Hypergraph decomposition

Yann Strozecki

Université Paris Sud - Paris 11
Equipe ALGO

Avril 2012, séminaire graphe et logique (LABRI)

Hypergraphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Hypergraphs

Hypergraphs

Hard problems:

- Hypergraph coloring.
- Minimal edge-covering (3 dimensional matching).

Hypergraphs

Hard problems:

- Hypergraph coloring.
- Minimal edge-covering (3 dimensional matching).
- Finding a spanning tree [Duris, S.].

Hypergraphs

Hard problems:

- Hypergraph coloring.
- Minimal edge-covering (3 dimensional matching).
- Finding a spanning tree [Duris, S.].

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

- Membership oracle, decide whether a set of vertices is an edge.

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.
- Uniform hypergraphs, acyclic hypergraphs.

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.
- Uniform hypergraphs, acyclic hypergraphs.
- Subclasses: upward closed hypergraphs, matroids, closed uner union, intersection

Representation of a hypergraph

A hypergraph has up to 2^{n} edges.
Dense representation often not relevant for complexity issues.
How to represent a hypergraph:

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.
- Uniform hypergraphs, acyclic hypergraphs.
- Subclasses: upward closed hypergraphs, matroids, closed uner union, intersection ...

Decomposition of a hypergraph

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Defintition

The Gaifman graph (or primal graph) $G(H)$ of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Decomposition of a hypergraph

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The Gaifman graph (or primal graph) $G(H)$ of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Consider the treewidth of the Gaifman graph.

Decomposition of a hypergraph

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The Gaifman graph (or primal graph) $G(H)$ of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Consider the treewidth of the Gaifman graph.
A hyperedge of size k in the graph becomes a clique of size k in the Gaifman graph: treewidth at least k

Decomposition of a hypergraph

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The Gaifman graph (or primal graph) $G(H)$ of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Consider the treewidth of the Gaifman graph.
A hyperedge of size k in the graph becomes a clique of size k in the Gaifman graph: treewidth at least k.

Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H if:

- The nodes of T are labeled by sets of vertices of the hypergraph (or bags).

Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H if:

- The nodes of T are labeled by sets of vertices of the hypergraph (or bags).
- Each set of vertices must be contained in t hyperedges.

Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H if:

- The nodes of T are labeled by sets of vertices of the hypergraph (or bags).
- Each set of vertices must be contained in t hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H if:

- The nodes of T are labeled by sets of vertices of the hypergraph (or bags).
- Each set of vertices must be contained in t hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated
in polynomial time.

Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H if:

- The nodes of T are labeled by sets of vertices of the hypergraph (or bags).
- Each set of vertices must be contained in t hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated in polynomial time.

Generalizations: generalized hypertree width, fractional hypertree width, submodular width

Hypertree width

The tree T is a tree decomposition of width t of the hypergraph H if:

- The nodes of T are labeled by sets of vertices of the hypergraph (or bags).
- Each set of vertices must be contained in t hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated in polynomial time.

Generalizations: generalized hypertree width, fractional hypertree width, submodular width

An example of a decomposition

f_{1}	0	1
0	1	0
1	0	1

f_{3}	0	1
0	0	0
1	1	0

f_{4}	0	1
0	0	0
1	0	1

An example of a decomposition

f_{1}	0	1
0	1	0
1	0	1

f_{3}	0	1
0	0	0
1	1	0

f_{4}	0	1
0	0	0
1	0	1

An example of a decomposition

f_{1}	0	1
0	1	0
1	0	1

f_{2}	0	1
0	0	1
1	0	0

f_{3}	0	1
0	0	0
1	1	0

f_{4}	0	1
0	0	0
1	0	1

An example of a decomposition

f_{1}	0	1
0	1	0
1	0	1

f_{2}	0	1
0	0	1
1	0	0

f_{3}	0	1
0	0	0
1	1	0

f_{4}	0	1
0	0	0
1	0	1

An example of a decomposition

f_{1}	0	1
0	1	0
1	0	1

f_{2}	0	1
0	0	1
1	0	0

f_{3}	0	1
0	0	0
1	1	0

f_{4}	0	1
0	0	0
1	0	1

Hypergraph Decomposition

F_{t} is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.
\mathcal{H}_{t} the set of terms $T\left(F_{t},\{0, \ldots, t\}\right)$.
Definition

Hypergraph Decomposition

F_{t} is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.
\mathcal{H}_{t} the set of terms $T\left(F_{t},\{0, \ldots, t\}\right)$.

