Enumeration: logic and algebric methods

Yann Strozecki

Université Paris Diderot - Paris 7

Dept. of Computer Science, University of Toronto

Avril 2011, Bordeaux Séminaire graphe et logique Introduction to enumeration

Enumeration and logic

Enumeration and polynomials

Polynomially balanced predicate A(x, y), decidable in polynomial time.

▶ \exists ?yA(x, y) : decision problem (class NP)

Polynomially balanced predicate A(x, y), decidable in polynomial time.

▶ \exists ?yA(x, y) : decision problem (class NP)

Example

The predicate A(x, y) means y is a perfect matching in the graph x.

The decision problem is to decide if there is a perfect matching.

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ \exists ?yA(x, y) : decision problem (class NP)
- $\sharp\{y|A(x,y)\}$: counting problem (class $\sharp P$)

Example

The predicate A(x, y) means y is a perfect matching in the graph x.

The decision problem is to decide if there is a perfect matching.

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ \exists ?yA(x, y) : decision problem (class NP)
- $\sharp\{y|A(x,y)\}$: counting problem (class $\sharp P$)

Example

The predicate A(x, y) means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ \exists ?yA(x, y) : decision problem (class NP)
- $\sharp\{y|A(x,y)\}$: counting problem (class $\sharp P$)
- $\{y|A(x,y)\}$: enumeration problem (class EnumP)

Example

The predicate A(x, y) means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ \exists ?yA(x, y) : decision problem (class NP)
- $\sharp\{y|A(x,y)\}$: counting problem (class $\sharp P$)
- $\{y|A(x, y)\}$: enumeration problem (class EnumP)

Example

The predicate A(x, y) means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.

▶ The enumeration problem is to find every perfect matching.

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ▶ \exists ?yA(x, y) : decision problem (class NP)
- $\sharp\{y|A(x,y)\}$: counting problem (class $\sharp P$)
- $\{y|A(x, y)\}$: enumeration problem (class EnumP)

Example

The predicate A(x, y) means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to find every perfect matching.

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - ▶ incremental polynomial time: IncP

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - incremental polynomial time: IncP
 - polynomial delay: DelayP (Perfect Matching [Uno])

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - incremental polynomial time: IncP
 - polynomial delay: DelayP (Perfect Matching [Uno])
 - precomputation and constant or linear delay

For enumeration problems we have two interesting complexity measures:

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - incremental polynomial time: IncP
 - polynomial delay: DelayP (Perfect Matching [Uno])
 - precomputation and constant or linear delay

Open question: is $\mathbf{DelayP} \neq \mathbf{IncP}$ modulo some complexity hypothesis ?

For enumeration problems we have two interesting complexity measures:

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - incremental polynomial time: IncP
 - polynomial delay: DelayP (Perfect Matching [Uno])
 - precomputation and constant or linear delay

Open question: is $\mathbf{DelayP} \neq \mathbf{IncP}$ modulo some complexity hypothesis ?

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z},\mathbf{T})\in\mathscr{F}.$

W.l.o.g. the tuple ${\bf T}$ contains only one relation T of arity $r=\max_{i\leq h} {\rm ar}(T_i)+1$

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$. W.l.o.g. the tuple \mathbf{T} contains only one relation T of arity $r = \max_{i \leq h} \operatorname{ar}(T_i) + 1$

 $\begin{array}{ll} \operatorname{Enum} \bullet \Phi \\ \textit{Input:} & \mathsf{A} \ \sigma \text{-structure} \ \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{ (\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$. W.l.o.g. the tuple \mathbf{T} contains only one relation T of arity $r = \max_{i \leq h} \operatorname{ar}(T_i) + 1$

 $\operatorname{Enum} \Phi$

 $\begin{array}{ll} \textit{Input:} & \mathsf{A} \ \sigma\text{-structure} \ \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{(\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$

Definition

We denote by ENUM· \mathscr{F} the collection of problems ENUM· Φ for $\Phi \in \mathscr{F}$.

