# Enumeration: logic, algebraic and geometric methods

Yann Strozecki

Université Paris Sud - Paris 11 Equipe ALGO

Février 2011, séminaire MC2 (LIP)

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

# **Enumeration problems**

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ►  $\exists$ ?yA(x, y) : decision problem (class NP)
- ▶  $\sharp\{y \mid A(x, y)\}$  : counting problem (class  $\sharp$ P)
- ▶  $\{y \mid A(x, y)\}$  : enumeration problem (class EnumP)

#### Example

**Perfect matching:** 

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- ► The enumeration problem is to list every perfect matching.

# **Enumeration problems**

Polynomially balanced predicate A(x, y), decidable in polynomial time.

- ►  $\exists$ ?yA(x, y) : decision problem (class NP)
- $\sharp\{y \mid A(x, y)\}$  : counting problem (class  $\sharp P$ )
- ▶  $\{y \mid A(x, y)\}$  : enumeration problem (class EnumP)

#### Example

#### Perfect matching:

- The decision problem is to decide if there is a perfect matching.
- The counting problem is to count the number of perfect matchings.
- The enumeration problem is to list every perfect matching.

## Time complexity measures for enumeration

#### 1. the total time related to the number of solutions

polynomial total time: TotalP

#### 2. the delay

- incremental polynomial time: IncP (Circuits of a matroid)
- polynomial delay: DelayP (Perfect Matching [Uno])
- Constant or linear delay
  - ▶ A two steps algorithm: preprocessing + generation
  - An ad-hoc RAM model.

## Time complexity measures for enumeration

- 1. the total time related to the number of solutions
  - polynomial total time: TotalP
- 2. the delay
  - ▶ incremental polynomial time: IncP (Circuits of a matroid)
  - polynomial delay: DelayP (Perfect Matching [Uno])
  - Constant or linear delay
    - ► A two steps algorithm: preprocessing + generation
    - An ad-hoc RAM model.

# **Enumeration problems**

R: polynomially balanced binary predicate

| $\mathrm{Enum} \cdot R$ |                                                           |
|-------------------------|-----------------------------------------------------------|
| Input:                  | $x \in \mathcal{I}$                                       |
| Output:                 | an enumeration of elements in $R(x) = \{y \mid R(x, y)\}$ |

#### Definition

The problem ENUM-R belongs to the class DELAY(g, f) if there exists an enumeration algorithm that computes  $ENUM \cdot R$  such that, for all input x:

- Preprocessing in time O(g(|x|)),
- ▶ Solutions  $y \in R(x)$  are computed successively without repetition with a delay O(f(|x|))

Constant-Delay =  $\bigcup_k \text{Delay}(n^k, 1)$ .

Separation:

 $\mathbf{QueryP} \subsetneq \mathbf{SDelayP} \subseteq \mathbf{DelayP} \subseteq \mathbf{IncP} \subsetneq \mathbf{TotalP} \subsetneq \mathbf{EnumP}.$ 

Separation:

#### $\mathbf{Query}\mathbf{P} \subsetneq \mathbf{SDelay}\mathbf{P} \subseteq \mathbf{Delay}\mathbf{P} \subseteq \mathbf{IncP} \subsetneq \mathbf{TotalP} \subsetneq \mathbf{EnumP}.$

**Complete problem:** 

Separation:

#### $\mathbf{Query} P \subsetneq \mathbf{SDelay} P \subseteq \mathbf{Delay} P \subseteq \mathbf{Inc} P \subsetneq \mathbf{Total} P \subsetneq \mathbf{Enum} P.$

#### **Complete problem:**

No good notion of reduction out of parsimonious reduction.

Separation:

 $\mathbf{Query} P \subsetneq \mathbf{SDelay} P \subseteq \mathbf{Delay} P \subseteq \mathbf{Inc} P \subsetneq \mathbf{Total} P \subsetneq \mathbf{Enum} P.$ 

#### **Complete problem:**

No good notion of reduction out of parsimonious reduction.

