Yann Strozecki

Université Paris Sud - Paris 11 Equipe ALGO

Avril 2012, séminaire graphe et logique (LABRI)

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Hard problems:

Hypergraph coloring.

Hard problems:

- Hypergraph coloring.
- ▶ Minimal edge-covering (3 dimensional matching).

Hard problems:

- Hypergraph coloring.
- ▶ Minimal edge-covering (3 dimensional matching).
- Finding a spanning tree [Duris, S.].

Hard problems:

- Hypergraph coloring.
- ▶ Minimal edge-covering (3 dimensional matching).
- Finding a spanning tree [Duris, S.].

A hypergraph has up to 2^n edges. Dense representation often not relevant for complexity issues.

A hypergraph has up to 2^n edges. Dense representation often not relevant for complexity issues.

How to represent a hypergraph:

Membership oracle, decide whether a set of vertices is an edge.

A hypergraph has up to 2^n edges. Dense representation often not relevant for complexity issues.

- Membership oracle, decide whether a set of vertices is an edge.
- ► Representable matroids.

A hypergraph has up to 2^n edges. Dense representation often not relevant for complexity issues.

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.

A hypergraph has up to 2^n edges. Dense representation often not relevant for complexity issues.

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.
- Uniform hypergraphs, acyclic hypergraphs.

A hypergraph has up to 2^n edges.

Dense representation often not relevant for complexity issues.

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.
- Uniform hypergraphs, acyclic hypergraphs.
- Subclasses: upward closed hypergraphs, matroids, closed uner union, intersection ...

A hypergraph has up to 2^n edges.

Dense representation often not relevant for complexity issues.

- Membership oracle, decide whether a set of vertices is an edge.
- Representable matroids.
- Sparse hypergraphs: list of edges.
- Uniform hypergraphs, acyclic hypergraphs.
- Subclasses: upward closed hypergraphs, matroids, closed uner union, intersection . . .

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The *Gaifman graph* (or primal graph) G(H) of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The *Gaifman graph* (or primal graph) G(H) of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Consider the treewidth of the Gaifman graph.

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The Gaifman graph (or primal graph) G(H) of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Consider the treewidth of the Gaifman graph.

A hyperedge of size k in the graph becomes a clique of size k in the Gaifman graph: treewidth at least k.

Simple idea, use a graph decomposition : treewidth of a hypergraph.

Alternatively transform the hypergraph into a graph.

Definition

The Gaifman graph (or primal graph) G(H) of a hypergraph H is the graph (V, E), where $\{u, v\} \in E$ iff u and v belongs to some hyperedge of H.

Consider the treewidth of the Gaifman graph.

A hyperedge of size k in the graph becomes a clique of size k in the Gaifman graph: treewidth at least k.

The tree $\,T$ is a tree decomposition of width t of the hypergraph $\,H$ if:

▶ The nodes of *T* are labeled by sets of vertices of the hypergraph (or bags).

The tree $\,T$ is a tree decomposition of width t of the hypergraph $\,H$ if:

- ► The nodes of *T* are labeled by sets of vertices of the hypergraph (or bags).
- ▶ Each set of vertices must be contained in *t* hyperedges.

The tree $\,T$ is a tree decomposition of width t of the hypergraph $\,H$ if:

- ► The nodes of *T* are labeled by sets of vertices of the hypergraph (or bags).
- ► Each set of vertices must be contained in *t* hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

The tree $\,T$ is a tree decomposition of width t of the hypergraph $\,H$ if:

- ► The nodes of *T* are labeled by sets of vertices of the hypergraph (or bags).
- ► Each set of vertices must be contained in *t* hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated in *polynomial time*.

The tree ${\it T}$ is a tree decomposition of width t of the hypergraph ${\it H}$ if:

- ► The nodes of *T* are labeled by sets of vertices of the hypergraph (or bags).
- ► Each set of vertices must be contained in *t* hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated in *polynomial time*.

Generalizations: generalized hypertree width, fractional hypertree width, submodular width

The tree ${\it T}$ is a tree decomposition of width t of the hypergraph ${\it H}$ if:

- ► The nodes of *T* are labeled by sets of vertices of the hypergraph (or bags).
- ► Each set of vertices must be contained in *t* hyperedges.
- Let v be in the hyperedges covering a bag, either it is in the bag or it is in no bag under it.