Definition

Let T be a term of \mathcal{H}_{t}, let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by $v(X, T)$.

Hypergraph Decomposition

F_{t} is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.
\mathcal{H}_{t} the set of terms $T\left(F_{t},\{0, \ldots, t\}\right)$.

Definition

Let T be a term of \mathcal{H}_{t}, let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by $v(X, T)$.

The function v defines a colored hypergraph.

Hypergraph Decomposition

F_{t} is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.
\mathcal{H}_{t} the set of terms $T\left(F_{t},\{0, \ldots, t\}\right)$.

Definition

Let T be a term of \mathcal{H}_{t}, let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by $v(X, T)$.

The function v defines a colored hypergraph.

Definition

Let T be a term of \mathcal{H}_{t}, let L be the set of leaves of T and let $S \subseteq\{0, \ldots, t\}$. The hypergraph H represented by (T, S) has L for vertices and its set of hyperedges is $\{X \subseteq L \mid v(X, T) \in S\}$.

Related decomposition notions

Definition

Let H be a hypergraph. The decomposition-width of H, denoted by $\operatorname{dw}(H)$, is the smallest integer t such that H is represented by a term of \mathcal{H}_{t}.

Related to decomposition notions of matroids, given by their sets of circuits.

- Decomposition-width of matroids [Kral]
- Branch-width of representable matroids [Hlineny]
- Series-narallel composition of matroids [S I
- Can be used to decompose oriented matroids.

Related decomposition notions

Definition

Let H be a hypergraph. The decomposition-width of H, denoted by $\operatorname{dw}(H)$, is the smallest integer t such that H is represented by a term of \mathcal{H}_{t}.

Related to decomposition notions of matroids, given by their sets of circuits.

- Decomposition-width of matroids [Kral].
- Branch-width of representable matroids [Hlineny].
- Series-parallel composition of matroids [S.].
- Can be used to decompose oriented matroids.

Related decomposition notions

Definition

Let H be a hypergraph. The decomposition-width of H, denoted by $\operatorname{dw}(H)$, is the smallest integer t such that H is represented by a term of \mathcal{H}_{t}.

Related to decomposition notions of matroids, given by their sets of circuits.

- Decomposition-width of matroids [Kral].
- Branch-width of representable matroids [Hlineny].
- Series-parallel composition of matroids [S.].
- Can be used to decompose oriented matroids.

Other restrictions of hypergraphs: uniform hypergraphs, graphs ...

Hypergraphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.
Hyperedge relation: $E(X)$ holds if and only if X is an hyperedge.

Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.
Hyperedge relation: $E(X)$ holds if and only if X is an hyperedge.
Examples:

Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.
Hyperedge relation: $E(X)$ holds if and only if X is an hyperedge.
Examples:

- Clutter: $\forall X, Y[(X \subset Y \wedge E(Y)) \Rightarrow \neg E(X)]$
- X is a transversal:
$\operatorname{Transversal}(X) \equiv \forall Y[E(Y) \Rightarrow(X \cap Y \neq \emptyset)]$.

Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.
Hyperedge relation: $E(X)$ holds if and only if X is an hyperedge.
Examples:

- Clutter: $\forall X, Y[(X \subset Y \wedge E(Y)) \Rightarrow \neg E(X)]$
- X is a transversal:

$$
\operatorname{Transversal}(X) \equiv \forall Y[E(Y) \Rightarrow(X \cap Y \neq \emptyset)]
$$

- k-coloring:

Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.
Hyperedge relation: $E(X)$ holds if and only if X is an hyperedge.
Examples:

- Clutter: $\forall X, Y[(X \subset Y \wedge E(Y)) \Rightarrow \neg E(X)]$
- X is a transversal:
$\operatorname{Transversal}(X) \equiv \forall Y[E(Y) \Rightarrow(X \cap Y \neq \emptyset)]$.
- k-coloring:

$$
\begin{gathered}
\exists X_{1} \ldots \exists X_{k} \bigwedge_{i \neq j}\left(X_{i} \cap X_{j}=\emptyset\right) \wedge \forall X E(X) \Rightarrow \\
{\left[\exists v_{1} \exists v_{2}\left(v_{1} \in X\right) \wedge\left(v_{2} \in X\right) \wedge \bigvee_{i \neq j}\left(v_{1} \in X_{i}\right) \wedge\left(v_{2} \in X_{j}\right)\right]}
\end{gathered}
$$

- Set of circuits of a matroid.

Monadic second order logic

We consider the Monadic Second Order (MSO) logic.
Quantification over vertices and set of vertices.
Hyperedge relation: $E(X)$ holds if and only if X is an hyperedge.
Examples:

- Clutter: $\forall X, Y[(X \subset Y \wedge E(Y)) \Rightarrow \neg E(X)]$
- X is a transversal:
$\operatorname{Transversal}(X) \equiv \forall Y[E(Y) \Rightarrow(X \cap Y \neq \emptyset)]$.
- k-coloring:

$$
\begin{gathered}
\exists X_{1} \ldots \exists X_{k} \bigwedge_{i \neq j}\left(X_{i} \cap X_{j}=\emptyset\right) \wedge \forall X E(X) \Rightarrow \\
{\left[\exists v_{1} \exists v_{2}\left(v_{1} \in X\right) \wedge\left(v_{2} \in X\right) \wedge \bigvee_{i \neq j}\left(v_{1} \in X_{i}\right) \wedge\left(v_{2} \in X_{j}\right)\right]}
\end{gathered}
$$

- Set of circuits of a matroid.

Tractability of MSO

> Theorem
> Let φ be a MSO formula of size l and H a hypergraph with n vertices given by a term of \mathcal{H}_{t}. There is an algorithm which decides whether $H \models \varphi$ in time $f(t, l) \times n$ where f is a computable function.

Idea : the relation E of a hypergraph H can be represented by a MSO formula over its representation by a term of \mathcal{H}_{t}. Equivalently, there is a tree automaton to do that.

Tractability of MSO

Theorem

Let φ be a MSO formula of size l and H a hypergraph with n vertices given by a term of \mathcal{H}_{t}. There is an algorithm which decides whether $H \models \varphi$ in time $f(t, l) \times n$ where f is a computable function.

Idea : the relation E of a hypergraph H can be represented by a MSO formula over its representation by a term of \mathcal{H}_{t}.
Equivalently, there is a tree automaton to do that.

Enumeration

Theorem

Let $\varphi(X)$ be a MSO formula of size l with a free variable X and H a hypergraph with n vertices given by a term of \mathcal{H}_{t}. There is an algorithm which lists all satisfying assignments of X in H with delay $f(t, l) \times n$ where f is a computable function.

Minimal transversals are interesting objects in database, boolean circuits and I.A:

Enumeration

Theorem

Let $\varphi(X)$ be a MSO formula of size l with a free variable X and H a hypergraph with n vertices given by a term of \mathcal{H}_{t}. There is an algorithm which lists all satisfying assignments of X in H with delay $f(t, l) \times n$ where f is a computable function.

Minimal transversals are interesting objects in database, boolean circuits and I.A:

$$
\operatorname{Transversal}(X) \wedge \forall Y[\operatorname{TransversaL}(Y) \Rightarrow \neg(Y \subsetneq X)]
$$

Enumeration

Theorem

Let $\varphi(X)$ be a MSO formula of size l with a free variable X and H a hypergraph with n vertices given by a term of \mathcal{H}_{t}. There is an algorithm which lists all satisfying assignments of X in H with delay $f(t, l) \times n$ where f is a computable function.