Introduction to Enumeration

#### Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

Representing a problem by a polynomial:

1. Deciding if there is a perfect matching in randomized parallel logarithmic time [MVV1987].

2. IP = PSPACE [S 1992]

- 1. Deciding if there is a perfect matching in randomized parallel logarithmic time [MVV1987].
- $2. \ \mathrm{IP} = \mathrm{PSPACE} \ [S \ 1992]$
- 3. Polynomial time algorithm to decide wether a number is prime [AKS 2004].

- 1. Deciding if there is a perfect matching in randomized parallel logarithmic time [MVV1987].
- 2. IP = PSPACE [S 1992]
- 3. Polynomial time algorithm to decide wether a number is prime [AKS 2004].
- Better parametized algorithms for packing and path problems [K 2008].

- 1. Deciding if there is a perfect matching in randomized parallel logarithmic time [MVV1987].
- 2. IP = PSPACE [S 1992]
- 3. Polynomial time algorithm to decide wether a number is prime [AKS 2004].
- Better parametized algorithms for packing and path problems [K 2008].
- 5. Enumeration algorithms [S 2010].

- 1. Deciding if there is a perfect matching in randomized parallel logarithmic time [MVV1987].
- 2. IP = PSPACE [S 1992]
- 3. Polynomial time algorithm to decide wether a number is prime [AKS 2004].
- Better parametized algorithms for packing and path problems [K 2008].
- 5. Enumeration algorithms [S 2010].

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

• Determinant of the adjacency matrix : cycle covers of a graph.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph. Randomized algorithm to find the size of a maximal acyclic subhypergraph.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ▶ Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph. Randomized algorithm to find the size of a maximal acyclic subhypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ► Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph. Randomized algorithm to find the size of a maximal acyclic subhypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.

Easy to evaluate polynomials whose monomials represent interesting combinatorial objects.

- Determinant of the adjacency matrix : cycle covers of a graph.
- Determinant of the Kirchoff matrix: spanning trees.
- ▶ Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]: spanning hypertrees of a 3-uniform hypergraph. Randomized algorithm to find the size of a maximal acyclic subhypergraph.
- The polynomial representing the language accepted by a probabilistic automaton.

Only multilinear polynomials.

Probabilistic Automaton  $A = (n, \Sigma, M, \alpha, \eta)$ .

A word  $w = \sigma_1 \sigma_2 \dots \sigma_k$  has a probability  $A(w) = \alpha (\prod_{i=1}^k M(\sigma_i))\eta$ .

Probabilistic Automaton  $A = (n, \Sigma, M, \alpha, \eta)$ .

A word  $w = \sigma_1 \sigma_2 \dots \sigma_k$  has a probability  $A(w) = \alpha (\prod_{i=1}^{\kappa} M(\sigma_i))\eta$ .

To an automaton, we associate  $\sum_{w \in \Sigma^n} A(w) X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$ 

Probabilistic Automaton  $A = (n, \Sigma, M, \alpha, \eta)$ .

A word  $w = \sigma_1 \sigma_2 \dots \sigma_k$  has a probability  $A(w) = \alpha (\prod_{i=1}^{\kappa} M(\sigma_i))\eta$ .

To an automaton, we associate  $\sum_{w\in\Sigma^n}A(w)X_{1,\sigma_1}X_{2,\sigma_2}\ldots X_{n,\sigma_n}$ 

Alternate form:  $\alpha(\prod_{i=1}^{n}\sum_{\sigma\in\Sigma}M(\sigma)X_{i,\sigma})\eta.$ 

Probabilistic Automaton  $A = (n, \Sigma, M, \alpha, \eta)$ .

A word  $w = \sigma_1 \sigma_2 \dots \sigma_k$  has a probability  $A(w) = \alpha (\prod_{i=1}^k M(\sigma_i))\eta$ .

To an automaton, we associate  $\sum_{w\in\Sigma^n}A(w)X_{1,\sigma_1}X_{2,\sigma_2}\ldots X_{n,\sigma_n}$ 

Alternate form:  $\alpha(\prod_{i=1}^{n}\sum_{\sigma\in\Sigma}M(\sigma)X_{i,\sigma})\eta.$ 

#### Theorem

Randomized algorithm to test if two automata have the same language and to produce a witness.