A conjunctive query of bounded hypertree width can be evaluated in *polynomial time*.

Generalizations: generalized hypertree width, fractional hypertree width, submodular width

 F_t is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.

 \mathcal{H}_t the set of terms $T(F_t, \{0, \ldots, t\})$.

Definition

Let T be a term of \mathcal{H}_t , let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by v(X, T).

 F_t is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.

 \mathcal{H}_t the set of terms $T(F_t, \{0, \ldots, t\})$.

Definition

Let T be a term of \mathcal{H}_t , let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by v(X, T).

The function v defines a colored hypergraph.

 F_t is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.

 \mathcal{H}_t the set of terms $T(F_t, \{0, \ldots, t\})$.

Definition

Let T be a term of \mathcal{H}_t , let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by v(X, T).

The function v defines a colored hypergraph.

Definition

Let T be a term of \mathcal{H}_t , let L be the set of leaves of T and let $S \subseteq \{0, \ldots, t\}$. The hypergraph H represented by (T, S) has L for vertices and its set of hyperedges is $\{X \subseteq L \mid v(X, T) \in S\}$.

 F_t is the set of unary and binary functions of domain and codomain $\{0, \ldots, t\}$.

 \mathcal{H}_t the set of terms $T(F_t, \{0, \ldots, t\})$.

Definition

Let T be a term of \mathcal{H}_t , let L be the set of leaves of T and let X be one of its subsets. The value of the term T where the labels of the leaves not in X are replaced by 0 is called the value of X in T and is denoted by v(X, T).

The function v defines a colored hypergraph.

Definition

Let T be a term of \mathcal{H}_t , let L be the set of leaves of T and let $S \subseteq \{0, \ldots, t\}$. The hypergraph H represented by (T, S) has L for vertices and its set of hyperedges is $\{X \subseteq L \mid v(X, T) \in S\}$.

Related decomposition notions

Definition

Let H be a hypergraph. The decomposition-width of H, denoted by dw(H), is the smallest integer t such that H is represented by a term of \mathcal{H}_t .

Related to decomposition notions of matroids, given by their sets of circuits.

- Decomposition-width of matroids [Kral].
- Branch-width of representable matroids [Hlineny].
- Series-parallel composition of matroids [S.].
- Can be used to decompose *oriented* matroids.

Related decomposition notions

Definition

Let H be a hypergraph. The decomposition-width of H, denoted by dw(H), is the smallest integer t such that H is represented by a term of \mathcal{H}_t .

Related to decomposition notions of matroids, given by their sets of circuits.

- Decomposition-width of matroids [Kral].
- Branch-width of representable matroids [Hlineny].
- Series-parallel composition of matroids [S.].
- Can be used to decompose *oriented* matroids.

Other restrictions of hypergraphs: uniform hypergraphs, graphs ...

Related decomposition notions

Definition

Let H be a hypergraph. The decomposition-width of H, denoted by dw(H), is the smallest integer t such that H is represented by a term of \mathcal{H}_t .

Related to decomposition notions of matroids, given by their sets of circuits.

- Decomposition-width of matroids [Kral].
- Branch-width of representable matroids [Hlineny].
- Series-parallel composition of matroids [S.].
- Can be used to decompose *oriented* matroids.

Other restrictions of hypergraphs: uniform hypergraphs, graphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

We consider the *Monadic Second Order* (MSO) logic. Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

We consider the Monadic Second Order (MSO) logic. Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

Examples:

▶ Clutter: $\forall X, Y[(X \subset Y \land E(Y)) \Rightarrow \neg E(X)]$

We consider the Monadic Second Order ($\rm MSO$) logic. Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

Examples:

- ▶ Clutter: $\forall X, Y[(X \subset Y \land E(Y)) \Rightarrow \neg E(X)]$
- ▶ X is a transversal: TRANSVERSAL(X) ≡ $\forall Y[E(Y) \Rightarrow (X \cap Y \neq \emptyset)].$

We consider the Monadic Second Order ($\rm MSO$) logic. Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

Examples:

- ▶ Clutter: $\forall X, Y[(X \subset Y \land E(Y)) \Rightarrow \neg E(X)]$
- ► X is a transversal: TRANSVERSAL(X) $\equiv \forall Y[E(Y) \Rightarrow (X \cap Y \neq \emptyset)].$

► *k*-coloring:

 $\exists X_1 \dots \exists X_k \wedge_{i \neq j} (X_i \cap X_j = \emptyset) \wedge \forall XE(X) \Rightarrow \\ [\exists v_1 \exists v_2 (v_1 \in X) \wedge (v_2 \in X) \wedge \bigvee_{i \neq j} (v_1 \in X_i) \wedge (v_2 \in X_j)]$

We consider the Monadic Second Order ($\rm MSO$) logic. Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

Examples:

- ▶ Clutter: $\forall X, Y[(X \subset Y \land E(Y)) \Rightarrow \neg E(X)]$
- ► X is a transversal: TRANSVERSAL(X) $\equiv \forall Y[E(Y) \Rightarrow (X \cap Y \neq \emptyset)].$
- ► *k*-coloring:

 $\exists X_1 \dots \exists X_k \bigwedge_{i \neq j} (X_i \cap X_j = \emptyset) \land \forall XE(X) \Rightarrow \\ [\exists v_1 \exists v_2 (v_1 \in X) \land (v_2 \in X) \land \bigvee_{i \neq j} (v_1 \in X_i) \land (v_2 \in X_j)]$

Set of circuits of a matroid.

We consider the Monadic Second Order ($\rm MSO$) logic. Quantification over vertices and set of vertices.

Hyperedge relation: E(X) holds if and only if X is an hyperedge.

Examples:

- ▶ Clutter: $\forall X, Y[(X \subset Y \land E(Y)) \Rightarrow \neg E(X)]$
- ► X is a transversal: TRANSVERSAL(X) $\equiv \forall Y[E(Y) \Rightarrow (X \cap Y \neq \emptyset)].$
- ► *k*-coloring:

$$\exists X_1 \dots \exists X_k \wedge_{i \neq j} (X_i \cap X_j = \emptyset) \wedge \forall XE(X) \Rightarrow \\ [\exists v_1 \exists v_2 (v_1 \in X) \wedge (v_2 \in X) \wedge \bigvee_{i \neq j} (v_1 \in X_i) \wedge (v_2 \in X_j)]$$

• Set of circuits of a matroid.

Tractability of MSO

Theorem

Let φ be a MSO formula of size l and H a hypergraph with n vertices given by a term of \mathcal{H}_t . There is an algorithm which decides whether $H \models \varphi$ in time $f(t, l) \times n$ where f is a computable function.

Idea : the relation E of a hypergraph H can be represented by a MSO formula over its representation by a term of \mathcal{H}_t . Equivalently, there is a tree automaton to do that.

Tractability of MSO

Theorem

Let φ be a MSO formula of size l and H a hypergraph with n vertices given by a term of \mathcal{H}_t . There is an algorithm which decides whether $H \models \varphi$ in time $f(t, l) \times n$ where f is a computable function.

Idea : the relation E of a hypergraph H can be represented by a MSO formula over its representation by a term of \mathcal{H}_t . Equivalently, there is a tree automaton to do that.

Enumeration

Theorem

Let $\varphi(X)$ be a MSO formula of size l with a free variable X and H a hypergraph with n vertices given by a term of \mathcal{H}_t . There is an algorithm which lists all satisfying assignments of X in H with delay $f(t, l) \times n$ where f is a computable function.

Minimal transversals are interesting objects in database, boolean circuits and I.A:

 $\operatorname{TRANSVERSAL}(X) \land \forall Y[\operatorname{TRANSVERSAL}(Y) \Rightarrow \neg(Y \subsetneq X)].$

Enumeration

Theorem

Let $\varphi(X)$ be a MSO formula of size l with a free variable X and H a hypergraph with n vertices given by a term of \mathcal{H}_t . There is an algorithm which lists all satisfying assignments of X in H with delay $f(t, l) \times n$ where f is a computable function.

Minimal transversals are interesting objects in database, boolean circuits and I.A:

 $\operatorname{TRANSVERSAL}(X) \land \forall Y[\operatorname{TRANSVERSAL}(Y) \Rightarrow \neg (Y \subsetneq X)].$

Complexity of enumerating the minimal transversals: open.