Minimal transversals are interesting objects in database, boolean circuits and I.A:

$$
\operatorname{Transversal}(X) \wedge \forall Y[\operatorname{Transversal}(Y) \Rightarrow \neg(Y \subsetneq X)] .
$$

Complexity of enumerating the minimal transversals: open.

Hypergraphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Normal Form

A term of \mathcal{H}_{t} is in normal form if:

- it contains only binary functions
- it has only 1 as constants

Normal Form

A term of \mathcal{H}_{t} is in normal form if:

- it contains only binary functions
- it has only 1 as constants

Proposition

Let H be a hypergraph with two or more vertices represented by (T, S) where $T \in \mathcal{H}_{t}$, then there is $\tilde{T} \in \mathcal{H}_{t}$ in normal form such that $(\tilde{T},[t])$ represents H.

Idea: local transformation of the decomposition tree.

Normal Form

A term of \mathcal{H}_{t} is in normal form if:

- it contains only binary functions
- it has only 1 as constants

Proposition

Let H be a hypergraph with two or more vertices represented by (T, S) where $T \in \mathcal{H}_{t}$, then there is $\tilde{T} \in \mathcal{H}_{t}$ in normal form such that $(\tilde{T},[t])$ represents H.

Idea: local transformation of the decomposition tree.

Hypergraphs Operations

Usual operations preserve the decomposition-width.

- Vertex set restriction: $H=(V, E), W \subseteq V$ then $\mathrm{dw}(H \times W) \leq \mathrm{dw}(H)$.

Hypergraphs Operations

Usual operations preserve the decomposition-width.

- Vertex set restriction: $H=(V, E), W \subseteq V$ then $\mathrm{dw}(H \times W) \leq \mathrm{dw}(H)$.
- Adding or removing an edge: $\operatorname{dw}\left(H \backslash\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$ and $\operatorname{dw}\left(H \cup\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$.

Hypergraphs Operations

Usual operations preserve the decomposition-width.

- Vertex set restriction: $H=(V, E), W \subseteq V$ then $\mathrm{dw}(H \times W) \leq \mathrm{dw}(H)$.
- Adding or removing an edge: $\operatorname{dw}\left(H \backslash\left\{e_{1}\right\}\right) \leq \mathrm{dw}(H)+1$ and $\operatorname{dw}\left(H \cup\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$.
- Disjoint union: $m=\max \left(\mathrm{dw}\left(H_{1}\right), \mathrm{dw}\left(H_{2}\right)\right)$, $m \leq \operatorname{dw}\left(H_{1} \cup H_{2}\right) \leq m+1$.

Hypergraphs Operations

Usual operations preserve the decomposition-width.

- Vertex set restriction: $H=(V, E), W \subseteq V$ then $\mathrm{dw}(H \times W) \leq \mathrm{dw}(H)$.
- Adding or removing an edge: $\operatorname{dw}\left(H \backslash\left\{e_{1}\right\}\right) \leq \mathrm{dw}(H)+1$ and $\operatorname{dw}\left(H \cup\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$.
- Disjoint union: $m=\max \left(\mathrm{dw}\left(H_{1}\right), \mathrm{dw}\left(H_{2}\right)\right)$, $m \leq \operatorname{dw}\left(H_{1} \cup H_{2}\right) \leq m+1$.

Hypergraphs Operations

Usual operations preserve the decomposition-width.

- Vertex set restriction: $H=(V, E), W \subseteq V$ then $\mathrm{dw}(H \times W) \leq \mathrm{dw}(H)$.
- Adding or removing an edge: $\operatorname{dw}\left(H \backslash\left\{e_{1}\right\}\right) \leq \mathrm{dw}(H)+1$ and $\operatorname{dw}\left(H \cup\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$.
- Disjoint union: $m=\max \left(\mathrm{dw}\left(H_{1}\right), \mathrm{dw}\left(H_{2}\right)\right)$, $m \leq \operatorname{dw}\left(H_{1} \cup H_{2}\right) \leq m+1$.
- Union with a common point: $m \leq \operatorname{dw}\left(H_{1} \cup H_{2}\right) \leq m+2$.

Hypergraphs Operations

Usual operations preserve the decomposition-width.

