the degree of PL̄1

with regard to L2: test if the degree is
equal to |L2|.

Use this procedure for a depth first traversal of a tree whose leaves
are the monomials.
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Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables and a total
degree D. There is an algorithm which computes the set of
monomials of P with probability 1− ε and a delay polynomial in
n, D and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).
I On classes of polynomials given by circuits on which PIT can

be derandomized, this algorithm also can be derandomized.
STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich:
deterministic identity testing of depth-4 multilinear circuits
with bounded top fan-in
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Comparison to other algorithms

Ben-Or Tiwari Zippel KS My Algorithm
Algorithm type Deterministic Probabilistic Probabilistic Probabilistic
Number of calls 2T tnD tn7D4 tnD(n + log(ε−1))
Total time Quadratic in T Quadratic in t Quadratic in t Linear in t
Enumeration Exponential TotalPP IncPP DelayPP
Size of points T log(n) log(nT2ε−1) log(nDε−1) log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear
polynomials.
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Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision
problem.

Non-Zero-Monomial
Input: a polynomial and a term ~X~e

Output: accept if ~X~e has a coefficient different from zero in the
polynomial

An algorithm similar to the polynomial delay one can solve this
problem.

Idea: if they are hard for some family of easy to compute
polynomials, the polynomial delay interpolation should also be hard
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Degree 2 polynomial

Proposition
The problem Non-Zero-Monomial restricted to degree 2
polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed
graphs. Use a polynomial derived from the Matrix Tree theorem.
Use Non-Zero-Monomial on a polynomial number of terms of
this polynomial, if one is in there is a spanning tree which is also
an Hamiltonian path.

I Conclusion: some monomials are harder than others.
I Question of Kayal: what is the complexity of computing the

leading monomial of a depth three circuit?
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Thank for listening!
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