Enumeration

Theorem

Let $\varphi(X)$ be a MSO formula of size l with a free variable X and H a hypergraph with n vertices given by a term of \mathcal{H}_t . There is an algorithm which lists all satisfying assignments of X in H with delay $f(t, l) \times n$ where f is a computable function.

Minimal transversals are interesting objects in database, boolean circuits and I.A:

 $\operatorname{TRANSVERSAL}(X) \land \forall Y[\operatorname{TRANSVERSAL}(Y) \Rightarrow \neg (Y \subsetneq X)].$

Complexity of enumerating the minimal transversals: open.

Hypergraphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Normal Form

A term of \mathcal{H}_t is in normal form if:

- it contains only binary functions
- it has only 1 as constants

Proposition

Let H be a hypergraph with two or more vertices represented by (T, S) where $T \in \mathcal{H}_t$, then there is $\tilde{T} \in \mathcal{H}_t$ in normal form such that $(\tilde{T}, [t])$ represents H.

Normal Form

A term of \mathcal{H}_t is in normal form if:

- it contains only binary functions
- ▶ it has only 1 as constants

Proposition

Let H be a hypergraph with two or more vertices represented by (T, S) where $T \in \mathcal{H}_t$, then there is $\tilde{T} \in \mathcal{H}_t$ in normal form such that $(\tilde{T}, [t])$ represents H.

Idea: local transformation of the decomposition tree.

Normal Form

A term of \mathcal{H}_t is in normal form if:

- it contains only binary functions
- ▶ it has only 1 as constants

Proposition

Let H be a hypergraph with two or more vertices represented by (T, S) where $T \in \mathcal{H}_t$, then there is $\tilde{T} \in \mathcal{H}_t$ in normal form such that $(\tilde{T}, [t])$ represents H.

Idea: local transformation of the decomposition tree.

Usual operations preserve the decomposition-width.

▶ Vertex set restriction: H = (V, E), $W \subseteq V$ then $dw(H \times W) \leq dw(H)$.

Usual operations preserve the decomposition-width.

- ▶ Vertex set restriction: H = (V, E), $W \subseteq V$ then $dw(H \times W) \leq dw(H)$.
- ▶ Adding or removing an edge: $dw(H \setminus \{e_1\}) \le dw(H) + 1$ and $dw(H \cup \{e_1\}) \le dw(H) + 1$.

Usual operations preserve the decomposition-width.

- ▶ Vertex set restriction: H = (V, E), $W \subseteq V$ then $dw(H \times W) \leq dw(H)$.
- ▶ Adding or removing an edge: $dw(H \setminus \{e_1\}) \le dw(H) + 1$ and $dw(H \cup \{e_1\}) \le dw(H) + 1$.
- ▶ **Disjoint union:** $m = \max(\operatorname{dw}(H_1), \operatorname{dw}(H_2)),$ $m \le \operatorname{dw}(H_1 \cup H_2) \le m + 1.$

Usual operations preserve the decomposition-width.

- ▶ Vertex set restriction: H = (V, E), $W \subseteq V$ then $dw(H \times W) \leq dw(H)$.
- ▶ Adding or removing an edge: $dw(H \setminus \{e_1\}) \le dw(H) + 1$ and $dw(H \cup \{e_1\}) \le dw(H) + 1$.
- ▶ **Disjoint union:** $m = \max(\operatorname{dw}(H_1), \operatorname{dw}(H_2)),$ $m \le \operatorname{dw}(H_1 \cup H_2) \le m + 1.$
- Union with a common point: $m \leq dw(H_1 \cup H_2) \leq m + 2$.

Usual operations preserve the decomposition-width.

- ▶ Vertex set restriction: H = (V, E), $W \subseteq V$ then $dw(H \times W) \leq dw(H)$.
- ▶ Adding or removing an edge: $dw(H \setminus \{e_1\}) \le dw(H) + 1$ and $dw(H \cup \{e_1\}) \le dw(H) + 1$.
- ▶ **Disjoint union:** $m = \max(\operatorname{dw}(H_1), \operatorname{dw}(H_2)),$ $m \le \operatorname{dw}(H_1 \cup H_2) \le m + 1.$
- Union with a common point: $m \leq dw(H_1 \cup H_2) \leq m + 2$.

