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Hard problems:
I Hypergraph coloring.

I Minimal edge-covering (3 dimensional matching).
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Representation of a hypergraph

A hypergraph has up to 2n edges.
Dense representation often not relevant for complexity issues.

How to represent a hypergraph:

I Membership oracle, decide whether a set of vertices is an edge.
I Representable matroids.
I Sparse hypergraphs: list of edges.
I Uniform hypergraphs, acyclic hypergraphs.
I Subclasses: upward closed hypergraphs, matroids, closed uner

union, intersection . . .
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Decomposition of a hypergraph

Simple idea, use a graph decomposition : treewidth of a
hypergraph.

Alternatively transform the hypergraph into a graph.

Definition
The Gaifman graph (or primal graph) G(H ) of a hypergraph H is
the graph (V ,E), where {u, v} ∈ E iff u and v belongs to some
hyperedge of H .

Consider the treewidth of the Gaifman graph.

A hyperedge of size k in the graph becomes a clique of size k in
the Gaifman graph: treewidth at least k.
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Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H
if:

I The nodes of T are labeled by sets of vertices of the
hypergraph (or bags).

I Each set of vertices must be contained in t hyperedges.
I Let v be in the hyperedges covering a bag, either it is in the

bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated
in polynomial time.

Generalizations: generalized hypertree width, fractional hypertree
width, submodular width . . . .
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Hypergraph Decomposition

Ft is the set of unary and binary functions of domain and
codomain {0, . . . , t}.

Ht the set of terms T (Ft , {0, . . . , t}).

Definition
Let T be a term of Ht , let L be the set of leaves of T and let X
be one of its subsets. The value of the term T where the labels of
the leaves not in X are replaced by 0 is called the value of X in T
and is denoted by v(X ,T ).

The function v defines a colored hypergraph.

Definition

Let T be a term of Ht , let L be the set of leaves of T and let
S ⊆ {0, . . . , t}. The hypergraph H represented by (T ,S) has L
for vertices and its set of hyperedges is {X ⊆ L | v(X ,T ) ∈ S}.
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Related decomposition notions

Definition
Let H be a hypergraph. The decomposition-width of H , denoted
by dw(H ), is the smallest integer t such that H is represented by a
term of Ht .

Related to decomposition notions of matroids, given by their sets
of circuits.

I Decomposition-width of matroids [Kral].
I Branch-width of representable matroids [Hlineny].
I Series-parallel composition of matroids [S.].
I Can be used to decompose oriented matroids.

Other restrictions of hypergraphs: uniform hypergraphs, graphs . . .
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Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

Examples:

I Clutter: ∀X ,Y [(X ⊂ Y ∧ E(Y ))⇒ ¬E(X)]
I X is a transversal:

Transversal(X) ≡ ∀Y [E(Y )⇒ (X ∩Y 6= ∅)].
I k-coloring:

∃X1 . . . ∃Xk
∧

i 6=j(Xi ∩Xj = ∅) ∧ ∀XE(X)⇒
[∃v1∃v2(v1 ∈ X) ∧ (v2 ∈ X) ∧

∨
i 6=j(v1 ∈ Xi) ∧ (v2 ∈ Xj)]

I Set of circuits of a matroid.
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Tractability of MSO

Theorem
Let ϕ be a MSO formula of size l and H a hypergraph with n
vertices given by a term of Ht . There is an algorithm which
decides whether H |= ϕ in time f (t, l)× n where f is a computable
function.

Idea : the relation E of a hypergraph H can be represented by a
MSO formula over its representation by a term of Ht .
Equivalently, there is a tree automaton to do that.
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Enumeration

Theorem

Let ϕ(X) be a MSO formula of size l with a free variable X and
H a hypergraph with n vertices given by a term of Ht . There is an
algorithm which lists all satisfying assignments of X in H with
delay f (t, l)× n where f is a computable function.

Minimal transversals are interesting objects in database, boolean
circuits and I.A:

Transversal(X) ∧ ∀Y [Transversal(Y )⇒ ¬(Y ( X)].

Complexity of enumerating the minimal transversals: open.
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Normal Form

A term of Ht is in normal form if:
I it contains only binary functions
I it has only 1 as constants

Proposition
Let H be a hypergraph with two or more vertices represented by
(T ,S) where T ∈ Ht , then there is T̃ ∈ Ht in normal form such
that (T̃ , [t]) represents H .