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$. W.l.o.g. the tuple \mathbf{T} contains only one relation T of arity $r = \max_{i \leq h} \operatorname{ar}(T_i) + 1$

 $\operatorname{Enum} \Phi$

 $\begin{array}{ll} \textit{Input:} & \mathsf{A} \ \sigma\text{-structure} \ \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{(\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$

Definition

We denote by ENUM- \mathscr{F} the collection of problems ENUM- Φ for $\Phi \in \mathscr{F}$.

Aim: Study of $ENUM \cdot \mathscr{F}$, where \mathscr{F} is defined by quantifier alternations, e.g. $ENUM \cdot \Pi_2$.

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$. W.l.o.g. the tuple \mathbf{T} contains only one relation T of arity $r = \max_{i \leq h} \operatorname{ar}(T_i) + 1$

 $\operatorname{Enum} \Phi$

 $\begin{array}{ll} \textit{Input:} & \mathsf{A} \ \sigma\text{-structure} \ \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{(\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$

Definition

We denote by ENUM- \mathscr{F} the collection of problems ENUM- Φ for $\Phi \in \mathscr{F}$.

Aim: Study of $ENUM \cdot \mathscr{F}$, where \mathscr{F} is defined by quantifier alternations, e.g. $ENUM \cdot \Pi_2$.

Example

Example

A formula for independent sets:

$$IS(T) \equiv \forall x \forall y \ T(x) \land T(y) \Rightarrow \neg E(x, y).$$

The formula is in Π_1 , thus $ENUM \cdot IS \in ENUM \cdot \Pi_1$.

Example

The hitting sets (vertex covers) of an hypergraph. An hypergraph H is represented by the incidence structure $\langle D, \{V, E, R\} \rangle$, D is partitioned into V (vertices) and E (edges), R is the incidence relation.

 $HS(T) \equiv \forall x (T(x) \Rightarrow V(x)) \land \forall y \exists x E(y) \Rightarrow (T(x) \land R(x, y))$

The problem $ENUM \cdot HS \in ENUM \cdot \Pi_2$.

Example

Example

A formula for independent sets:

$$IS(T) \equiv \forall x \forall y \ T(x) \land T(y) \Rightarrow \neg E(x, y).$$

The formula is in Π_1 , thus $ENUM \cdot IS \in ENUM \cdot \Pi_1$.

Example

The hitting sets (vertex covers) of an hypergraph. An hypergraph H is represented by the incidence structure $\langle D, \{V, E, R\} \rangle$, D is partitioned into V (vertices) and E (edges), R is the incidence relation.

$$HS(T) \equiv \forall x \, (T(x) \Rightarrow V(x)) \land \forall y \exists x \, E(y) \Rightarrow (T(x) \land R(x, y))$$

The problem $ENUM \cdot HS \in ENUM \cdot \Pi_2$.

Previous results

Theorem (Durand, Grandjean 2007)

Let $\varphi(\mathbf{x})$ be a formula of the first order logic over bounded-degree structures. Then ENUM· φ can be enumerated after a linear preprocessing with constant delay.

Theorem (Courcelle 2009)

Let $\varphi(\mathbf{x}, \mathbf{T})$ be a formula of the monadic second order logic over trees, or relational structure of tree-width at most k. Then $\text{ENUM} \cdot \varphi$ can be enumerated after a preprocessing that takes time O(n.log(n)) and with delay O(n), where n is the number of vertices or elements.

Previous results

Theorem (Durand, Grandjean 2007)

Let $\varphi(\mathbf{x})$ be a formula of the first order logic over bounded-degree structures. Then ENUM· φ can be enumerated after a linear preprocessing with constant delay.

Theorem (Courcelle 2009)

Let $\varphi(\mathbf{x}, \mathbf{T})$ be a formula of the monadic second order logic over trees, or relational structure of tree-width at most k. Then $\text{ENUM-}\varphi$ can be enumerated after a preprocessing that takes time O(n.log(n)) and with delay O(n), where n is the number of vertices or elements.

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\#\Phi$ which to a model S associates $|\Phi(S)|$.