Does not seem to work: Induced hypergraph, amalgamated sum.

Usual operations preserve the decomposition-width.

- ▶ Vertex set restriction: H = (V, E), $W \subseteq V$ then $dw(H \times W) \leq dw(H)$.
- ▶ Adding or removing an edge: $dw(H \setminus \{e_1\}) \le dw(H) + 1$ and $dw(H \cup \{e_1\}) \le dw(H) + 1$.
- ▶ **Disjoint union:** $m = \max(\operatorname{dw}(H_1), \operatorname{dw}(H_2)),$ $m \le \operatorname{dw}(H_1 \cup H_2) \le m + 1.$
- Union with a common point: $m \leq dw(H_1 \cup H_2) \leq m + 2$.

Does not seem to work: Induced hypergraph, amalgamated sum.

Proposition

Let *H* be a hypergraph with *n* vertices, then $dw(H) \leq 2^{\lceil \frac{n}{2} \rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Proposition

Let *H* be a hypergraph with *n* vertices, then $dw(H) \leq 2^{\lceil \frac{n}{2} \rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Proposition For $n \ge 8$, there is a hypergraph H with n vertices such that $dw(H) > \frac{2^{\lceil \frac{n}{2} \rceil}}{n}.$

Proposition

Let *H* be a hypergraph with *n* vertices, then $dw(H) \leq 2^{\lceil \frac{n}{2} \rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Proposition

For $n \ge 8$, there is a hypergraph H with n vertices such that $dw(H) > \frac{2^{\lceil \frac{n}{2} \rceil}}{n}$.

Idea of proof: count the terms of \mathcal{H}_t .

Proposition

Let *H* be a hypergraph with *n* vertices, then $dw(H) \leq 2^{\lceil \frac{n}{2} \rceil}$.

Idea of proof: choose a partition of the vertices into two equal parts. Build a term for each with one color for each hyperedge.

Proposition

For $n \ge 8$, there is a hypergraph H with n vertices such that $dw(H) > \frac{2^{\lceil \frac{n}{2} \rceil}}{n}$.

Idea of proof: count the terms of \mathcal{H}_t .

How to bound the decomposition-width of a hypergraph ?

The type of X a set of vertices with regard to $Y (X \cap Y = \emptyset)$: type $(X, Y) = \{ W \subseteq Y \mid X \cup W \in E \}.$

How to bound the decomposition-width of a hypergraph ?

The type of X a set of vertices with regard to $Y (X \cap Y = \emptyset)$: type $(X, Y) = \{ W \subseteq Y \mid X \cup W \in E \}.$

 $Type(X) = \{type(Z, \overline{X}) \mid Z \subseteq X\}.$

How to bound the decomposition-width of a hypergraph ?

The type of X a set of vertices with regard to $Y (X \cap Y = \emptyset)$: type $(X, Y) = \{ W \subseteq Y \mid X \cup W \in E \}.$

$$\operatorname{Type}(X) = \{\operatorname{type}(Z, \overline{X}) \mid Z \subseteq X\}.$$

_emma

Let $T \in \mathcal{H}_t$ be a term which represents the hypergraph H and let T' be one of its subterm. Let L be the set of vertices in T' then $|\operatorname{Type}(L)| \leq t + 1$.

How to bound the decomposition-width of a hypergraph ?

The type of X a set of vertices with regard to $Y (X \cap Y = \emptyset)$: type $(X, Y) = \{ W \subseteq Y \mid X \cup W \in E \}.$

$$\operatorname{Type}(X) = \{\operatorname{type}(Z, \overline{X}) \mid Z \subseteq X\}.$$

Lemma

Let $T \in \mathcal{H}_t$ be a term which represents the hypergraph H and let T' be one of its subterm. Let L be the set of vertices in T' then $|\operatorname{Type}(L)| \leq t + 1$.

First family: $H_{k,n} = ([n], \{X \mid |X| = k\})$

Proposition

For all n > 3k, we have $dw(H_{k,n}) = k + 1$.

Idea of proof : for any decomposition T of $H_{k,n}$, find a subterm whose set of leaves L satisfies $n/3 \le |L| \le 2n/3$. The type of a set is roughly its size. Thus Type(L) = k + 1.

