
Enumeration Complexity of logical query
problems with second order variables

Yann Strozecki and Arnaud Durand

Université Paris Diderot - Paris 7

September 2011, CSL conference

Enumeration

A logical perspective on enumeration

A quantifier alternation hierarchy

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y | A(x, y)} : counting problem (class]P)
I {y | A(x, y)} : enumeration problem (class EnumP)

Example
Perfect matching:

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to list every perfect matching.

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y | A(x, y)} : counting problem (class]P)
I {y | A(x, y)} : enumeration problem (class EnumP)

Example
Perfect matching:

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to list every perfect matching.

Time complexity measures for enumeration

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching)
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

Time complexity measures for enumeration

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching)
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

Enumeration problems

Enum·R
Input: x ∈ I
Output: an enumeration of elements in R(x) = {y | R(x, y)}

Definition
The problem Enum·R belongs to the class Delay(g, f) if there
exists an enumeration algorithm that computes Enum·R such
that, for all input x:

I Preprocessing in time O(g(|x|)),
I Solutions y ∈ R(x) are computed successively without

repetition with a delay O(f (|x|))

Constant-Delay =
⋃

k Delay(nk ,O(1)).

Enumeration

A logical perspective on enumeration

A quantifier alternation hierarchy

Enumeration problem defined by a formula

Let Φ(z,T) be a first order formula.

To simplify, the tuple T contains only one relation T .

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Similar to parametrized complexity classes.

Let F be a subclass of first order formulas. We denote by
Enum·F the collection of problems Enum·Φ for Φ ∈ F .

First-order queries with free second order
variables

This work
I FO queries with free second-order variables
I Data complexity: the query is fixed
I The complexity in term of the size of the input structure’s

domain
I On arbitrary structures
I Quantifier depth as a parameter: Enum·Σ1

Example

Example
Independent sets:

IS(T) ≡ ∀x∀y T (x) ∧ T (y)⇒ ¬E(x, y).

The formula is in Π1, thus Enum·IS ∈ Enum·Π1.

Example
Hitting sets (vertex covers) of a hypergraph represented by the
incidence structure 〈D, {V ,E ,R}〉.

HS(T) ≡ ∀x (T (x)⇒ V (x)) ∧ ∀y∃x E(y)⇒ (T (x) ∧ R(x, y))

The problem Enum·HS ∈ Enum·Π2.

Previous results

1. Only first-order free variables and bounded degree structures.
Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: linear
preprocessing + constant delay.

2. Only first-order free variables and acyclic conjunctive formula.
Bagan-Durand-Grandjean’07: linear preprocessing + linear
delay

3. Monadic second order formula and bounded tree-width
structure Bagan, Courcelle 2009: almost linear preprocessing
+ linear delay

Example
Enumeration of the k-cliques of a graph of bounded degree.

Previous results

1. Only first-order free variables and bounded degree structures.
Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: linear
preprocessing + constant delay.

2. Only first-order free variables and acyclic conjunctive formula.
Bagan-Durand-Grandjean’07: linear preprocessing + linear
delay

3. Monadic second order formula and bounded tree-width
structure Bagan, Courcelle 2009: almost linear preprocessing
+ linear delay

Example
Typical database query. Simple paths of length k.

Previous results

1. Only first-order free variables and bounded degree structures.
Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: linear
preprocessing + constant delay.

2. Only first-order free variables and acyclic conjunctive formula.
Bagan-Durand-Grandjean’07: linear preprocessing + linear
delay

3. Monadic second order formula and bounded tree-width
structure Bagan, Courcelle 2009: almost linear preprocessing
+ linear delay

Example
Enumeration of the cliques of a bounded tree-width graph.

A hierarchy result for counting functions

From a formula Φ(z,T), one defines the counting function:

#Φ : S 7→ |Φ(S)|.

Theorem (Saluja, Subrahmanyam, Thakur 1995)
On linearly ordered structures:
#Σ0 (#Σ1 (#Π1 (#Σ2 (#Π2 =]P.

Some]P-hard problems in #Σ1 (but existence of FPRAS at this
level).

Corollary
On linearly ordered structures:
Enum·Σ0 (Enum·Σ1 (Enum·Π1 (Enum·Σ2 (Enum·Π2.

A hierarchy result for counting functions

From a formula Φ(z,T), one defines the counting function:

#Φ : S 7→ |Φ(S)|.

Theorem (Saluja, Subrahmanyam, Thakur 1995)
On linearly ordered structures:
#Σ0 (#Σ1 (#Π1 (#Σ2 (#Π2 =]P.

Some]P-hard problems in #Σ1 (but existence of FPRAS at this
level).

Corollary
On linearly ordered structures:
Enum·Σ0 (Enum·Σ1 (Enum·Π1 (Enum·Σ2 (Enum·Π2.

Enumeration

A logical perspective on enumeration

A quantifier alternation hierarchy

The first level: Enum·Σ0

Theorem
For ϕ ∈ Σ0, Enum·ϕ can be enumerated with preprocessing
O(|D|k) and delay O(1) where k is the number of free first order
variables of ϕ and D is the domain of the input structure.

