Enumeration: logic and algebric methods

Yann Strozecki
Université Paris Diderot - Paris 7
Dept. of Computer Science, University of Toronto

Avril 2011, Bordeaux
Séminaire graphe et logique

Introduction to enumeration

Enumeration and logic

Enumeration and polynomials

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)

Example

The predicate $A(x, y)$ means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)

Example

The predicate $A(x, y)$ means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)

Example

The predicate $A(x, y)$ means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)
- $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Example

The predicate $A(x, y)$ means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.

Enumeration problems

Polynomially balanced predicate $A(x, y)$, decidable in polynomial time.

- \exists ? $y A(x, y)$: decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp \mathrm{P}$)
- $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Example

The predicate $A(x, y)$ means y is a perfect matching in the graph x.

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to find every perfect matching.

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP
- polynomial delay: DelayP (Perfect Matching [Uno])
- precomputation and constant or linear delay

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP
- polynomial delay: DelayP (Perfect Matching [Uno])
- precomputation and constant or linear delay

Open question: is DelayP $\neq \mathbf{I n c P}$ modulo some complexity hypothesis?

Complexity measures for enumeration

For enumeration problems we have two interesting complexity measures:

1. the total time related to the number of solutions

- polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP
- polynomial delay: DelayP (Perfect Matching [Uno])
- precomputation and constant or linear delay

Open question: is DelayP $\neq \mathbf{I n c P}$ modulo some complexity hypothesis?

Enumeration problem defined by a formula

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$.
W.I.o.g. the tuple T contains only one relation T of arity
$r=\max _{i \leq h} \operatorname{ar}\left(T_{i}\right)+1$

Enumeration problem defined by a formula

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$.
W.I.o.g. the tuple \mathbf{T} contains only one relation T of arity
$r=\max _{i \leq h} \operatorname{ar}\left(T_{i}\right)+1$
Enum. Φ
Input:
A σ-structure \mathcal{S}
Output:

Enumeration problem defined by a formula

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$.
W.I.o.g. the tuple \mathbf{T} contains only one relation T of arity
$r=\max _{i \leq h} \operatorname{ar}\left(T_{i}\right)+1$
Enum• Φ
Input: A σ-structure \mathcal{S}
Output: $\quad \Phi(\mathcal{S})=\left\{\left(\mathbf{z}^{*}, \mathbf{T}^{*}\right):\left(\mathcal{S}, \mathbf{z}^{*}, \mathbf{T}^{*}\right) \models \Phi(\mathbf{z}, \mathbf{T})\right\}$

Enumeration problem defined by a formula

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$.
W.I.o.g. the tuple \mathbf{T} contains only one relation T of arity $r=\max _{i \leq h} \operatorname{ar}\left(T_{i}\right)+1$

Enum• Φ
Input: \quad A σ-structure \mathcal{S}
Output: $\quad \Phi(\mathcal{S})=\left\{\left(\mathbf{z}^{*}, \mathbf{T}^{*}\right):\left(\mathcal{S}, \mathbf{z}^{*}, \mathbf{T}^{*}\right) \models \Phi(\mathbf{z}, \mathbf{T})\right\}$

Definition

We denote by Enum $\cdot \mathscr{F}$ the collection of problems Enum. Φ for $\Phi \in \mathscr{F}$.

Enumeration problem defined by a formula

Let \mathscr{F} be a subclass of first order formulas and let $\Phi(\mathbf{z}, \mathbf{T}) \in \mathscr{F}$.
W.I.o.g. the tuple \mathbf{T} contains only one relation T of arity $r=\max _{i \leq h} \operatorname{ar}\left(T_{i}\right)+1$

Enum• Φ
Input: A σ-structure \mathcal{S}
Output: $\quad \Phi(\mathcal{S})=\left\{\left(\mathbf{z}^{*}, \mathbf{T}^{*}\right):\left(\mathcal{S}, \mathbf{z}^{*}, \mathbf{T}^{*}\right) \models \Phi(\mathbf{z}, \mathbf{T})\right\}$

Definition

We denote by Enum $\cdot \mathscr{F}$ the collection of problems Enum• Φ for $\Phi \in \mathscr{F}$.