First family: $H_{k,n} = ([n], \{X \mid |X| = k\})$

Proposition

For all n > 3k, we have $dw(H_{k,n}) = k + 1$.

Idea of proof : for any decomposition T of $H_{k,n}$, find a subterm whose set of leaves L satisfies $n/3 \le |L| \le 2n/3$. The type of a set is roughly its size. Thus Type(L) = k + 1.

Second family: $I_n = ([n], \{X \subseteq [n] \mid |X| \in X\})$

First family: $H_{k,n} = ([n], \{X \mid |X| = k\})$

Proposition

For all n > 3k, we have $dw(H_{k,n}) = k + 1$.

Idea of proof : for any decomposition T of $H_{k,n}$, find a subterm whose set of leaves L satisfies $n/3 \le |L| \le 2n/3$. The type of a set is roughly its size. Thus Type(L) = k + 1.

Second family: $I_n = ([n], \{X \subseteq [n] \mid |X| \in X\})$

Theorem

For all n > 0, we have $\operatorname{dw}(I_n) \ge 2^{\frac{n}{27}}$.

First family: $H_{k,n} = ([n], \{X \mid |X| = k\})$

Proposition

For all n > 3k, we have $dw(H_{k,n}) = k + 1$.

Idea of proof : for any decomposition T of $H_{k,n}$, find a subterm whose set of leaves L satisfies $n/3 \le |L| \le 2n/3$. The type of a set is roughly its size. Thus Type(L) = k + 1.

Second family: $I_n = ([n], \{X \subseteq [n] \mid |X| \in X\})$

Theorem

For all n > 0, we have $\operatorname{dw}(I_n) \ge 2^{\frac{n}{27}}$.

Hypergraphs

MSO over hypergraphs

Understanding decomposition-width

Decomposition-width of graphs

Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:

 $D = \{(0,0), (k,0), (k+1,0)\} \cup \{(i,j)\}_{0 < i < k, 0 \le j \le t}$ $\mathcal{F}_{k,t} \text{ is the set of unary and binary functions with domain and codomain D which satisfy for all <math>(a, b), (c, d) \in D^2$:

•
$$f((a, b)) = (a, c)$$
 for some $c \le t$

▶
$$g((a, b), (c, d)) = (a + c, e)$$
 for some $e \le t$ when $a + c < k$

•
$$g((a, b), (c, d)) = (k, 0)$$
 or $(k + 1, 0)$ when $a + c = k$

•
$$g((a, b), (c, d)) = (k + 1, 0)$$
 when $a + c > k$

Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:

$$\begin{split} D &= \{(0,0), (k,0), (k+1,0)\} \cup \{(i,j)\}_{0 < i < k, 0 \leq j \leq t} \\ \mathcal{F}_{k,t} \text{ is the set of unary and binary functions with domain and codomain } D \text{ which satisfy for all } (a, b), (c, d) \in D^2: \end{split}$$

f((a, b)) = (a, c) for some c ≤ t
g((a, b), (c, d)) = (a + c, e) for some e ≤ t when a + c < k
g((a, b), (c, d)) = (k, 0) or (k + 1, 0) when a + c = k
q((a, b), (c, d)) = (k + 1, 0) when a + c > k

 $\mathcal{H}_{k,t}$: the set of terms $T(\mathcal{F}_{k,t}, \{(1,i)\}_{0 \le i \le t})$.

Uniform-representation I

A decomposition adapted to k-uniform hypergraphs:

$$\begin{split} D &= \{(0,0), (k,0), (k+1,0)\} \cup \{(i,j)\}_{0 < i < k, 0 \leq j \leq t} \\ \mathcal{F}_{k,t} \text{ is the set of unary and binary functions with domain and codomain } D \text{ which satisfy for all } (a, b), (c, d) \in D^2: \end{split}$$

f((a, b)) = (a, c) for some c ≤ t
g((a, b), (c, d)) = (a + c, e) for some e ≤ t when a + c < k
g((a, b), (c, d)) = (k, 0) or (k + 1, 0) when a + c = k
g((a, b), (c, d)) = (k + 1, 0) when a + c > k

 $\mathcal{H}_{k,t}$: the set of terms $T(\mathcal{F}_{k,t}, \{(1,i)\}_{0 \le i \le t})$.