- Vertex set restriction: $H=(V, E), W \subseteq V$ then $\mathrm{dw}(H \times W) \leq \mathrm{dw}(H)$.
- Adding or removing an edge: $\operatorname{dw}\left(H \backslash\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$ and $\operatorname{dw}\left(H \cup\left\{e_{1}\right\}\right) \leq \operatorname{dw}(H)+1$.
- Disjoint union: $m=\max \left(\mathrm{dw}\left(H_{1}\right), \mathrm{dw}\left(H_{2}\right)\right)$, $m \leq \operatorname{dw}\left(H_{1} \cup H_{2}\right) \leq m+1$.
- Union with a common point: $m \leq \mathrm{dw}\left(H_{1} \cup H_{2}\right) \leq m+2$.

Does not seem to work: Induced hypergraph, amalgamated sum.

Bounds on the decomposition-width

Proposition
Let H be a hypergraph with n vertices, then $\operatorname{dw}(H) \leq 2^{\left\lceil\frac{n}{2}\right\rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Bounds on the decomposition-width

Proposition
Let H be a hypergraph with n vertices, then $\operatorname{dw}(H) \leq 2^{\left\lceil\frac{n}{2}\right\rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Bounds on the decomposition-width

Proposition

Let H be a hypergraph with n vertices, then $\operatorname{dw}(H) \leq 2^{\left\lceil\frac{n}{2}\right\rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Proposition

For $n \geq 8$, there is a hypergraph H with n vertices such that $\mathrm{dw}(H)>\frac{2^{\left\lceil\frac{n}{2}\right\rceil}}{n}$.

Bounds on the decomposition-width

Proposition

Let H be a hypergraph with n vertices, then $\operatorname{dw}(H) \leq 2^{\left\lceil\frac{n}{2}\right\rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Proposition

For $n \geq 8$, there is a hypergraph H with n vertices such that $\mathrm{dw}(H)>\frac{2^{\left\lceil\frac{n}{2}\right\rceil}}{n}$.

Idea of proof: count the terms of \mathcal{H}_{t}.

Type of an edge

How to bound the decomposition-width of a hypergraph ?
The type of X a set of vertices with regard to $Y(X \cap Y=\emptyset)$: type $(X, Y)=\{W \subseteq Y \mid X \cup W \in E\}$.

Type of an edge

How to bound the decomposition-width of a hypergraph ?
The type of X a set of vertices with regard to $Y(X \cap Y=\emptyset)$: $\operatorname{type}(X, Y)=\{W \subseteq Y \mid X \cup W \in E\}$.
$\operatorname{Type}(X)=\{\operatorname{type}(Z, \bar{X}) \mid Z \subseteq X\}$.

Type of an edge

How to bound the decomposition-width of a hypergraph ?
The type of X a set of vertices with regard to $Y(X \cap Y=\emptyset)$: $\operatorname{type}(X, Y)=\{W \subseteq Y \mid X \cup W \in E\}$.
$\operatorname{Type}(X)=\{\operatorname{type}(Z, \bar{X}) \mid Z \subseteq X\}$.

Type of an edge

How to bound the decomposition-width of a hypergraph ?
The type of X a set of vertices with regard to $Y(X \cap Y=\emptyset)$: $\operatorname{type}(X, Y)=\{W \subseteq Y \mid X \cup W \in E\}$.
$\operatorname{Type}(X)=\{\operatorname{type}(Z, \bar{X}) \mid Z \subseteq X\}$.

Lemma

Let $T \in \mathcal{H}_{t}$ be a term which represents the hypergraph H and let T^{\prime} be one of its subterm. Let L be the set of vertices in T^{\prime} then $|\operatorname{Type}(L)| \leq t+1$.

Explicit family of large decomposition-width

First family: $H_{k, n}=([n],\{X| | X \mid=k\})$

Idea of proof: for any decomposition T of $H_{k, n}$, find a subterm whose set of leaves L satisfies $n / 3 \leq|L| \leq 2 n / 3$. The type of a set is roughly its size. Thus $\operatorname{Type}(L)=k+1$.