Aim: Study of Enum. \mathscr{F}, where \mathscr{F} is defined by quantifier alternations, e.g. Enum• Π_{2}.

Example

Example

A formula for independent sets:

$$
I S(T) \equiv \forall x \forall y T(x) \wedge T(y) \Rightarrow \neg E(x, y)
$$

The formula is in Π_{1}, thus EnUm•IS \in Enum $\cdot \Pi_{1}$.
Example
The hitting sets (vertex covers) of an hypergraph. An hypergraph H is represented by the incidence structure $\langle D,\{V, E, R\}\rangle, D$ is partitioned into V (vertices) and E (edges), R is the incidence relation.

The problem Enum•HS \in Enum• Π_{2}.

Example

Example

A formula for independent sets:

$$
I S(T) \equiv \forall x \forall y T(x) \wedge T(y) \Rightarrow \neg E(x, y)
$$

The formula is in Π_{1}, thus Enum•IS \in Enum $\cdot \Pi_{1}$.

Example

The hitting sets (vertex covers) of an hypergraph. An hypergraph H is represented by the incidence structure $\langle D,\{V, E, R\}\rangle, D$ is partitioned into V (vertices) and E (edges), R is the incidence relation.

$$
H S(T) \equiv \forall x(T(x) \Rightarrow V(x)) \wedge \forall y \exists x E(y) \Rightarrow(T(x) \wedge R(x, y))
$$

The problem Enum•HS \in Enum $\cdot \Pi_{2}$.

Previous results

> Theorem (Durand, Grandjean 2007)
> Let $\varphi(\mathbf{x})$ be a formula of the first order logic over bounded-degree structures. Then Enum $\cdot \varphi$ can be enumerated after a linear preprocessing with constant delay.

```
Theorem (Courcelle 2009)
Let f(e- m) be a formula of the monadic second order logic over
trees, or relational structure of tree-width at most }k\mathrm{ . Then
ENUM}\cdot\varphi\mathrm{ can be enumerated after a preprocessing that takes time
O ( n . l o q ( n ) ) ~ a n d ~ w i t h ~ d e l a y ~ O ( n ) , ~ w h e r e ~ n ~ i s ~ t h e ~ n u m b e r ~ o f ~
vertices or elements.
```


Previous results

Theorem (Durand, Grandjean 2007)

Let $\varphi(\mathbf{x})$ be a formula of the first order logic over bounded-degree structures. Then Enum- φ can be enumerated after a linear preprocessing with constant delay.

$$
\begin{aligned}
& \text { Theorem (Courcelle 2009) } \\
& \text { Let } \varphi(\mathbf{x}, \mathbf{T}) \text { be a formula of the monadic second order logic over } \\
& \text { trees, or relational structure of tree-width at most } k \text {. Then } \\
& \text { Enum } \cdot \varphi \text { can be enumerated after a preprocessing that takes time } \\
& O(n \cdot \log (n)) \text { and with delay } O(n) \text {, where } n \text { is the number of } \\
& \text { vertices or elements. }
\end{aligned}
$$

A hierarchy of quantifier alternations

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\# \Phi$ which to a model \mathcal{S} associates $|\Phi(\mathcal{S})|$.

A hierarchy of quantifier alternations

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\# \Phi$ which to a model \mathcal{S} associates $|\Phi(\mathcal{S})|$.

Theorem (Saluja, Thakur 1995)
On linearly ordered structures, we have the following inclusions: $\# \Sigma_{0} \subsetneq \# \Sigma_{1} \subsetneq \# \Pi_{1} \subsetneq \# \Sigma_{2} \subsetneq \# \Pi_{2}$.