Uniform-representation II

Uniform decomposition-width: the smallest t such that H is represented by a term of $\mathcal{H}_{k,t}$ denoted by $dw_u(H)$.

Proposition

All hypergraphs represented by a term of $\mathcal{H}_{k,t}$ are k-uniform and the following holds:

 $\operatorname{dw}_u(H) \le \operatorname{dw}(H) \le (k-1)(\operatorname{dw}_u(H)+1)+2.$

Uniform-representation II

Uniform decomposition-width: the smallest t such that H is represented by a term of $\mathcal{H}_{k,t}$ denoted by $dw_u(H)$.

Proposition

All hypergraphs represented by a term of $\mathcal{H}_{k,t}$ are k-uniform and the following holds:

 $\operatorname{dw}_u(H) \le \operatorname{dw}(H) \le (k-1)(\operatorname{dw}_u(H)+1)+2.$

Idea: Right part is trivial.

Left part: inductively build a term of $\mathcal{H}_{k,t}$ from a term of \mathcal{H}_t by taking into account the cardinal.

Uniform-representation II

Uniform decomposition-width: the smallest t such that H is represented by a term of $\mathcal{H}_{k,t}$ denoted by $dw_u(H)$.

Proposition

All hypergraphs represented by a term of $\mathcal{H}_{k,t}$ are k-uniform and the following holds:

 $\operatorname{dw}_u(H) \le \operatorname{dw}(H) \le (k-1)(\operatorname{dw}_u(H)+1)+2.$

Idea: Right part is trivial.

Left part: inductively build a term of $\mathcal{H}_{k,t}$ from a term of \mathcal{H}_t by taking into account the cardinal.

Let $F_{\mathcal{L}}$ be the following set of graph operations:

 \blacktriangleright The disjoint union of two labeled graphs: $\oplus.$

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus .
- For all a, b ∈ L, the function which renames every vertex labeled by a into b: ρ_{a→b}.

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus .
- For all a, b ∈ L, the function which renames every vertex labeled by a into b: ρ_{a→b}.
- For all a, b ∈ L, the function which adds all edges between the vertices labeled a and those labeled b: η_{a,b}.

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus .
- For all a, b ∈ L, the function which renames every vertex labeled by a into b: ρ_{a→b}.
- For all a, b ∈ L, the function which adds all edges between the vertices labeled a and those labeled b: η_{a,b}.

 G_a the graph with one vertex labeled by a, $G_{\mathcal{L}} = \{G_a \mid a \in \mathcal{L}\}.$

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus .
- For all a, b ∈ L, the function which renames every vertex labeled by a into b: ρ_{a→b}.
- For all a, b ∈ L, the function which adds all edges between the vertices labeled a and those labeled b: η_{a,b}.

 G_a the graph with one vertex labeled by a, $G_{\mathcal{L}} = \{G_a \mid a \in \mathcal{L}\}.$

Definition

The clique-width of the graph G, denoted by cw(G), is the minimum of the $n \in \mathbb{N}$ such that $\exists \gamma, (G, \gamma) \in T(F_{[n]}, G_{[n]})$.

Let $F_{\mathcal{L}}$ be the following set of graph operations:

- The disjoint union of two labeled graphs: \oplus .
- For all a, b ∈ L, the function which renames every vertex labeled by a into b: ρ_{a→b}.
- For all a, b ∈ L, the function which adds all edges between the vertices labeled a and those labeled b: η_{a,b}.

 G_a the graph with one vertex labeled by a, $G_{\mathcal{L}} = \{G_a \mid a \in \mathcal{L}\}.$

Definition

The clique-width of the graph G, denoted by cw(G), is the minimum of the $n \in \mathbb{N}$ such that $\exists \gamma, (G, \gamma) \in T(F_{[n]}, G_{[n]})$.

Decomposition-width and clique-width

Theorem

Let G be a graph, then $\mathrm{cw}(G)/2 \leq \mathrm{dw}(G) \leq \mathrm{cw}(G)+2$.

Proposition

Let G be a graph, then $dw_u(G) \le cw(G) \le 2 dw_u(G)$.

Decomposition-width and clique-width

Theorem

Let G be a graph, then $\operatorname{cw}(G)/2 \leq \operatorname{dw}(G) \leq \operatorname{cw}(G)+2$.