Idea: local transformation of the decomposition tree.
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Hypergraphs Operations

Usual operations preserve the decomposition-width.
I Vertex set restriction: H = (V ,E), W ⊆ V then

dw(H ×W ) ≤ dw(H ).

I Adding or removing an edge: dw(H \ {e1}) ≤ dw(H ) + 1
and dw(H ∪ {e1}) ≤ dw(H ) + 1.

I Disjoint union: m = max(dw(H1), dw(H2)),
m ≤ dw(H1 ∪H2) ≤ m + 1.

I Union with a common point: m ≤ dw(H1 ∪H2) ≤ m + 2.

Does not seem to work: Induced hypergraph, amalgamated sum.
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Bounds on the decomposition-width

Proposition
Let H be a hypergraph with n vertices, then dw(H ) ≤ 2d

n
2 e.

Idea of proof: choose a partition of the vertices into two equal
parts. Build a term for each with one color for each hyperedge.

Proposition
For n ≥ 8, there is a hypergraph H with n vertices such that
dw(H ) > 2d n

2 e

n .

Idea of proof: count the terms of Ht .
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Type of an edge

How to bound the decomposition-width of a hypergraph ?

The type of X a set of vertices with regard to Y (X ∩Y = ∅):
type(X ,Y ) = {W ⊆ Y | X ∪W ∈ E}.

Type(X) = {type(Z ,X) | Z ⊆ X}.

Lemma

Let T ∈ Ht be a term which represents the hypergraph H and let
T ′ be one of its subterm. Let L be the set of vertices in T ′ then
|Type(L)| ≤ t + 1.
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Explicit family of large decomposition-width

First family: Hk,n = ([n], {X | |X | = k})

Proposition
For all n > 3k, we have dw(Hk,n) = k + 1.

Idea of proof : for any decomposition T of Hk,n , find a subterm
whose set of leaves L satisfies n/3 ≤ |L| ≤ 2n/3. The type of a
set is roughly its size. Thus Type(L) = k + 1.

Second family: In = ([n], {X ⊆ [n] | |X | ∈ X})

Theorem
For all n > 0, we have dw(In) ≥ 2

n
27 .
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Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:

D = {(0, 0), (k, 0), (k + 1, 0)} ∪ {(i, j)}0<i<k,0≤j≤t
Fk,t is the set of unary and binary functions with domain and
codomain D which satisfy for all (a, b), (c, d) ∈ D2:

I f ((a, b)) = (a, c) for some c ≤ t
I g((a, b), (c, d)) = (a + c, e) for some e ≤ t when a + c < k
I g((a, b), (c, d)) = (k, 0) or (k + 1, 0) when a + c = k
I g((a, b), (c, d)) = (k + 1, 0) when a + c > k

Hk,t : the set of terms T (Fk,t , {(1, i)}0≤i≤t).
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Uniform-representation II

Uniform decomposition-width: the smallest t such that H is
represented by a term of Hk,t denoted by dwu(H ).

Proposition
All hypergraphs represented by a term of Hk,t are k-uniform and
the following holds:

dwu(H ) ≤ dw(H ) ≤ (k − 1)(dwu(H ) + 1) + 2.

Idea: Right part is trivial.
Left part: inductively build a term of Hk,t from a term of Ht by
taking into account the cardinal.
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Clique-width

Let FL be the following set of graph operations:
I The disjoint union of two labeled graphs: ⊕.

I For all a, b ∈ L, the function which renames every vertex
labeled by a into b: ρa→b.

I For all a, b ∈ L, the function which adds all edges between
the vertices labeled a and those labeled b: ηa,b.

Ga the graph with one vertex labeled by a, GL = {Ga | a ∈ L}.

Definition
The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n],G[n]).



Clique-width

Let FL be the following set of graph operations:
I The disjoint union of two labeled graphs: ⊕.
I For all a, b ∈ L, the function which renames every vertex

labeled by a into b: ρa→b.

I For all a, b ∈ L, the function which adds all edges between
the vertices labeled a and those labeled b: ηa,b.

Ga the graph with one vertex labeled by a, GL = {Ga | a ∈ L}.

Definition
The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n],G[n]).



Clique-width

Let FL be the following set of graph operations:
I The disjoint union of two labeled graphs: ⊕.
I For all a, b ∈ L, the function which renames every vertex

labeled by a into b: ρa→b.
I For all a, b ∈ L, the function which adds all edges between

the vertices labeled a and those labeled b: ηa,b.

Ga the graph with one vertex labeled by a, GL = {Ga | a ∈ L}.