A hierarchy of quantifier alternations

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\# \Phi$ which to a model \mathcal{S} associates $|\Phi(\mathcal{S})|$.

Theorem (Saluja, Thakur 1995)

On linearly ordered structures, we have the following inclusions: $\# \Sigma_{0} \subsetneq \# \Sigma_{1} \subsetneq \# \Pi_{1} \subsetneq \# \Sigma_{2} \subsetneq \# \Pi_{2}$.

Corollary
On linearly ordered structures, we have the following inclusions: Enum $\cdot \Sigma_{0} \subsetneq$ Enum $\cdot \Sigma_{1} \subsetneq$ Enum $\cdot \Pi_{1} \subsetneq$ Enum $\cdot \Sigma_{2} \subsetneq$ Enum $\cdot \Pi_{2}$.

Other levels are not interesting: Enum• Π_{2} is complete under parsimonious reductions

A hierarchy of quantifier alternations

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function $\# \Phi$ which to a model \mathcal{S} associates $|\Phi(\mathcal{S})|$.

Theorem (Saluja, Thakur 1995)

On linearly ordered structures, we have the following inclusions: $\# \Sigma_{0} \subsetneq \# \Sigma_{1} \subsetneq \# \Pi_{1} \subsetneq \# \Sigma_{2} \subsetneq \# \Pi_{2}$.

Corollary
On linearly ordered structures, we have the following inclusions: Enum $\cdot \Sigma_{0} \subsetneq$ Enum $\cdot \Sigma_{1} \subsetneq$ Enum $\cdot \Pi_{1} \subsetneq$ Enum $\cdot \Sigma_{2} \subsetneq$ Enum $\cdot \Pi_{2}$.

Other levels are not interesting: Enum $\cdot \Pi_{2}$ is complete under parsimonious reductions.

From first order to propositional logic

- a first order formula $\Phi(\mathbf{z}, T),|z|=k$ and $\operatorname{ar}(T)=r$.
- a model \mathcal{S} of domain D (size n), an enumeration \mathbf{z}_{i} of the elements of D^{k}

From first order to propositional logic

- a first order formula $\Phi(\mathbf{z}, T),|z|=k$ and $\operatorname{ar}(T)=r$.
- a model \mathcal{S} of domain D (size n), an enumeration \mathbf{z}_{i} of the elements of D^{k}

1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^{k}-1} \Phi\left(\mathbf{z}_{i}, T\right)$
2. In $\Phi\left(\mathbf{z}_{i}, T\right)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi\left(\mathbf{z}_{i}, \mathbf{y}, T\right)$ by $\bigvee_{j=0}^{n^{p}-1} \varphi\left(\mathbf{z}_{i}, \mathbf{y}_{j}, T\right)$ with $|\mathbf{y}|=p$

From first order to propositional logic

- a first order formula $\Phi(\mathbf{z}, T),|z|=k$ and $\operatorname{ar}(T)=r$.
- a model \mathcal{S} of domain D (size n), an enumeration \mathbf{z}_{i} of the elements of D^{k}

1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^{k}-1} \Phi\left(\mathbf{z}_{i}, T\right)$
2. In $\Phi\left(\mathbf{z}_{i}, T\right)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi\left(\mathbf{z}_{i}, \mathbf{y}, T\right)$ by $\bigvee_{j=0}^{n^{p}-1} \varphi\left(\mathbf{z}_{i}, \mathbf{y}_{j}, T\right)$ with $|\mathbf{y}|=p$
3. Replace universal quantification by conjunction

From first order to propositional logic

- a first order formula $\Phi(\mathbf{z}, T),|z|=k$ and $\operatorname{ar}(T)=r$.
- a model \mathcal{S} of domain D (size n), an enumeration \mathbf{z}_{i} of the elements of D^{k}