Theorem (Saluja, Thakur 1995)

On linearly ordered structures, we have the following inclusions: $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2.$

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\#\Phi$ which to a model S associates $|\Phi(S)|$.

Theorem (Saluja, Thakur 1995)

On linearly ordered structures, we have the following inclusions: $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2.$

Corollary

On linearly ordered structures, we have the following inclusions: ENUM· $\Sigma_0 \subsetneq$ ENUM· $\Sigma_1 \subsetneq$ ENUM· $\Pi_1 \subsetneq$ ENUM· $\Sigma_2 \subsetneq$ ENUM· Π_2 .

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\#\Phi$ which to a model S associates $|\Phi(S)|$.

Theorem (Saluja, Thakur 1995)

On linearly ordered structures, we have the following inclusions: $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2.$

Corollary

On linearly ordered structures, we have the following inclusions: ENUM· $\Sigma_0 \subsetneq$ ENUM· $\Sigma_1 \subsetneq$ ENUM· $\Pi_1 \subsetneq$ ENUM· $\Sigma_2 \subsetneq$ ENUM· Π_2 .

Other levels are not interesting: $ENUM \cdot \Pi_2$ is complete under parsimonious reductions.

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\#\Phi$ which to a model S associates $|\Phi(S)|$.

Theorem (Saluja, Thakur 1995)

On linearly ordered structures, we have the following inclusions: $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2.$

Corollary

On linearly ordered structures, we have the following inclusions: ENUM· $\Sigma_0 \subsetneq$ ENUM· $\Sigma_1 \subsetneq$ ENUM· $\Pi_1 \subsetneq$ ENUM· $\Sigma_2 \subsetneq$ ENUM· Π_2 .

Other levels are not interesting: $E{\rm NUM}{\cdot}\Pi_2$ is complete under parsimonious reductions.

- ▶ a first order formula $\Phi(\mathbf{z}, T)$, |z| = k and ar(T) = r.
- ▶ a model S of domain D (size n), an enumeration \mathbf{z}_i of the elements of D^k
- 1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^k-1} \Phi(\mathbf{z}_i, T)$

- ▶ a first order formula $\Phi(\mathbf{z}, T)$, |z| = k and ar(T) = r.
- ▶ a model S of domain D (size n), an enumeration \mathbf{z}_i of the elements of D^k
- 1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^k-1} \Phi(\mathbf{z}_i, T)$
- 2. In $\Phi(\mathbf{z}_i, T)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi(\mathbf{z}_i, \mathbf{y}, T)$ by $\bigvee_{j=0}^{n^p-1} \varphi(\mathbf{z}_i, \mathbf{y}_j, T)$ with $|\mathbf{y}| = p$

- ▶ a first order formula $\Phi(\mathbf{z}, T)$, |z| = k and ar(T) = r.
- ▶ a model S of domain D (size n), an enumeration \mathbf{z}_i of the elements of D^k
- 1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^k-1} \Phi(\mathbf{z}_i, T)$
- 2. In $\Phi(\mathbf{z}_i, T)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi(\mathbf{z}_i, \mathbf{y}, T)$ by $\bigvee_{j=0}^{n^p-1} \varphi(\mathbf{z}_i, \mathbf{y}_j, T)$ with $|\mathbf{y}| = p$
- 3. Replace universal quantification by conjunction

- ▶ a first order formula $\Phi(\mathbf{z}, T)$, |z| = k and ar(T) = r.
- ▶ a model S of domain D (size n), an enumeration \mathbf{z}_i of the elements of D^k
- 1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^k-1} \Phi(\mathbf{z}_i, T)$
- 2. In $\Phi(\mathbf{z}_i, T)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi(\mathbf{z}_i, \mathbf{y}, T)$ by $\bigvee_{j=0}^{n^p-1} \varphi(\mathbf{z}_i, \mathbf{y}_j, T)$ with $|\mathbf{y}| = p$
- 3. Replace universal quantification by conjunction
- 4. Replace every atomic formula $R(\mathbf{w})$ with $R\in\sigma$ by its truth value in $\mathcal S$