Definition
The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n],G[n]).



Clique-width

Let FL be the following set of graph operations:
I The disjoint union of two labeled graphs: ⊕.
I For all a, b ∈ L, the function which renames every vertex

labeled by a into b: ρa→b.
I For all a, b ∈ L, the function which adds all edges between

the vertices labeled a and those labeled b: ηa,b.

Ga the graph with one vertex labeled by a, GL = {Ga | a ∈ L}.

Definition
The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n],G[n]).



Clique-width

Let FL be the following set of graph operations:
I The disjoint union of two labeled graphs: ⊕.
I For all a, b ∈ L, the function which renames every vertex

labeled by a into b: ρa→b.
I For all a, b ∈ L, the function which adds all edges between

the vertices labeled a and those labeled b: ηa,b.

Ga the graph with one vertex labeled by a, GL = {Ga | a ∈ L}.

Definition
The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n],G[n]).



Clique-width

Let FL be the following set of graph operations:
I The disjoint union of two labeled graphs: ⊕.
I For all a, b ∈ L, the function which renames every vertex

labeled by a into b: ρa→b.
I For all a, b ∈ L, the function which adds all edges between

the vertices labeled a and those labeled b: ηa,b.

Ga the graph with one vertex labeled by a, GL = {Ga | a ∈ L}.

Definition
The clique-width of the graph G, denoted by cw(G), is the
minimum of the n ∈ N such that ∃γ, (G, γ) ∈ T (F[n],G[n]).



Decomposition-width and clique-width

Theorem
Let G be a graph, then cw(G)/2 ≤ dw(G) ≤ cw(G) + 2 .

Proposition
Let G be a graph, then dwu(G) ≤ cw(G) ≤ 2 dwu(G).

Idea of the proof: Simulation of graph operation by functions of
Fk,t and vice versa.
The graph Gi corresponds to a leaf of color (1, i).
Use 2t-terms which represents t-colored graphs. Different colors
for the left and right part (function of Fk,t not symmetric).



Decomposition-width and clique-width

Theorem
Let G be a graph, then cw(G)/2 ≤ dw(G) ≤ cw(G) + 2 .

Proposition
Let G be a graph, then dwu(G) ≤ cw(G) ≤ 2 dwu(G).

Idea of the proof: Simulation of graph operation by functions of
Fk,t and vice versa.
The graph Gi corresponds to a leaf of color (1, i).
Use 2t-terms which represents t-colored graphs. Different colors
for the left and right part (function of Fk,t not symmetric).



Decomposition-width and clique-width

Theorem
Let G be a graph, then cw(G)/2 ≤ dw(G) ≤ cw(G) + 2 .

Proposition
Let G be a graph, then dwu(G) ≤ cw(G) ≤ 2 dwu(G).

Idea of the proof: Simulation of graph operation by functions of
Fk,t and vice versa.
The graph Gi corresponds to a leaf of color (1, i).
Use 2t-terms which represents t-colored graphs. Different colors
for the left and right part (function of Fk,t not symmetric).



Computing the decomposition is hard I

The clique-width of a graph is NP hard to approximate [Fellows et
al.].

Corollary
The decomposition-width is NP-hard to approximate.

Simpler problem: a fixed integer k, test whether a hypergraph has
decomposition-width k.

Even simpler: k = 1 ?
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Computing the decomposition is hard II

A term of H1 is a read-once formula (each variable appears only
once) built from all possible logical connectors.

Read-once formulas built from the connectors AND, OR and
NOT cannot be learned in polynomial time with only membership
queries.

Theorem
There is no polynomial time algorithm to compute the
decomposition of a hypergraph of decomposition-width 1 given by
a membership oracle.

When the hypergraph of decomposition-width 1 is k-uniform or
upward closed, it is possible to compute its decomposition.
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Conclusion

A work in progress, with many open questions:
I To what is related the decomposition-width of uniform graphs

? Tree-width, clique-width of the Gaifman graph ?

I Can the decomposition-width be seen as a branch-width
(using Type)? restriction ?

I Is there a class of hypergraphs with a decomposition which
can be found in polynomial time ? Acyclic hypergraphs ?

I Hypergraphs of decomposition-width 1, 2 ?
I Do local properties of functions turn into global properties of

the represented hypergraphs ?
I Bounding the decomposition-width of an amalgamated sum ?

on which class of hypergraphs ?
I Better specialized algorithm ? for the minimal transversals ?
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Thanks!
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