1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^{k}-1} \Phi\left(\mathbf{z}_{i}, T\right)$
2. In $\Phi\left(\mathbf{z}_{i}, T\right)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi\left(\mathbf{z}_{i}, \mathbf{y}, T\right)$ by $\bigvee_{j=0}^{n^{p}-1} \varphi\left(\mathbf{z}_{i}, \mathbf{y}_{j}, T\right)$ with $|\mathbf{y}|=p$
3. Replace universal quantification by conjunction
4. Replace every atomic formula $R(\mathrm{w})$ with $R \in \sigma$ by its truth value in \mathcal{S}

From first order to propositional logic

- a first order formula $\Phi(\mathbf{z}, T),|z|=k$ and $\operatorname{ar}(T)=r$.
- a model \mathcal{S} of domain D (size n), an enumeration \mathbf{z}_{i} of the elements of D^{k}

1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^{k}-1} \Phi\left(\mathbf{z}_{i}, T\right)$
2. In $\Phi\left(\mathbf{z}_{i}, T\right)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi\left(\mathbf{z}_{i}, \mathbf{y}, T\right)$ by $\bigvee_{j=0}^{n^{p}-1} \varphi\left(\mathbf{z}_{i}, \mathbf{y}_{j}, T\right)$ with $|\mathbf{y}|=p$
3. Replace universal quantification by conjunction
4. Replace every atomic formula $R(\mathbf{w})$ with $R \in \sigma$ by its truth value in \mathcal{S}

From first order to propositional logic

- a first order formula $\Phi(\mathbf{z}, T),|z|=k$ and $\operatorname{ar}(T)=r$.
- a model \mathcal{S} of domain D (size n), an enumeration \mathbf{z}_{i} of the elements of D^{k}

1. Replace $\Phi(\mathbf{z}, T)$ by $\bigvee_{i=0}^{n^{k}-1} \Phi\left(\mathbf{z}_{i}, T\right)$
2. In $\Phi\left(\mathbf{z}_{i}, T\right)$, inductively replace each sub-formula $\exists \mathbf{y} \varphi\left(\mathbf{z}_{i}, \mathbf{y}, T\right)$ by $\bigvee_{j=0}^{n^{p}-1} \varphi\left(\mathbf{z}_{i}, \mathbf{y}_{j}, T\right)$ with $|\mathbf{y}|=p$
3. Replace universal quantification by conjunction
4. Replace every atomic formula $R(\mathbf{w})$ with $R \in \sigma$ by its truth value in \mathcal{S}

A disjunction of propositional formulas $\tilde{\Phi}_{i}$, with variables $T(\mathbf{w})$ where $\mathbf{w} \in D^{r}$.

The first level: Enum• Σ_{0}

Theorem

For $\varphi \in \Sigma_{0}$, EnUm $\cdot \varphi$ can be enumerated with precomputation $O\left(|D|^{k}\right)$ and delay $O(1)$ where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:
Remark that each Φ_{i} is of constant size.

The first level: Enum• Σ_{0}

Theorem

For $\varphi \in \Sigma_{0}$, Enum $\cdot \varphi$ can be enumerated with precomputation $O\left(|D|^{k}\right)$ and delay $O(1)$ where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_{i}$ is of constant size.
> - Compute the set of solutions of each Φ_{i} which are satisfiable (preprocessing)

The first level: Enum• Σ_{0}

Theorem

For $\varphi \in \Sigma_{0}$, EnUm $\cdot \varphi$ can be enumerated with precomputation $O\left(|D|^{k}\right)$ and delay $O(1)$ where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_{i}$ is of constant size.

- Compute the set of solutions of each $\tilde{\Phi}_{i}$ which are satisfiable (preprocessing).
- A solution of Φ_{i} gives a T^{*} such that $\Phi\left(\mathbf{z}_{i}, T^{*}\right)$ holds.

The first level: Enum• Σ_{0}

Theorem

For $\varphi \in \Sigma_{0}$, EnUm $\cdot \varphi$ can be enumerated with precomputation $O\left(|D|^{k}\right)$ and delay $O(1)$ where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_{i}$ is of constant size.