- ▶ a first order formula $\Phi(\mathbf{z}, T)$, |z| = k and ar(T) = r.
- ▶ a model S of domain D (size n), an enumeration \mathbf{z}_i of the elements of D^k
- 1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^k-1} \Phi(\mathbf{z}_i, T)$
- 2. In $\Phi(\mathbf{z}_i, T)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi(\mathbf{z}_i, \mathbf{y}, T)$ by $\bigvee_{j=0}^{n^p-1} \varphi(\mathbf{z}_i, \mathbf{y}_j, T)$ with $|\mathbf{y}| = p$
- 3. Replace universal quantification by conjunction
- 4. Replace every atomic formula $R(\mathbf{w})$ with $R\in\sigma$ by its truth value in $\mathcal S$

A disjunction of propositional formulas $\tilde{\Phi}_i$, with variables $T(\mathbf{w})$ where $\mathbf{w} \in D^r$.

- ▶ a first order formula $\Phi(\mathbf{z}, T)$, |z| = k and ar(T) = r.
- ▶ a model S of domain D (size n), an enumeration \mathbf{z}_i of the elements of D^k
- 1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^k-1} \Phi(\mathbf{z}_i, T)$
- 2. In $\Phi(\mathbf{z}_i, T)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi(\mathbf{z}_i, \mathbf{y}, T)$ by $\bigvee_{j=0}^{n^p-1} \varphi(\mathbf{z}_i, \mathbf{y}_j, T)$ with $|\mathbf{y}| = p$
- 3. Replace universal quantification by conjunction
- 4. Replace every atomic formula $R(\mathbf{w})$ with $R\in\sigma$ by its truth value in $\mathcal S$

A disjunction of propositional formulas $\tilde{\Phi}_i$, with variables $T(\mathbf{w})$ where $\mathbf{w} \in D^r$.
Theorem

For $\varphi \in \Sigma_0$, ENUM· φ can be enumerated with precomputation $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof: Remark that each $\tilde{\Phi}_i$ is of constant size.

Theorem

For $\varphi \in \Sigma_0$, ENUM· φ can be enumerated with precomputation $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof: Remark that each $\tilde{\Phi}_i$ is of constant size.

► Compute the set of solutions of each Φ̃_i which are satisfiable (preprocessing).

Theorem

For $\varphi \in \Sigma_0$, ENUM· φ can be enumerated with precomputation $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_i$ is of constant size.

- ► Compute the set of solutions of each Φ̃_i which are satisfiable (preprocessing).
- A solution of $\tilde{\Phi}_i$ gives a T^* such that $\Phi(\mathbf{z}_i, T^*)$ holds.

Theorem

For $\varphi \in \Sigma_0$, ENUM· φ can be enumerated with precomputation $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_i$ is of constant size.

- ► Compute the set of solutions of each Φ̃_i which are satisfiable (preprocessing).
- A solution of $\tilde{\Phi}_i$ gives a T^* such that $\Phi(\mathbf{z}_i, T^*)$ holds.
- ► Enumerate by Gray code all extensions of *T* (they are all solutions).

Theorem

For $\varphi \in \Sigma_0$, ENUM· φ can be enumerated with precomputation $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_i$ is of constant size.

- ► Compute the set of solutions of each Φ̃_i which are satisfiable (preprocessing).
- A solution of $\tilde{\Phi}_i$ gives a T^* such that $\Phi(\mathbf{z}_i, T^*)$ holds.
- Enumerate by Gray code all extensions of T (they are all solutions).

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$ where D is the domain of the input structure.

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

Do not replace each free variable by an element of the domain.

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d \in \mathbb{N}, on d-degree bounded input structures,
\text{ENUM} \cdot \Sigma_0 \in \text{DELAY}(|D|, 1) where D is the domain of the input
structure.
```

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ .

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d \in \mathbb{N}, on d-degree bounded input structures,
\text{ENUM} \cdot \Sigma_0 \in \text{DELAY}(|D|, 1) where D is the domain of the input
structure.
```

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ .
- ► From each solution, create a new Σ_0 formula without free second order variables.