Probabilistic Automaton  $A = (n, \Sigma, M, \alpha, \eta)$ .

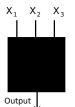
A word  $w = \sigma_1 \sigma_2 \dots \sigma_k$  has a probability  $A(w) = \alpha (\prod_{i=1}^k M(\sigma_i))\eta$ .

To an automaton, we associate  $\sum_{w\in\Sigma^n}A(w)X_{1,\sigma_1}X_{2,\sigma_2}\ldots X_{n,\sigma_n}$ 

Alternate form: 
$$\alpha(\prod_{i=1}^{n}\sum_{\sigma\in\Sigma}M(\sigma)X_{i,\sigma})\eta.$$

#### Theorem

Randomized algorithm to test if two automata have the same language and to produce a witness.



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

 $X_1 = 1, X_2 = 2, X_3 = 1$ 1 \* 2 + 1 \* 1 + 2 + 1Output = 6



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

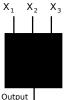
$$X_1 = -1, X_2 = 1, X_3 = 2$$
  
 $-1 * 1 + -1 * 2 + 1 + 2$   
 $Output = 0$ 



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

Output

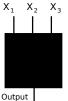
- ▶ Problem: interpolation, compute *P* from its values.
- Complexity: time and number of calls to the oracle.



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

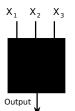
Output

- ▶ Problem: interpolation, compute *P* from its values.
- Complexity: time and number of calls to the oracle.
- ▶ Parameters: number of variables and total degree.



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

- Problem: interpolation, compute P from its values.
- Complexity: time and number of calls to the oracle.
- Parameters: number of variables and total degree.



$$P(X_1, X_2, X_3) = X_1 X_2 + X_1 X_3 + X_2 + X_3$$

- ▶ Problem: interpolation, compute *P* from its values.
- Complexity: time and number of calls to the oracle.
- ▶ Parameters: number of variables and total degree.

**Enumeration problem:** output the monomials one after the other.

### The decision problem

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

#### Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if  $x_1, \ldots, x_n$  are randomly chosen in a set of integers S of size  $\frac{D}{\epsilon}$ then the probability that  $P(x_1, \ldots, x_n) = 0$  is bounded by  $\epsilon$ .

## The decision problem

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

#### Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if  $x_1, \ldots, x_n$  are randomly chosen in a set of integers S of size  $\frac{D}{\epsilon}$ then the probability that  $P(x_1, \ldots, x_n) = 0$  is bounded by  $\epsilon$ .

No way to make PIT deterministic for black box.

## The decision problem

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

#### Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if  $x_1, \ldots, x_n$  are randomly chosen in a set of integers S of size  $\frac{D}{\epsilon}$ then the probability that  $P(x_1, \ldots, x_n) = 0$  is bounded by  $\epsilon$ .

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

## The decision problem

POLYNOMIAL IDENTITY TESTING *Input:* a polynomial given as a black box. *Output:* decides if the polynomial is zero.

#### Lemma (Schwarz-Zippel)

Let P be a non zero polynomial with n variables of total degree D, if  $x_1, \ldots, x_n$  are randomly chosen in a set of integers S of size  $\frac{D}{\epsilon}$ then the probability that  $P(x_1, \ldots, x_n) = 0$  is bounded by  $\epsilon$ .

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

Sparse interpolation = polynomial total time:

- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables

Sparse interpolation = polynomial total time:

- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ▶ Klivans and Spielman (2001): transformation of a multivariate into an univariate one.

Sparse interpolation = polynomial total time:

- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Sparse interpolation = polynomial total time:

- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good **delay**.

Sparse interpolation = polynomial total time:

- Ben Or and Tiwari (1988): evaluation on big power of prime numbers
- ► Zippel (1990): use a dense interpolation on a polynomial with a restricted number of variables
- ► Klivans and Spielman (2001): transformation of a multivariate into an univariate one.
- ► Garg and Schost (2009): non black-box but complexity independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time with a good **delay**.

## Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

**Idea:** Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

**Idea:** Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

**Drawback:** one has to store the polynomial Q = the sum of the generated monomials. When there is a call, compute P - Q.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

**Idea:** Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

**Drawback:** one has to store the polynomial Q = the sum of the generated monomials.

When there is a call, compute P - Q.