- Compute the set of solutions of each $\tilde{\Phi}_{i}$ which are satisfiable (preprocessing).
- A solution of $\tilde{\Phi}_{i}$ gives a T^{*} such that $\Phi\left(\mathbf{z}_{i}, T^{*}\right)$ holds.
- Enumerate by Gray code all extensions of T (they are all solutions)

The first level: Enum• Σ_{0}

Theorem

For $\varphi \in \Sigma_{0}$, EnUM $\cdot \varphi$ can be enumerated with precomputation $O\left(|D|^{k}\right)$ and delay $O(1)$ where k is the number of free first order variables of φ and D is the domain of the input structure.

Idea of proof:

Remark that each $\tilde{\Phi}_{i}$ is of constant size.

- Compute the set of solutions of each $\tilde{\Phi}_{i}$ which are satisfiable (preprocessing).
- A solution of $\tilde{\Phi}_{i}$ gives a T^{*} such that $\Phi\left(\mathbf{z}_{i}, T^{*}\right)$ holds.
- Enumerate by Gray code all extensions of T (they are all solutions).

Bounded degree structure

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

Bounded degree structure

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d\in\mathbb{N}\mathrm{ , on d-degree bounded input structures,}
Enum}\cdot\mp@subsup{\Sigma}{0}{}\in\operatorname{DELAY}(|D|,1) where D is the domain of the inpu
structure.
```

Idea of proof:

Bounded degree structure

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d\in\mathbb{N}\mathrm{ , on d-degree bounded input structures,}
Enum}\cdot\mp@subsup{\Sigma}{0}{}\in\operatorname{DELAY}(|D|,1) where D is the domain of the inpu
structure.
```


Idea of proof:

- Do not replace each free variable by an element of the domain.

Bounded degree structure

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

```
Theorem
Let d\in\mathbb{N}\mathrm{ , on d-degree bounded input structures,}
Enum}\cdot\mp@subsup{\Sigma}{0}{}\in\operatorname{DELAY}(|D|,1) where D is the domain of the inpu
structure.
```


Idea of proof:

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ.
- From each solution, create a new Σ_{0} formula without free second order variables.

Bounded degree structure

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\operatorname{Enum} \cdot \Sigma_{0} \in \operatorname{DELAY}(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ.
- From each solution, create a new Σ_{0} formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007]

Bounded degree structure

Not possible to improve the preprocessing: computing if there is a k-clique should depend on k.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, $\operatorname{Enum} \cdot \Sigma_{0} \in \operatorname{DELAY}(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- Do not replace each free variable by an element of the domain.
- An abstract formula whose variables are the atoms of Φ.
- From each solution, create a new Σ_{0} formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].

Union: elimination of some existential quantifiers

Proposition

Let R and S be two polynomially balanced predicates such that S can be decided in time $O(h(n))$. Assume that one can solve Enum $\cdot R$ and Enum $\cdot S$ with preprocessing $f(n)$ and delay $g(n)$, then one can solve EnUm $\cdot R \cup S$ with preprocessing $2 f(n)+c$ and delay $2 g(n)+h(n)+c$, where c is a constant.

Union: elimination of some existential quantifiers

Proposition

Let R and S be two polynomially balanced predicates such that S can be decided in time $O(h(n))$. Assume that one can solve Enum $\cdot R$ and Enum $\cdot S$ with preprocessing $f(n)$ and delay $g(n)$, then one can solve ENUM $\cdot R \cup S$ with preprocessing $2 f(n)+c$ and delay $2 g(n)+h(n)+c$, where c is a constant.

Idea: run in parallel an algorithm for Enum R and Enum• S

Union: elimination of some existential quantifiers

Proposition

Let R and S be two polynomially balanced predicates such that S can be decided in time $O(h(n))$. Assume that one can solve Enum $\cdot R$ and Enum $\cdot S$ with preprocessing $f(n)$ and delay $g(n)$, then one can solve EnUm $\cdot R \cup S$ with preprocessing $2 f(n)+c$ and delay $2 g(n)+h(n)+c$, where c is a constant.