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d \in \mathbb{N}, on d-degree bounded input structures,
\text{ENUM} \cdot \Sigma_0 \in \text{DELAY}(|D|, 1) where D is the domain of the input
structure.
```

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ .
- ► From each solution, create a new Σ_0 formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d \in \mathbb{N}, on d-degree bounded input structures,
\text{ENUM} \cdot \Sigma_0 \in \text{DELAY}(|D|, 1) where D is the domain of the input
structure.
```

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ .
- ► From each solution, create a new Σ_0 formula without free second order variables.
- ▶ Enumerate the solutions of this formula thanks to [DG 2007].

Union: elimination of some existential quantifiers

Proposition

Let R and S be two polynomially balanced predicates such that S can be decided in time O(h(n)). Assume that one can solve ENUM·R and ENUM·S with preprocessing f(n) and delay g(n), then one can solve ENUM· $R \cup S$ with preprocessing 2f(n) + c and delay 2g(n) + h(n) + c, where c is a constant.

Idea: run in parallel an algorithm for $\text{ENUM} \cdot R$ and $\text{ENUM} \cdot S$

Union: elimination of some existential quantifiers

Proposition

Let R and S be two polynomially balanced predicates such that S can be decided in time O(h(n)). Assume that one can solve ENUM·R and ENUM·S with preprocessing f(n) and delay g(n), then one can solve ENUM· $R \cup S$ with preprocessing 2f(n) + c and delay 2g(n) + h(n) + c, where c is a constant.

Idea: run in parallel an algorithm for $\text{ENUM} \cdot R$ and $\text{ENUM} \cdot S$

Remark

This proposition allows to remove the first block of existential quantifier at the cost of a polynomial (the exponent being the size of the block) increase of the delay.

Union: elimination of some existential quantifiers

Proposition

Let R and S be two polynomially balanced predicates such that S can be decided in time O(h(n)). Assume that one can solve ENUM·R and ENUM·S with preprocessing f(n) and delay g(n), then one can solve ENUM· $R \cup S$ with preprocessing 2f(n) + c and delay 2g(n) + h(n) + c, where c is a constant.

Idea: run in parallel an algorithm for $\text{ENUM} \cdot R$ and $\text{ENUM} \cdot S$

Remark

This proposition allows to remove the first block of existential quantifier at the cost of a polynomial (the exponent being the size of the block) increase of the delay.

Second level: Enum· Σ_1

Theorem

ENUM· $\Sigma_1 \subseteq$ DELAYP. More precisely, ENUM· Σ_1 can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

Problem: is it possible to improve the delay, such that is independent or less dependent on k?

Second level: Enum· Σ_1

Theorem

ENUM· $\Sigma_1 \subseteq$ DELAYP. More precisely, ENUM· Σ_1 can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

- Problem: is it possible to improve the delay, such that is independent or less dependent on k?
- Bounded degree improve the preprocessing but not the delay.

Second level: Enum· Σ_1

Theorem

ENUM· $\Sigma_1 \subseteq$ DELAYP. More precisely, ENUM· Σ_1 can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

- Problem: is it possible to improve the delay, such that is independent or less dependent on k?
- Bounded degree improve the preprocessing but not the delay.
- ▶ Somewhat equivalent to the enumeration of the models of a *DNF* formula with *n* variables and clauses of fixed size.

Second level: Enum $\cdot \Sigma_1$

Theorem

ENUM· $\Sigma_1 \subseteq$ DELAYP. More precisely, ENUM· Σ_1 can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

- Problem: is it possible to improve the delay, such that is independent or less dependent on k?
- Bounded degree improve the preprocessing but not the delay.
- ► Somewhat equivalent to the enumeration of the models of a *DNF* formula with *n* variables and clauses of fixed size.