Explicit family of large decomposition-width

First family: $H_{k, n}=([n],\{X| | X \mid=k\})$

Proposition

For all $n>3 k$, we have $\operatorname{dw}\left(H_{k, n}\right)=k+1$.
Idea of proof : for any decomposition T of $H_{k, n}$, find a subterm whose set of leaves L satisfies $n / 3 \leq|L| \leq 2 n / 3$. The type of a set is roughly its size. Thus $\operatorname{Type}(L)=k+1$.

Second family:

Explicit family of large decomposition-width

First family: $H_{k, n}=([n],\{X| | X \mid=k\})$

Proposition

For all $n>3 k$, we have $\operatorname{dw}\left(H_{k, n}\right)=k+1$.
Idea of proof : for any decomposition T of $H_{k, n}$, find a subterm whose set of leaves L satisfies $n / 3 \leq|L| \leq 2 n / 3$. The type of a set is roughly its size. Thus $\operatorname{Type}(L)=k+1$.

Second family: $I_{n}=([n],\{X \subseteq[n]| | X \mid \in X\})$

Explicit family of large decomposition-width

First family: $H_{k, n}=([n],\{X| | X \mid=k\})$

Proposition

For all $n>3 k$, we have $\mathrm{dw}\left(H_{k, n}\right)=k+1$.
Idea of proof : for any decomposition T of $H_{k, n}$, find a subterm whose set of leaves L satisfies $n / 3 \leq|L| \leq 2 n / 3$. The type of a set is roughly its size. Thus $\operatorname{Type}(L)=k+1$.

Second family: $I_{n}=([n],\{X \subseteq[n]| | X \mid \in X\})$

Theorem

For all $n>0$, we have $\operatorname{dw}\left(I_{n}\right) \geq 2 \frac{n}{27}$.

Hypergraphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:

```
D={(0,0),(k,0),(k+1,0)}\cup{(i,j)}0<i<k,0\leqj\leqt
\mp@subsup{\mathcal{F}}{k,t}{}}\mathrm{ is the set of unary and binary functions with domain and
codomain D which satisfy for all (a,b),(c,d)\in\mp@subsup{D}{}{2}
    - f((a,b))=(a,c) for some c \leqt
    * g((a,b),(c,d))=(a+c,e) for some e\leqt when a+c<k
    * g((a,b),(c,d))=(k,0) or (k+1,0) when }a+c=
    * g((a,b),(c,d))=(k+1,0) when }a+c>
```


Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:
$D=\{(0,0),(k, 0),(k+1,0)\} \cup\{(i, j)\}_{0<i<k, 0 \leq j \leq t}$
$\mathcal{F}_{k, t}$ is the set of unary and binary functions with domain and codomain D which satisfy for all $(a, b),(c, d) \in D^{2}$:

- $f((a, b))=(a, c)$ for some $c \leq t$
- $g((a, b),(c, d))=(a+c, e)$ for some $e \leq t$ when $a+c<k$
- $g((a, b),(c, d))=(k, 0)$ or $(k+1,0)$ when $a+c=k$
- $g((a, b),(c, d))=(k+1,0)$ when $a+c>k$

Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:
$D=\{(0,0),(k, 0),(k+1,0)\} \cup\{(i, j)\}_{0<i<k, 0 \leq j \leq t}$
$\mathcal{F}_{k, t}$ is the set of unary and binary functions with domain and codomain D which satisfy for all $(a, b),(c, d) \in D^{2}$:

- $f((a, b))=(a, c)$ for some $c \leq t$
- $g((a, b),(c, d))=(a+c, e)$ for some $e \leq t$ when $a+c<k$
- $g((a, b),(c, d))=(k, 0)$ or $(k+1,0)$ when $a+c=k$
- $g((a, b),(c, d))=(k+1,0)$ when $a+c>k$
$\mathcal{H}_{k, t}$: the set of terms $T\left(\mathcal{F}_{k, t},\{(1, i)\}_{0 \leq i \leq t}\right)$.

Uniform-representation II

Uniform decomposition-width: the smallest t such that H is represented by a term of $\mathcal{H}_{k, t}$ denoted by $\mathrm{dw}_{u}(H)$.