Idea: run in parallel an algorithm for Enum• R and Enum• S

Remark

This proposition allows to remove the first block of existential quantifier at the cost of a polynomial (the exponent being the size of the block) increase of the delay.

Second level: Enum $\cdot \Sigma_{1}$

Theorem
Enum $\cdot \Sigma_{1} \subseteq$ DelayP. More precisely, Enum $\cdot \Sigma_{1}$ can be computed with precomputation $O\left(|D|^{h+k}\right)$ and delay $O\left(|D|^{k}\right)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.
> - Problem: is it possible to improve the delay, such that is independent or less dependent on k ?

Second level: Enum $\cdot \Sigma_{1}$

Theorem

Enum $\cdot \Sigma_{1} \subseteq$ DelayP. More precisely, Enum $\cdot \Sigma_{1}$ can be computed with precomputation $O\left(|D|^{h+k}\right)$ and delay $O\left(|D|^{k}\right)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

- Problem: is it possible to improve the delay, such that is independent or less dependent on k ?
- Bounded degree improve the preprocessing but not the delay.

Second level: Enum $\cdot \Sigma_{1}$

Theorem

Enum $\cdot \Sigma_{1} \subseteq$ DelayP. More precisely, EnUm $\cdot \Sigma_{1}$ can be computed with precomputation $O\left(|D|^{h+k}\right)$ and delay $O\left(|D|^{k}\right)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

- Problem: is it possible to improve the delay, such that is independent or less dependent on k ?
- Bounded degree improve the preprocessing but not the delay.
- Somewhat equivalent to the enumeration of the models of a $D N F$ formula with n variables and clauses of fixed size.

Second level: Enum $\cdot \Sigma_{1}$

Theorem

Enum $\cdot \Sigma_{1} \subseteq$ DelayP. More precisely, EnUm $\cdot \Sigma_{1}$ can be computed with precomputation $O\left(|D|^{h+k}\right)$ and delay $O\left(|D|^{k}\right)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

- Problem: is it possible to improve the delay, such that is independent or less dependent on k ?
- Bounded degree improve the preprocessing but not the delay.
- Somewhat equivalent to the enumeration of the models of a $D N F$ formula with n variables and clauses of fixed size.

Tractable fragments

> Proposition
> Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial delay algorithm for EnUm $\cdot \Pi_{1}$.

Proposition
The problem Enum•SAT (C) is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Tractable fragments

Proposition
 Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial delay algorithm for Enum• Π_{1}.

Proposition

The problem Enum•SAT (\mathcal{C}) is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas
\square
Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_{i}$ are either Horn, anti-Horn, affine or bijunctive. Then Enum• $\Phi \subseteq$ DELayP

Tractable fragments

Proposition

Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial delay algorithm for Enum• Π_{1}.

Proposition

The problem Enum•SAT (\mathcal{C}) is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_{i}$ are either Horn, anti-Horn, affine or bijunctive. Then Enum• $\Phi \subseteq$ DElayP.

Example: independent sets and hitting sets.

Tractable fragments

Proposition

Unless $\mathrm{P}=\mathrm{NP}$, there is no polynomial delay algorithm for Enum• Π_{1}.

Proposition

The problem Enum•SAT($\mathcal{C})$ is in DelayP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_{i}$ are either Horn, anti-Horn, affine or bijunctive. Then Enum $\Phi \subseteq$ DElayP.

Example: independent sets and hitting sets.

Introduction to enumeration

Enumeration and logic

Enumeration and polynomials

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

$$
\begin{gathered}
X_{1}=1, X_{2}=2, X_{3}=1 \\
1 * 2+1 * 1+2+1 \\
\text { Output }=6
\end{gathered}
$$

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

$$
\begin{gathered}
X_{1}=-1, X_{2}=1, X_{3}=2 \\
-1 * 1+-1 * 2+1+2 \\
\text { Output }=0
\end{gathered}
$$

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Parameters: number of variables and total degree.