Proposition

Let G be a graph, then $dw_u(G) \le cw(G) \le 2 dw_u(G)$.

Idea of the proof: Simulation of graph operation by functions of $\mathcal{F}_{k,t}$ and vice versa.

The graph G_i corresponds to a leaf of color (1, i).

Use 2t-terms which represents t-colored graphs. Different colors for the left and right part (function of $\mathcal{F}_{k,t}$ not symmetric).

Decomposition-width and clique-width

Theorem

Let G be a graph, then $\operatorname{cw}(G)/2 \leq \operatorname{dw}(G) \leq \operatorname{cw}(G)+2$.

Proposition

Let G be a graph, then $dw_u(G) \le cw(G) \le 2 dw_u(G)$.

Idea of the proof: Simulation of graph operation by functions of $\mathcal{F}_{k,t}$ and vice versa.

The graph G_i corresponds to a leaf of color (1, i).

Use 2t-terms which represents t-colored graphs. Different colors for the left and right part (function of $\mathcal{F}_{k,t}$ not symmetric).

The clique-width of a graph is $N\!P$ hard to approximate [Fellows et al.].

Corollary

The decomposition-width is NP-hard to approximate.

The clique-width of a graph is $N\!P$ hard to approximate [Fellows et al.].

Corollary

The decomposition-width is NP-hard to approximate.

Simpler problem: a fixed integer k, test whether a hypergraph has decomposition-width k.

The clique-width of a graph is $N\!P$ hard to approximate [Fellows et al.].

Corollary

The decomposition-width is NP-hard to approximate.

Simpler problem: a fixed integer k, test whether a hypergraph has decomposition-width k.

Even simpler: k = 1 ?

The clique-width of a graph is $N\!P$ hard to approximate [Fellows et al.].

Corollary

The decomposition-width is NP-hard to approximate.

Simpler problem: a fixed integer k, test whether a hypergraph has decomposition-width k.

Even simpler: k = 1 ?

A term of \mathcal{H}_1 is a read-once formula (each variable appears only once) built from all possible logical connectors.

Read-once formulas built from the connectors AND, OR and NOT cannot be learned in polynomial time with only membership queries.

Theorem

There is no polynomial time algorithm to compute the decomposition of a hypergraph of decomposition-width 1 given by a membership oracle.

A term of \mathcal{H}_1 is a read-once formula (each variable appears only once) built from all possible logical connectors.

Read-once formulas built from the connectors AND, OR and NOT cannot be learned in polynomial time with only membership queries.

Theorem

There is no polynomial time algorithm to compute the decomposition of a hypergraph of decomposition-width 1 given by a membership oracle.

When the hypergraph of decomposition-width 1 is k-uniform or upward closed, it is possible to compute its decomposition.

A term of \mathcal{H}_1 is a read-once formula (each variable appears only once) built from all possible logical connectors.

Read-once formulas built from the connectors AND, OR and NOT cannot be learned in polynomial time with only membership queries.

Theorem

There is no polynomial time algorithm to compute the decomposition of a hypergraph of decomposition-width 1 given by a membership oracle.

When the hypergraph of decomposition-width 1 is k-uniform or upward closed, it is possible to compute its decomposition.

A work in progress, with many open questions:

To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- ► Hypergraphs of decomposition-width 1, 2 ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- ► Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- ► Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs ?
- Bounding the decomposition-width of an amalgamated sum ? on which class of hypergraphs ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- ► Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs ?
- Bounding the decomposition-width of an amalgamated sum ? on which class of hypergraphs ?
- Better specialized algorithm ? for the minimal transversals ?

- To what is related the decomposition-width of uniform graphs ? Tree-width, clique-width of the Gaifman graph ?
- Can the decomposition-width be seen as a branch-width (using Type)? restriction ?
- Is there a class of hypergraphs with a decomposition which can be found in polynomial time ? Acyclic hypergraphs ?
- ► Hypergraphs of decomposition-width 1, 2 ?
- Do local properties of functions turn into global properties of the represented hypergraphs ?
- Bounding the decomposition-width of an amalgamated sum ? on which class of hypergraphs ?
- Better specialized algorithm ? for the minimal transversals ?

Thanks!