Incremental delay.

Assume there is a procedure which returns a monomial of a polynomial P, then it can be used to interpolate P.

**Idea:** Substract the monomial found by the procedure to the polynomial and recurse to recover the whole polynomial.

**Drawback:** one has to store the polynomial Q = the sum of the generated monomials.

When there is a call, compute P - Q.

Incremental delay.

#### Aim: reducing the number of calls to the black-box at each step.

▶ KS algorithm:  $O(n^7D^4)$  calls, *n* number of variables and *D* the total degree

- ▶ KS algorithm:  $O(n^7D^4)$  calls, *n* number of variables and *D* the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.

- ► KS algorithm:  $O(n^7D^4)$  calls, *n* number of variables and *D* the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- ▶ Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with  $O(n^2D^{d-1})$  calls.

- ► KS algorithm:  $O(n^7D^4)$  calls, *n* number of variables and *D* the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- ► Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with O(n<sup>2</sup>D<sup>d-1</sup>) calls.
- ► Yes for polynomial whose each two monomials have distinct supports: O(n<sup>2</sup>) calls.

- ► KS algorithm:  $O(n^7D^4)$  calls, *n* number of variables and *D* the total degree
- Question: is it possible to decrease the number of calls to a more manageable polynomial.
- ► Yes for polynomial of fixed degree d. One can find the "highest" degree polynomial with O(n<sup>2</sup>D<sup>d-1</sup>) calls.
- ► Yes for polynomial whose each two monomials have distinct supports: O(n<sup>2</sup>) calls.

## Improving the delay

#### How to achieve a polynomial delay ?

#### Partial-Monomial

*Input:* a polynomial given as a black box and two sets of variables  $L_1$  and  $L_2$ 

*Output:* accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

## Improving the delay

How to achieve a polynomial delay ?

PARTIAL-MONOMIAL *Input:* a polynomial given as a black box and two sets of variables  $L_1$  and  $L_2$  *Output:* accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

#### Theorem

There is a randomized algorithm which solves PARTIAL-MONOMIAL over **multilinear** polynomials in time polynomial in n the number of variables and  $\log(\epsilon^{-1})$  the error bound.

## Improving the delay

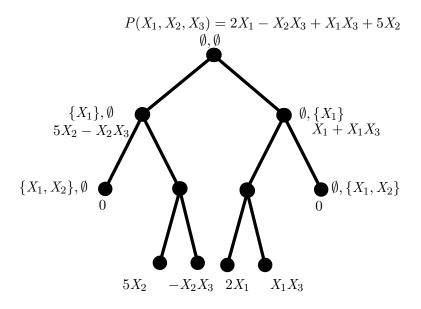
How to achieve a polynomial delay ?

PARTIAL-MONOMIAL Input: a polynomial given as a black box and two sets of variables  $L_1$  and  $L_2$ Output: accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

#### Theorem

There is a randomized algorithm which solves PARTIAL-MONOMIAL over **multilinear** polynomials in time polynomial in n the number of variables and  $\log(\epsilon^{-1})$  the error bound.

### Depth-first traversal of the monomial tree



#### Theorem

Let P be a multilinear polynomial with n variables. There is an algorithm which computes the set of monomials of P with probability  $1 - \epsilon$  and a delay **polynomial** in n and  $\log(\epsilon)^{-1}$ .

► The algorithm can be parallelized.

#### Theorem

Let P be a multilinear polynomial with n variables. There is an algorithm which computes the set of monomials of P with probability  $1 - \epsilon$  and a delay **polynomial** in n and  $\log(\epsilon)^{-1}$ .

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).

#### Theorem

Let P be a multilinear polynomial with n variables. There is an algorithm which computes the set of monomials of P with probability  $1 - \epsilon$  and a delay **polynomial** in n and  $\log(\epsilon)^{-1}$ .

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized.
  STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

#### Theorem

Let P be a multilinear polynomial with n variables. There is an algorithm which computes the set of monomials of P with probability  $1 - \epsilon$  and a delay **polynomial** in n and  $\log(\epsilon)^{-1}$ .