Proposition

Unless $\mathrm{P}=\mathrm{NP},$ there is no polynomial delay algorithm for $\mathrm{Enum}{\cdot}\Pi_1.$

Proposition

The problem $\text{ENUM} \cdot \text{SAT}(\mathcal{C})$ is in DELAYP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Proposition

Unless $\mathrm{P}=\mathrm{NP},$ there is no polynomial delay algorithm for $\mathrm{Enum}{\cdot}\Pi_1.$

Proposition

The problem $\text{ENUM} \cdot \text{SAT}(\mathcal{C})$ is in DELAYP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_i$ are either Horn, anti-Horn, affine or bijunctive. Then $\text{Enum} \cdot \Phi \subseteq \text{DeLayP}$.

Proposition

Unless $\mathrm{P}=\mathrm{NP},$ there is no polynomial delay algorithm for $\mathrm{Enum}{\cdot}\Pi_1.$

Proposition

The problem $ENUM \cdot SAT(C)$ is in DELAYP when C is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_i$ are either Horn, anti-Horn, affine or bijunctive. Then ENUM· $\Phi \subseteq$ DELAYP.

Example: independent sets and hitting sets.

Proposition

Unless $\mathrm{P}=\mathrm{NP},$ there is no polynomial delay algorithm for $\mathrm{Enum}{\cdot}\Pi_1.$

Proposition

The problem $ENUM \cdot SAT(C)$ is in DELAYP when C is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_i$ are either Horn, anti-Horn, affine or bijunctive. Then ENUM· $\Phi \subseteq$ DELAYP.

Example: independent sets and hitting sets.

Introduction to enumeration

Enumeration and logic

Enumeration and polynomials

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

 $X_1 = 1, X_2 = 2, X_3 = 1$ 1 * 2 + 1 * 1 + 2 + 1Output = 6

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

$$X_1 = -1, X_2 = 1, X_3 = 2$$

 $-1 * 1 + -1 * 2 + 1 + 2$
 $Output = 0$

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

- ▶ Problem: interpolation, compute *P* from its values.
- ▶ Parameters: number of variables and total degree.

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

- ▶ Problem: interpolation, compute *P* from its values.
- Parameters: number of variables and total degree.
- Complexity: time and number of calls to the oracle.

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

- Problem: interpolation, compute P from its values.
- Parameters: number of variables and total degree.
- Complexity: time and number of calls to the oracle.

$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

- Problem: interpolation, compute P from its values.
- ► Parameters: number of variables and total degree.
- Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the other.

► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables

Ben Or and Tiwari (1988): evaluation on big power of prime numbers

- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ► Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ▶ Klivans and Spielman (2001): transformation of a multivariate into an univariate one.

- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good **delay**.

- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good **delay**.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

• Determinant of the adjacency matrix : cycle covers of a graph.
Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- ► Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- A polynomial given by the multiplication of several matrices which represents the language accepted by a probabilistic automaton.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- A polynomial given by the multiplication of several matrices which represents the language accepted by a probabilistic automaton.

Only multilinear polynomials.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph.
- A polynomial given by the multiplication of several matrices which represents the language accepted by a probabilistic automaton.

Only multilinear polynomials.

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

No way to make PIT deterministic for black box.

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_1, \ldots, x_n are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P(x_1, \ldots, x_n) = 0$ is bounded by ϵ .

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of the generated monomials and to evaluate it at each step.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of the generated monomials and to evaluate it at each step.

Incremental time.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of the generated monomials and to evaluate it at each step.

Incremental time.

Aim: reducing the number of calls to the black-box at each step.

▶ KS algorithm: $O(n^7D^4)$ calls, *n* number of variables and *D*

Aim: reducing the number of calls to the black-box at each step.

- ▶ KS algorithm: $O(n^7D^4)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

Aim: reducing the number of calls to the black-box at each step.

- ▶ KS algorithm: $O(n^7D^4)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- ▶ Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.

Aim: reducing the number of calls to the black-box at each step.

- ▶ KS algorithm: $O(n^7D^4)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- ▶ Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O(n^2D^{d-1})$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields ?

Aim: reducing the number of calls to the black-box at each step.

- ▶ KS algorithm: $O(n^7D^4)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- ► Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with O(n²D^{d-1}) calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields ?

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of ${\cal S}$ and small random values for the others

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others
- 3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to ${\cal S}$

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others
- 3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to ${\cal S}$

These algorithms are randomized (again the error is exponentially small), and in polynomial time in the number of variables and the degree.