Uniform-representation II

Uniform decomposition-width: the smallest t such that H is represented by a term of $\mathcal{H}_{k, t}$ denoted by $\mathrm{dw}_{u}(H)$.

Proposition

All hypergraphs represented by a term of $\mathcal{H}_{k, t}$ are k-uniform and the following holds:

$$
\mathrm{dw}_{u}(H) \leq \mathrm{dw}(H) \leq(k-1)\left(\mathrm{dw}_{u}(H)+1\right)+2
$$

Idea: Right part is trivial.
Left part: inductively build a term of $\mathcal{H}_{k, t}$ from a term of \mathcal{H}_{t} by taking into account the cardinal.

Uniform-representation II

Uniform decomposition-width: the smallest t such that H is represented by a term of $\mathcal{H}_{k, t}$ denoted by $\mathrm{dw}_{u}(H)$.

Proposition

All hypergraphs represented by a term of $\mathcal{H}_{k, t}$ are k-uniform and the following holds:

$$
\mathrm{dw}_{u}(H) \leq \mathrm{dw}(H) \leq(k-1)\left(\mathrm{dw}_{u}(H)+1\right)+2
$$

Idea: Right part is trivial.
Left part: inductively build a term of $\mathcal{H}_{k, t}$ from a term of \mathcal{H}_{t} by taking into account the cardinal.

Clique-width

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs:

Clique-width

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus.
- For all $a, b \in \mathcal{L}$, the function which renames every vertex labeled by a into $b: \rho_{a \rightarrow b}$.

Clique-width

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus.
- For all $a, b \in \mathcal{L}$, the function which renames every vertex labeled by a into $b: \rho_{a \rightarrow b}$.
- For all $a, b \in \mathcal{L}$, the function which adds all edges between the vertices labeled a and those labeled $b: \eta_{a, b}$.

Clique-width

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus.
- For all $a, b \in \mathcal{L}$, the function which renames every vertex labeled by a into $b: \rho_{a \rightarrow b}$.
- For all $a, b \in \mathcal{L}$, the function which adds all edges between the vertices labeled a and those labeled $b: \eta_{a, b}$.
G_{a} the graph with one vertex labeled by $a, G_{\mathcal{L}}=\left\{G_{a} \mid a \in \mathcal{L}\right\}$.

Clique-width

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus.
- For all $a, b \in \mathcal{L}$, the function which renames every vertex labeled by a into $b: \rho_{a \rightarrow b}$.
- For all $a, b \in \mathcal{L}$, the function which adds all edges between the vertices labeled a and those labeled $b: \eta_{a, b}$.
G_{a} the graph with one vertex labeled by $a, G_{\mathcal{L}}=\left\{G_{a} \mid a \in \mathcal{L}\right\}$.

Clique-width

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus.
- For all $a, b \in \mathcal{L}$, the function which renames every vertex labeled by a into $b: \rho_{a \rightarrow b}$.
- For all $a, b \in \mathcal{L}$, the function which adds all edges between the vertices labeled a and those labeled $b: \eta_{a, b}$.
G_{a} the graph with one vertex labeled by $a, G_{\mathcal{L}}=\left\{G_{a} \mid a \in \mathcal{L}\right\}$.

Definition

The clique-width of the graph G, denoted by $\operatorname{cw}(G)$, is the minimum of the $n \in \mathbb{N}$ such that $\exists \gamma,(G, \gamma) \in T\left(F_{[n]}, G_{[n]}\right)$.

Decomposition-width and clique-width

```
Theorem
Let \(G\) be a graph, then \(\mathrm{cw}(G) / 2 \leq \mathrm{dw}(G) \leq \mathrm{cw}(G)+2\).
```

Proposition
Lat C be a araph, then dwu $(G) \leq \mathrm{cw}(G) \leq 2 \mathrm{dw}_{u}(G)$

Decomposition-width and clique-width

Theorem
 Let G be a graph, then $\mathrm{cw}(G) / 2 \leq \mathrm{dw}(G) \leq \mathrm{cw}(G)+2$.