- The algorithm can be parallelized.
- It works on finite fields of small characteristic (can be used to speed up computation).
- On classes of polynomials given by circuits on which PIT can be derandomized, this algorithm also can be derandomized. STOC 2011, Saraf, Volkovich: deterministic identity testing of depth-4 multilinear circuits with bounded top fan-in

## Comparison to other algorithms

|                 | Ben-Or Tiwari  | Zippel                    | KS                      | My Algorithm                   |
|-----------------|----------------|---------------------------|-------------------------|--------------------------------|
| Algorithm type  | Deterministic  | Probabilistic             | Probabilistic           | Probabilistic                  |
| Number of calls | 2T             | tnD                       | $tn^7 D^4$              | $tnD(n + \log(\epsilon^{-1}))$ |
| Total time      | Quadratic in T | Quadratic in $t$          | Quadratic in t          | Linear in t                    |
| Enumeration     | Exponential    | TotalPP                   | IncPP                   | DelayPP                        |
| Size of points  | $T\log(n)$     | $\log(nT^2\epsilon^{-1})$ | $\log(nD\epsilon^{-1})$ | log(D)                         |

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

## Comparison to other algorithms

|                 | Ben-Or Tiwari  | Zippel                    | KS                      | My Algorithm                   |
|-----------------|----------------|---------------------------|-------------------------|--------------------------------|
| Algorithm type  | Deterministic  | Probabilistic             | Probabilistic           | Probabilistic                  |
| Number of calls | 2T             | tnD                       | $tn^7 D^4$              | $tnD(n + \log(\epsilon^{-1}))$ |
| Total time      | Quadratic in T | Quadratic in $t$          | Quadratic in t          | Linear in t                    |
| Enumeration     | Exponential    | TotalPP                   | IncPP                   | DelayPP                        |
| Size of points  | $T\log(n)$     | $\log(nT^2\epsilon^{-1})$ | $\log(nD\epsilon^{-1})$ | log(D)                         |

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear polynomials.

**Strategy:** relate the enumeration problem to some decision problem.

#### Partial-Monomial

 $\mathit{Input:}$  a polynomial given as a black box and two sets of variables  $L_1$  and  $L_2$ 

*Output:* accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

**Strategy:** relate the enumeration problem to some decision problem.

PARTIAL-MONOMIAL Input: a polynomial given as a black box and two sets of variables  $L_1$  and  $L_2$ Output: accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

The polynomial delay algorithm works by repeatedly solving this problem.

**Strategy:** relate the enumeration problem to some decision problem.

Partial-Monomial

 $\mathit{Input:}$  a polynomial given as a black box and two sets of variables  $\mathit{L}_1$  and  $\mathit{L}_2$ 

*Output:* accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

The polynomial delay algorithm works by repeatedly solving this problem.

#### Proposition

The problem PARTIAL-MONOMIAL restricted to degree 2 polynomials is NP-hard.

**Strategy:** relate the enumeration problem to some decision problem.

Partial-Monomial

 $\mathit{Input:}$  a polynomial given as a black box and two sets of variables  $L_1$  and  $L_2$ 

*Output:* accept if there is a monomial in the polynomial in which no variables of  $L_1$  appear, but all of those of  $L_2$  do.

The polynomial delay algorithm works by repeatedly solving this problem.

#### Proposition

The problem PARTIAL-MONOMIAL restricted to degree 2 polynomials is NP-hard.

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

## Logic in half a slide

#### First order logic(FO):

- Variables:  $x, y, z \dots$
- The language  $\sigma$ , relations and functions: R(x, y), f(z)
- $\blacktriangleright$  Unary and binary connectors:  $\land,\,\lor,\,\neg$
- ▶ Quantifiers: ∀, ∃
- $\blacktriangleright \ \varphi \equiv \forall x \exists y E(x,y) \lor E(y,x)$

## Logic in half a slide

#### First order logic(FO):

- Variables:  $x, y, z \dots$
- ▶ The language  $\sigma$ , relations and functions: R(x, y), f(z)
- Unary and binary connectors:  $\land$ ,  $\lor$ ,  $\neg$
- ▶ Quantifiers: ∀, ∃

$$\blacktriangleright \ \varphi \equiv \forall x \exists y E(x,y) \lor E(y,x)$$

#### Theorem (Goldberg)

For almost all first order graph property  $\varphi$ , the graphs of size n which satisfies  $\varphi$  can be enumerated with polynomial delay in n.

