Enumeration Complexity of logical query problems with second order variables

Yann Strozecki and Arnaud Durand

Université Paris Diderot - Paris 7

September 2011, CSL conference

Enumeration

A logical perspective on enumeration

A quantifier alternation hierarchy

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ► \exists ?yA(x, y) : decision problem (class NP)
- ▶ $\sharp\{y \mid A(x, y)\}$: counting problem (class \sharp P)
- ▶ $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Example

Perfect matching:

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- ► The enumeration problem is to list every perfect matching.

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ► \exists ?yA(x, y) : decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$: counting problem (class $\sharp P$)
- ▶ $\{y \mid A(x, y)\}$: enumeration problem (class EnumP)

Example

Perfect matching:

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to list every perfect matching.

Time complexity measures for enumeration

1. the total time related to the number of solutions

polynomial total time: TotalP

2. the delay

- incremental polynomial time: IncP (Circuits of a matroid)
- polynomial delay: DelayP (Perfect Matching)
- Constant or linear delay
 - ▶ A two steps algorithm: preprocessing + generation
 - An ad-hoc RAM model.

Time complexity measures for enumeration

- 1. the total time related to the number of solutions
 - polynomial total time: TotalP
- 2. the delay
 - ▶ incremental polynomial time: IncP (Circuits of a matroid)
 - polynomial delay: DelayP (Perfect Matching)
 - Constant or linear delay
 - ► A two steps algorithm: preprocessing + generation
 - An ad-hoc RAM model.

Enumeration problems

ENUM·R *Input:* $x \in \mathcal{I}$ *Output:* an enumeration of elements in $R(x) = \{y \mid R(x, y)\}$

Definition

The problem ENUM R belongs to the class DELAY(g, f) if there exists an enumeration algorithm that computes ENUM R such that, for all input x:

- Preprocessing in time O(g(|x|)),
- ▶ Solutions $y \in R(x)$ are computed successively without repetition with a delay O(f(|x|))

Constant-Delay = $\bigcup_k \text{Delay}(n^k, O(1)).$

Enumeration

A logical perspective on enumeration

A quantifier alternation hierarchy

Enumeration problem defined by a formula

Let $\Phi(\mathbf{z}, \mathbf{T})$ be a first order formula.

To simplify, the tuple \mathbf{T} contains only one relation T.

 $\begin{array}{ll} \text{Enum} \cdot \Phi \\ \textit{Input:} & \mathsf{A} \ \sigma \text{-structure} \ \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{ (\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$

Similar to parametrized complexity classes.

Let \mathscr{F} be a subclass of first order formulas. We denote by ENUM· \mathscr{F} the collection of problems ENUM· Φ for $\Phi \in \mathscr{F}$.

First-order queries with free second order variables

This work

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure's domain
- On arbitrary structures
- Quantifier depth as a parameter: ENUM· Σ_1

Example

Example

Independent sets:

$$IS(T) \equiv \forall x \forall y \ T(x) \land T(y) \Rightarrow \neg E(x, y).$$

The formula is in Π_1 , thus $ENUM \cdot IS \in ENUM \cdot \Pi_1$.

Example

Hitting sets (vertex covers) of a hypergraph represented by the incidence structure $\langle D, \{V, E, R\} \rangle$.

$$HS(T) \equiv \forall x \left(T(x) \Rightarrow V(x) \right) \land \forall y \exists x E(y) \Rightarrow \left(T(x) \land R(x, y) \right)$$

The problem $ENUM \cdot HS \in ENUM \cdot \Pi_2$.

Previous results

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay

Example

Enumeration of the k-cliques of a graph of bounded degree.

Previous results

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
- Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

Example

Typical database query. Simple paths of length k.

Previous results

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
- 3. Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

Example

Enumeration of the cliques of a bounded tree-width graph.

A hierarchy result for counting functions

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function:

 $#\Phi: \mathcal{S} \mapsto |\Phi(\mathcal{S})|.$

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures: $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \sharp P.$

Some $\sharp P$ -hard problems in $\# \Sigma_1$ (but existence of FPRAS at this level).

Corollary

On linearly ordered structures: ENUM· $\Sigma_0 \subsetneq$ ENUM· $\Sigma_1 \subsetneq$ ENUM· $\Pi_1 \subsetneq$ ENUM· $\Sigma_2 \subsetneq$ ENUM· Π_2 .

A hierarchy result for counting functions

From a formula $\Phi(\mathbf{z}, \mathbf{T})$, one defines the counting function:

 $#\Phi: \mathcal{S} \mapsto |\Phi(\mathcal{S})|.$

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures: $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \sharp P.$

Some $\sharp P$ -hard problems in $\# \Sigma_1$ (but existence of FPRAS at this level).

Corollary

On linearly ordered structures: ENUM· $\Sigma_0 \subsetneq$ ENUM· $\Sigma_1 \subsetneq$ ENUM· $\Pi_1 \subsetneq$ ENUM· $\Sigma_2 \subsetneq$ ENUM· Π_2 .

Enumeration

A logical perspective on enumeration

A quantifier alternation hierarchy

The first level: Enum $\cdot \Sigma_0$

Theorem

For $\varphi \in \Sigma_0$, ENUM· φ can be enumerated with preprocessing $O(|D|^k)$ and delay O(1) where k is the number of free first order variables of φ and D is the domain of the input structure.