Simple ingredients:
1. Transformation of a f.o. formula Φ(z,T) into a propositional

formula:
I Disjunction on all values for first order variables,∨|D|k−1

i=0 Φ(zi ,T).
I Replace the atomic formulas by their truth value.
I Obtain a propositional formula with variables T (w).

2. Gray Code Enumeration.

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the O(nk) preprocessing.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:
I Another transformation: Φ(z,T) seen as a propositional

formula whose variables are the atoms of Φ.
I From each solution, create a quantifier free formula without

free second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the O(nk) preprocessing.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:
I Another transformation: Φ(z,T) seen as a propositional

formula whose variables are the atoms of Φ.
I From each solution, create a quantifier free formula without

free second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the O(nk) preprocessing.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:
I Another transformation: Φ(z,T) seen as a propositional

formula whose variables are the atoms of Φ.
I From each solution, create a quantifier free formula without

free second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].

Second level: Enum·Σ1

Theorem
Enum·Σ1 ⊆ DelayP. More precisely, Enum·Σ1 can be computed
with precomputation O(|D|h+k) and delay O(|D|k) where h is the
number of free first order variables of the formula, k the number of
existentially quantified variables and D is the domain of the input
structure.

Idea of Proof: Φ(y,T) = ∃xϕ(x,y,T)
I Substitute values for x. Collection of formulas of the form:

ϕ(x∗,y,T)

I Need to enumerate the (non necessarily disjoint) union.

Enumeration of an union

How to enumerate an union?

Order on the solutions.

Lemma
Let R and S be two polynomially balanced predicates such that

S can be decided in time O(h(n)). Assume that one can solve
Enum·R and Enum·S with preprocessing f (n) and delay g(n),
then one can solve Enum·R ∪ S with preprocessing 2f (n) + c and
delay 2g(n) + h(n) + c, where c is a constant.

Remark
The problem Enum·l −DNF is equivalent to problems in
Enum·Σ1.

Enumeration of an union

How to enumerate an union?

Order on the solutions.

Lemma
Let R and S be two polynomially balanced predicates such that

S can be decided in time O(h(n)). Assume that one can solve
Enum·R and Enum·S with preprocessing f (n) and delay g(n),
then one can solve Enum·R ∪ S with preprocessing 2f (n) + c and
delay 2g(n) + h(n) + c, where c is a constant.

Remark
The problem Enum·l −DNF is equivalent to problems in
Enum·Σ1.

Enumeration of an union

How to enumerate an union?

Order on the solutions.

Lemma
Let R and S be two polynomially balanced predicates such that

S can be decided in time O(h(n)). Assume that one can solve
Enum·R and Enum·S with preprocessing f (n) and delay g(n),
then one can solve Enum·R ∪ S with preprocessing 2f (n) + c and
delay 2g(n) + h(n) + c, where c is a constant.

Remark
The problem Enum·l −DNF is equivalent to problems in
Enum·Σ1.

Enumeration of an union

How to enumerate an union?

Order on the solutions.

Lemma
Let R and S be two polynomially balanced predicates such that

S can be decided in time O(h(n)). Assume that one can solve
Enum·R and Enum·S with preprocessing f (n) and delay g(n),
then one can solve Enum·R ∪ S with preprocessing 2f (n) + c and
delay 2g(n) + h(n) + c, where c is a constant.

Remark
The problem Enum·l −DNF is equivalent to problems in
Enum·Σ1.

The case Enum·Π1

Proposition
Unless P = NP, there is no polynomial delay algorithm for
Enum·Π1.

Proof Direct encoding of SAT.

Hardness even:
I on the class of bounded degree structure
I if all clauses but one have at most two occurences of a

second-order free variable

Tractable cases

Transformation of a Σi formula into a propositional formula.

Proposition (Creignou, Hebrard’97)
The problem Enum·SAT(C) is in DelayP when C is one of the
following classes: Horn formulas, anti-Horn formulas, affine
formulas, bijunctive (2CNF) formulas.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃i are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets.

Tractable cases

Transformation of a Σi formula into a propositional formula.

Proposition (Creignou, Hebrard’97)
The problem Enum·SAT(C) is in DelayP when C is one of the
following classes: Horn formulas, anti-Horn formulas, affine
formulas, bijunctive (2CNF) formulas.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃i are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets.

Tractable cases

Transformation of a Σi formula into a propositional formula.

Proposition (Creignou, Hebrard’97)
The problem Enum·SAT(C) is in DelayP when C is one of the
following classes: Horn formulas, anti-Horn formulas, affine
formulas, bijunctive (2CNF) formulas.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃i are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets.

Tractable cases

Transformation of a Σi formula into a propositional formula.

Proposition (Creignou, Hebrard’97)
The problem Enum·SAT(C) is in DelayP when C is one of the
following classes: Horn formulas, anti-Horn formulas, affine
formulas, bijunctive (2CNF) formulas.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃i are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets.

Conlusions and open problems

Enum·Σ0 (Enum·Σ1 (Enum·Π1 (Enum·Σ2 (Enum·Π2 =
EnumP.

I Nice but small hierarchy.
I Other tractable classes above Σ1 (optimization operator)?
I Efficient probabilistic enumeration procedure?

	Enumeration
	A logical perspective on enumeration
	A quantifier alternation hierarchy