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Parameters: number of variables and total degree.
- Complexity: time and number of calls to the oracle.

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Parameters: number of variables and total degree.
- Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the

Polynomial given by a black-box

$$
P\left(X_{1}, X_{2}, X_{3}\right)=X_{1} X_{2}+X_{1} X_{3}+X_{2}+X_{3}
$$

- Problem: interpolation, compute P from its values.
- Parameters: number of variables and total degree.
- Complexity: time and number of calls to the oracle.

Enumeration problem: output the monomials one after the other.

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Existing interpolation methods

- Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good delay.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.
- A polynomial given by the multiplication of several matrices which represents the language accepted by a probabilistic automaton.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.
- A polynomial given by the multiplication of several matrices which represents the language accepted by a probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix: cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees .
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3 -uniform hypergraph.
- A polynomial given by the multiplication of several matrices which represents the language accepted by a probabilistic automaton.

Only multilinear polynomials.

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box. Output: decides if the polynomial is zero.

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D, if x_{1}, \ldots, x_{n} are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P\left(x_{1}, \ldots, x_{n}\right)=0$ is bounded by ϵ.

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_{1}, \ldots, x_{n} are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P\left(x_{1}, \ldots, x_{n}\right)=0$ is bounded by ϵ.

No way to make PIT deterministic for black box.
Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if x_{1}, \ldots, x_{n} are randomly chosen in a set of integers S of size $\frac{D}{\epsilon}$ then the probability that $P\left(x_{1}, \ldots, x_{n}\right)=0$ is bounded by ϵ.

No way to make PIT deterministic for black box.
Error exponentially small in the size of the integers!

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of the generated monomials and to evaluate it at each step.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of the generated monomials and to evaluate it at each step.

Incremental time.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial which is the sum of the generated monomials and to evaluate it at each step.

Incremental time.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O\left(n^{2} D^{d-1}\right)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields ?

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.

- KS algorithm: $O\left(n^{7} D^{4}\right)$ calls, n number of variables and D
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with $O\left(n^{2} D^{d-1}\right)$ calls.

Open question: how to efficiently represent and compute the partial polynomial at each step? Easier with circuits, formulas, polynomials of low degree, over fixed finite fields ?

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.
pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially small), and in polynomial time in the number of variables and the degree

Improving the delay

How to achieve a polynomial delay ?
We want to determine the degree of a subset S of variables of the polynomial.

1. pick random values for variables outside of S and look at the remaining polynomial as an univariate one, interpolate it to get its degree
2. evaluate the polynomial on a large value for the variables of S and small random values for the others
3. if the polynomial is given by a circuit, transform it into its homogeneous components with regard to S

These algorithms are randomized (again the error is exponentially small), and in polynomial time in the number of variables and the degree.

Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

When the polynomial is multilinear, this problem can be solved by finding the degree of $P_{\bar{L}_{1}}$ with regard to L_{2} : test if the degree is equal to $\left|L_{2}\right|$

Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

When the polynomial is multilinear, this problem can be solved by finding the degree of $P_{\overline{L_{1}}}$ with regard to L_{2} : test if the degree is equal to $\left|L_{2}\right|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Multilinear polynomials

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables L_{1} and L_{2}
Output: accept if there is a monomial in the polynomial in which no variables of L_{1} appear, but all of those of L_{2} do.

When the polynomial is multilinear, this problem can be solved by finding the degree of $P_{\overline{L_{1}}}$ with regard to L_{2} : test if the degree is equal to $\left|L_{2}\right|$.

Use this procedure for a depth first traversal of a tree whose leaves are the monomials.

Polynomial delay algorithm

Theorem

Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

Polynomial delay algorithm

> Theorem
> Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

Polynomial delay algorithm

> Theorem
> Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).