Simple ingredients:

- 1. Transformation of a f.o. formula $\Phi(\mathbf{z},\,T)$ into a propositional formula:
 - Disjunction on all values for first order variables, $\bigvee_{i=0}^{|D|^k-1} \Phi(\mathbf{z}_i, T).$
 - Replace the atomic formulas by their truth value.
 - Obtain a propositional formula with variables $T(\mathbf{w})$.
- 2. Gray Code Enumeration.

Bounded degree structure

Remark: The k-clique query is definable. No hope to improve the $O(n^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$ where D is the domain of the input structure.

Bounded degree structure

Remark: The *k*-clique query is definable. No hope to improve the $O(n^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- ► Another transformation: Φ(z, T) seen as a propositional formula whose variables are the atoms of Φ.
- ► From each solution, create a quantifier free formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].

Bounded degree structure

Remark: The *k*-clique query is definable. No hope to improve the $O(n^k)$ preprocessing.

Theorem

Let $d \in \mathbb{N}$, on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$ where D is the domain of the input structure.

Idea of proof:

- Another transformation: Φ(z, T) seen as a propositional formula whose variables are the atoms of Φ.
- From each solution, create a quantifier free formula without free second order variables.
- ▶ Enumerate the solutions of this formula thanks to [DG 2007].

Second level: Enum· Σ_1

Theorem

ENUM· $\Sigma_1 \subseteq$ DELAYP. More precisely, ENUM· Σ_1 can be computed with precomputation $O(|D|^{h+k})$ and delay $O(|D|^k)$ where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

Idea of Proof: $\Phi(\mathbf{y}, T) = \exists \mathbf{x} \varphi(\mathbf{x}, \mathbf{y}, T)$

▶ Substitute values for x. Collection of formulas of the form:

$$\varphi(\mathbf{x}^*, \mathbf{y}, T)$$

▶ Need to enumerate the (non necessarily disjoint) union.

How to enumerate an union?

Order on the solutions.

How to enumerate an union?

Order on the solutions.

Lemma

Let R and S be two polynomially balanced predicates such that S can be decided in time O(h(n)). Assume that one can solve ENUM·R and ENUM·S with preprocessing f(n) and delay g(n), then one can solve ENUM· $R \cup S$ with preprocessing 2f(n) + c and delay 2g(n) + h(n) + c, where c is a constant.

How to enumerate an union?

Order on the solutions.

Lemma

Let R and S be two polynomially balanced predicates such that S can be decided in time O(h(n)). Assume that one can solve ENUM·R and ENUM·S with preprocessing f(n) and delay g(n), then one can solve ENUM· $R \cup S$ with preprocessing 2f(n) + c and delay 2g(n) + h(n) + c, where c is a constant.

Remark

The problem $\operatorname{Enum} l - DNF$ is equivalent to problems in $\operatorname{Enum} \Sigma_1$.

How to enumerate an union?

Order on the solutions.

Lemma

Let R and S be two polynomially balanced predicates such that S can be decided in time O(h(n)). Assume that one can solve ENUM·R and ENUM·S with preprocessing f(n) and delay g(n), then one can solve ENUM· $R \cup S$ with preprocessing 2f(n) + c and delay 2g(n) + h(n) + c, where c is a constant.

Remark

The problem $\text{ENUM} \cdot l - DNF$ is equivalent to problems in $\text{ENUM} \cdot \Sigma_1$.

The case $\text{Enum}{\cdot}\Pi_1$

Proposition

Unless P = NP, there is no polynomial delay algorithm for $E_{NUM} \cdot \Pi_1$.

Proof Direct encoding of SAT.

Hardness even:

- on the class of bounded degree structure
- if all clauses but one have at most two occurences of a second-order free variable

Transformation of a $\boldsymbol{\Sigma}_i$ formula into a propositional formula.

Proposition (Creignou, Hebrard'97)

The problem $\text{ENUM} \cdot \text{SAT}(\mathcal{C})$ is in DELAYP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Transformation of a Σ_i formula into a propositional formula.

Proposition (Creignou, Hebrard'97)

The problem $\text{ENUM} \cdot \text{SAT}(\mathcal{C})$ is in DELAYP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_i$ are either Horn, anti-Horn, affine or bijunctive. Then $\mathrm{Enum} \cdot \Phi \subseteq \mathrm{DELayP}$.

Transformation of a Σ_i formula into a propositional formula.

Proposition (Creignou, Hebrard'97)

The problem $E_{NUM} \cdot SAT(C)$ is in DELAYP when C is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_i$ are either Horn, anti-Horn, affine or bijunctive. Then ENUM· $\Phi \subseteq DELAYP$.

Example: independent sets and hitting sets.

Transformation of a Σ_i formula into a propositional formula.

Proposition (Creignou, Hebrard'97)

The problem $\text{ENUM} \cdot \text{SAT}(\mathcal{C})$ is in DELAYP when \mathcal{C} is one of the following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF) formulas.

Corollary

Let $\Phi(\mathbf{z}, T)$ be a formula, such that, for all σ structures, all propositional formulas $\tilde{\Phi}_i$ are either Horn, anti-Horn, affine or bijunctive. Then ENUM· $\Phi \subseteq$ DELAYP.

Example: independent sets and hitting sets.

Conlusions and open problems

ENUM· $\Sigma_0 \subsetneq$ ENUM· $\Sigma_1 \subsetneq$ ENUM· $\Pi_1 \subsetneq$ ENUM· $\Sigma_2 \subsetneq$ ENUM· $\Pi_2 =$ EnumP.

- Nice but small hierarchy.
- Other tractable classes above Σ_1 (optimization operator)?
- Efficient probabilistic enumeration procedure?