## Logic in half a slide

#### First order logic(FO):

- Variables:  $x, y, z \dots$
- The language  $\sigma$ , relations and functions: R(x, y), f(z)
- Unary and binary connectors:  $\land$ ,  $\lor$ ,  $\neg$
- ▶ Quantifiers: ∀, ∃

$$\blacktriangleright \ \varphi \equiv \forall x \exists y E(x,y) \lor E(y,x)$$

#### Theorem (Goldberg)

For almost all first order graph property  $\varphi$ , the graphs of size n which satisfies  $\varphi$  can be enumerated with polynomial delay in n.

## Enumeration problem defined by a formula

# Second order logic (SO): Second order variable: $\mathbf{T},$ denotes unknown relation over the domain.

Let  $\Phi(\mathbf{z}, \mathbf{T})$  be a first order formula with free first and second order variables.

## Enumeration problem defined by a formula

## Second order logic (SO):

Second order variable:  $\mathbf{T},$  denotes unknown relation over the domain.

Let  $\Phi(\mathbf{z},\mathbf{T})$  be a first order formula with free first and second order variables.

 $\begin{array}{ll} \operatorname{Enum} \Phi \\ \textit{Input:} & \mathsf{A} \ \sigma \text{-structure} \ \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{ (\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$ 

Let  $\mathscr{F}$  be a subclass of first order formulas. We denote by ENUM· $\mathscr{F}$  the collection of problems ENUM· $\Phi$  for  $\Phi \in \mathscr{F}$ .

## Enumeration problem defined by a formula

## Second order logic (SO):

Second order variable:  $\mathbf{T},$  denotes unknown relation over the domain.

Let  $\Phi(\mathbf{z},\mathbf{T})$  be a first order formula with free first and second order variables.

 $\begin{array}{ll} \text{Enum} \cdot \Phi \\ \textit{Input:} & \text{A } \sigma \text{-structure } \mathcal{S} \\ \textit{Output:} & \Phi(\mathcal{S}) = \{ (\mathbf{z}^*, \mathbf{T}^*) : (\mathcal{S}, \mathbf{z}^*, \mathbf{T}^*) \models \Phi(\mathbf{z}, \mathbf{T}) \} \end{array}$ 

Let  $\mathscr{F}$  be a subclass of first order formulas. We denote by ENUM· $\mathscr{F}$  the collection of problems ENUM· $\Phi$  for  $\Phi \in \mathscr{F}$ .



## Example

Independent sets:

$$IS(T) \equiv \forall x \forall y \ T(x) \land T(y) \Rightarrow \neg E(x, y).$$

### Example

Hitting sets (vertex covers) of a hypergraph represented by the incidence structure  $\langle D, \{V, E, R\} \rangle$ .

$$HS(T) \equiv \forall x \left( T(x) \Rightarrow V(x) \right) \land \forall y \exists x \, E(y) \Rightarrow \left( T(x) \land R(x, y) \right)$$

# First-order queries with free second order variables

#### This presentation

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure's domain
- Quantifier depth as a parameter: ENUM· $\Sigma_1$
- ENUM·IS  $\in$  ENUM· $\Pi_1$  and ENUM·HS  $\in$  ENUM· $\Pi_2$

# First-order queries with free second order variables

#### This presentation

- FO queries with free second-order variables
- Data complexity: the query is fixed
- The complexity in term of the size of the input structure's domain
- Quantifier depth as a parameter:  $ENUM \cdot \Sigma_1$
- ENUM·IS  $\in$  ENUM· $\Pi_1$  and ENUM·HS  $\in$  ENUM· $\Pi_2$

# **Previous results**

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay

## Example

Enumeration of the k-cliques of a graph of bounded degree.