How to achieve a polynomial delay ?

We want to determine the degree of a subset ${\cal S}$ of variables of the polynomial.

- 1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
- 2. evaluate the polynomial on a large value for the variables of S and small random values for the others
- 3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to ${\cal S}$

These algorithms are randomized (again the error is exponentially small), and in polynomial time in the number of variables and the degree.

Multilinear polynomials

PARTIAL-MONOMIAL

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\overline{L}_1}$ with regard to L_2 : test if the degree is equal to $|L_2|$.

Multilinear polynomials

PARTIAL-MONOMIAL

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\bar{L}_1}$ with regard to L_2 : test if the degree is equal to $|L_2|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Multilinear polynomials

Partial-Monomial

Input: a polynomial given as a black box and two sets of variables L_1 and L_2

Output: accept if there is a monomial in the polynomial in which no variables of L_1 appear, but all of those of L_2 do.

When the polynomial is **multilinear**, this problem can be solved by finding the degree of $P_{\bar{L}_1}$ with regard to L_2 : test if the degree is equal to $|L_2|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

► The algorithm can be parallelized.

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

• The algorithm can be parallelized.

It works on finite fields of small characteristic (can be used to speed up computation).

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized.
 STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1 - \epsilon$ and a delay **polynomial** in n, D and $\log(\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	2T	tnD	$tn^7 D^4$	$tnD(n + \log(\epsilon^{-1}))$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T\log(n)$	$\log(nT^2\epsilon^{-1})$	$\log(nD\epsilon^{-1})$	$\log(D)$

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	2T	tnD	$tn^7 D^4$	$tnD(n + \log(\epsilon^{-1}))$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T\log(n)$	$\log(nT^2\epsilon^{-1})$	$\log(nD\epsilon^{-1})$	$\log(D)$

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

NON-ZERO-MONOMIAL Input: a polynomial and a term $\vec{X}^{\vec{e}}$ Output: accept if $\vec{X}^{\vec{e}}$ has a coefficient different from zero in the polynomial
Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

NON-ZERO-MONOMIAL Input: a polynomial and a term $\vec{X}^{\vec{e}}$ Output: accept if $\vec{X}^{\vec{e}}$ has a coefficient different from zero in the polynomial

An algorithm similar to the polynomial delay one can solve this problem.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

NON-ZERO-MONOMIAL Input: a polynomial and a term $\vec{X}^{\vec{e}}$ Output: accept if $\vec{X}^{\vec{e}}$ has a coefficient different from zero in the polynomial

An algorithm similar to the polynomial delay one can solve this problem.

Idea: if they are hard for some family of easy to compute polynomials, the polynomial delay interpolation should also be hard

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

NON-ZERO-MONOMIAL Input: a polynomial and a term $\vec{X}^{\vec{e}}$ Output: accept if $\vec{X}^{\vec{e}}$ has a coefficient different from zero in the polynomial

An algorithm similar to the polynomial delay one can solve this problem.

Idea: if they are hard for some family of easy to compute polynomials, the polynomial delay interpolation should also be hard

Proposition

The problem NON-ZERO-MONOMIAL restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from HAMILTONIAN PATH over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use NON-ZERO-MONOMIAL on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

Proposition

The problem NON-ZERO-MONOMIAL restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from HAMILTONIAN PATH over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use NON-ZERO-MONOMIAL on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

• Conclusion: some monomials are harder than others.

Proposition

The problem NON-ZERO-MONOMIAL restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from HAMILTONIAN PATH over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use NON-ZERO-MONOMIAL on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

Conclusion: some monomials are harder than others.

Question of Kayal: what is the complexity of computing the leading monomial of a depth three circuit?

Proposition

The problem NON-ZERO-MONOMIAL restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from HAMILTONIAN PATH over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use NON-ZERO-MONOMIAL on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

- Conclusion: some monomials are harder than others.
- Question of Kayal: what is the complexity of computing the leading monomial of a depth three circuit?

Thank for listening!