Polynomial delay algorithm

> Theorem
> Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Polynomial delay algorithm

Theorem
 Let P be a multilinear polynomial with n variables and a total degree D. There is an algorithm which computes the set of monomials of P with probability $1-\epsilon$ and a delay polynomial in n, D and $\log (\epsilon)^{-1}$.

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2010, Karnin, Mukhopadhyay, Shpilka, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	$2 T$	$t n D$	$t n^{7} D^{4}$	$t n D\left(n+\log \left(\epsilon^{-1}\right)\right)$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T \log (n)$	$\log \left(n T^{2} \epsilon^{-1}\right)$	$\log \left(n D \epsilon^{-1}\right)$	$\log (D)$

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear

Comparison to other algorithms

	Ben-Or Tiwari	Zippel	KS	My Algorithm
Algorithm type	Deterministic	Probabilistic	Probabilistic	Probabilistic
Number of calls	$2 T$	$t n D$	$t n^{7} D^{4}$	$t n D\left(n+\log \left(\epsilon^{-1}\right)\right)$
Total time	Quadratic in T	Quadratic in t	Quadratic in t	Linear in t
Enumeration	Exponential	TotalPP	IncPP	DelayPP
Size of points	$T \log (n)$	$\log \left(n T^{2} \epsilon^{-1}\right)$	$\log \left(n D \epsilon^{-1}\right)$	$\log (D)$

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Non-Zero-Monomial
Input: a polynomial and a term \vec{X} e
Output: accept if $\vec{X}{ }^{\vec{e}}$ has a coefficient different from zero in the polynomial

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Non-Zero-Monomial
Input: a polynomial and a term $\vec{X} \vec{e}$
Output: accept if $\vec{X}^{\vec{e}}$ has a coefficient different from zero in the polynomial

An algorithm similar to the polynomial delay one can solve this problem.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Non-Zero-Monomial
Input: a polynomial and a term $\vec{X} \vec{e}$
Output: accept if $\vec{X} \vec{e}$ has a coefficient different from zero in the polynomial

An algorithm similar to the polynomial delay one can solve this problem.

Idea: if they are hard for some family of easy to compute polynomials, the polynomial delay interpolation should also be hard

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision problem.

Non-Zero-Monomial
Input: a polynomial and a term $\vec{X} \vec{e}$
Output: accept if $\vec{X}^{\vec{e}}$ has a coefficient different from zero in the polynomial

An algorithm similar to the polynomial delay one can solve this problem.

Idea: if they are hard for some family of easy to compute polynomials, the polynomial delay interpolation should also be hard

Degree 2 polynomial

Proposition
The problem Non-Zero-Monomial restricted to degree 2 polynomials is NP-hard.

Proof.
Reduction from Hamiltonian Path over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem Use Non-ZERO-MONOMIAL on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

Degree 2 polynomial

Proposition

The problem Non-Zero-Monomial restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from Hamiltonian Path over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use Non-Zero-Monomial on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

- Conclusion: some monomials are harder than others.

Degree 2 polynomial

Proposition

The problem Non-Zero-Monomial restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from Hamiltonian Path over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use Non-Zero-Monomial on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

- Conclusion: some monomials are harder than others.

$$
\begin{aligned}
& \text { Question of Kayal: what is the complexity of computing the } \\
& \text { leading monomial of a depth three circuit? }
\end{aligned}
$$

Degree 2 polynomial

Proposition

The problem Non-Zero-Monomial restricted to degree 2 polynomials is NP-hard.

Proof.

Reduction from Hamiltonian Path over degree 2 directed graphs. Use a polynomial derived from the Matrix Tree theorem. Use Non-Zero-Monomial on a polynomial number of terms of this polynomial, if one is in there is a spanning tree which is also an Hamiltonian path.

- Conclusion: some monomials are harder than others.
- Question of Kayal: what is the complexity of computing the leading monomial of a depth three circuit?

Thank for listening!