Proposition
 Let G be a graph, then $\mathrm{dw}_{u}(G) \leq \mathrm{cw}(G) \leq 2 \mathrm{dw}_{u}(G)$.

Idea of the proof: Simulation of graph operation by functions of $\mathcal{F}_{k, t}$ and vice versa.
The graph G_{i} corresponds to a leaf of color $(1, i)$
Use $2 t$-terms which represents t-colored graphs. Different colors for the left and right part (function of $\mathcal{F}_{k, t}$ not symmetric).

Decomposition-width and clique-width

Theorem
 Let G be a graph, then $\mathrm{cw}(G) / 2 \leq \mathrm{dw}(G) \leq \mathrm{cw}(G)+2$

Proposition

Let G be a graph, then $\mathrm{dw}_{u}(G) \leq \mathrm{cw}(G) \leq 2 \mathrm{dw}_{u}(G)$.

Idea of the proof: Simulation of graph operation by functions of $\mathcal{F}_{k, t}$ and vice versa.
The graph G_{i} corresponds to a leaf of color $(1, i)$.
Use $2 t$-terms which represents t-colored graphs. Different colors for the left and right part (function of $\mathcal{F}_{k, t}$ not symmetric).

Computing the decomposition is hard I

The clique-width of a graph is $N P$ hard to approximate [Fellows et al.].

Computing the decomposition is hard I

The clique-width of a graph is $N P$ hard to approximate [Fellows et al.].

Corollary
The decomposition-width is NP-hard to approximate.

Computing the decomposition is hard I

The clique-width of a graph is $N P$ hard to approximate [Fellows et al.].

Corollary
The decomposition-width is NP-hard to approximate.

Simpler problem: a fixed integer k, test whether a hypergraph has decomposition-width k.

Computing the decomposition is hard I

The clique-width of a graph is $N P$ hard to approximate [Fellows et al.].

Corollary
The decomposition-width is NP-hard to approximate.

Simpler problem: a fixed integer k, test whether a hypergraph has decomposition-width k.

Even simpler: $k=1$?

Computing the decomposition is hard II

A term of \mathcal{H}_{1} is a read-once formula (each variable appears only once) built from all possible logical connectors.

Read-once formulas built from the connectors $A N D, O R$ and NOT cannot be learned in polynomial time with only membership queries.

Theorem
There is no polynomial time algorithm to compute the decomposition of a hypergraph of decomposition-width 1 given by
a membership oracle.

Computing the decomposition is hard II

A term of \mathcal{H}_{1} is a read-once formula (each variable appears only once) built from all possible logical connectors.

Read-once formulas built from the connectors $A N D, O R$ and NOT cannot be learned in polynomial time with only membership queries.

Theorem

There is no polynomial time algorithm to compute the decomposition of a hypergraph of decomposition-width 1 given by a membership oracle.

When the hypergraph of decomposition-width 1 is k-uniform or upward closed, it is possible to compute its decomposition.

Computing the decomposition is hard II

A term of \mathcal{H}_{1} is a read-once formula (each variable appears only once) built from all possible logical connectors.

Read-once formulas built from the connectors $A N D, O R$ and NOT cannot be learned in polynomial time with only membership queries.

Theorem

There is no polynomial time algorithm to compute the decomposition of a hypergraph of decomposition-width 1 given by a membership oracle.

When the hypergraph of decomposition-width 1 is k-uniform or upward closed, it is possible to compute its decomposition.

Conclusion

A work in progress, with many open questions:

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time? Acyclic hypergraphs?

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- Hypergraphs of decomposition-width 1, 2 ?

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs?

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs?
- Bounding the decomposition-width of an amalgamated sum ? on which class of hypergraphs ?

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs?
- Bounding the decomposition-width of an amalgamated sum ? on which class of hypergraphs ?
- Better specialized algorithm ? for the minimal transversals ?

Conclusion

A work in progress, with many open questions:

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs?
- Bounding the decomposition-width of an amalgamated sum ? on which class of hypergraphs ?
- Better specialized algorithm ? for the minimal transversals ?

Thanks!