## **Previous results**

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
- Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

### Example

Typical database query. Simple paths of length k.

# **Previous results**

- Only first-order free variables and bounded degree structures. Durand-Grandjean'07, Lindell'08, Kazana-Segoufin'10: linear preprocessing + constant delay.
- Only first-order free variables and acyclic conjunctive formula. Bagan-Durand-Grandjean'07: linear preprocessing + linear delay
- 3. Monadic second order formula and bounded tree-width structure Bagan, Courcelle 2009: almost linear preprocessing + linear delay

## Example

Enumeration of the cliques of a bounded tree-width graph.

## A hierarchy result for counting functions

From a formula  $\Phi(\mathbf{z}, \mathbf{T})$ , one defines the counting function:

 $#\Phi: \mathcal{S} \mapsto |\Phi(\mathcal{S})|.$ 

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures:  $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \sharp P.$ 

Some  $\sharp P$ -hard problems in  $\# \Sigma_1$  (but existence of FPRAS at this level).

#### Corollary

On linearly ordered structures: ENUM· $\Sigma_0 \subsetneq$  ENUM· $\Sigma_1 \subsetneq$  ENUM· $\Pi_1 \subsetneq$  ENUM· $\Sigma_2 \subsetneq$  ENUM· $\Pi_2$ .

## A hierarchy result for counting functions

From a formula  $\Phi(\mathbf{z}, \mathbf{T})$ , one defines the counting function:

 $#\Phi: \mathcal{S} \mapsto |\Phi(\mathcal{S})|.$ 

Theorem (Saluja, Subrahmanyam, Thakur 1995)

On linearly ordered structures:  $\#\Sigma_0 \subsetneq \#\Sigma_1 \subsetneq \#\Pi_1 \subsetneq \#\Sigma_2 \subsetneq \#\Pi_2 = \sharp P.$ 

Some  $\sharp P$ -hard problems in  $\# \Sigma_1$  (but existence of FPRAS at this level).

#### Corollary

On linearly ordered structures: ENUM· $\Sigma_0 \subsetneq$  ENUM· $\Sigma_1 \subsetneq$  ENUM· $\Pi_1 \subsetneq$  ENUM· $\Sigma_2 \subsetneq$  ENUM· $\Pi_2$ .

# The first level: Enum $\cdot \Sigma_0$

#### Theorem

For  $\varphi \in \Sigma_0$ , ENUM· $\varphi$  can be enumerated with preprocessing  $O(|D|^k)$  and delay O(1) where k is the number of free first order variables of  $\varphi$  and D is the domain of the input structure.

## Simple ingredients:

- 1. Transformation of a f.o. formula  $\Phi(\mathbf{z}, T)$  into a propositional formulas for each  $\mathbf{z}$ .
- 2. Solve the propositional formula to obtain a minimal solution for T.
- 3. Gray Code Enumeration to extend T.

## **Bounded degree structure**

**Remark:** The *k*-clique query is definable. No hope to improve the  $O(|D|^k)$  preprocessing.

#### Theorem

Let  $d \in \mathbb{N}$ , on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$  where D is the domain of the input structure.

## **Bounded degree structure**

**Remark:** The *k*-clique query is definable. No hope to improve the  $O(|D|^k)$  preprocessing.

#### Theorem

Let  $d \in \mathbb{N}$ , on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$  where D is the domain of the input structure.

## Idea of proof:

- ► Another transformation: Φ(z, T) seen as a propositional formula whose variables are the atoms of Φ.
- ► From each solution, create a quantifier free formula without free second order variables.
- Enumerate the solutions of this formula thanks to [DG 2007].

## **Bounded degree structure**

**Remark:** The *k*-clique query is definable. No hope to improve the  $O(|D|^k)$  preprocessing.

#### Theorem

Let  $d \in \mathbb{N}$ , on d-degree bounded input structures, ENUM· $\Sigma_0 \in DELAY(|D|, 1)$  where D is the domain of the input structure.

## Idea of proof:

- Another transformation: Φ(z, T) seen as a propositional formula whose variables are the atoms of Φ.
- From each solution, create a quantifier free formula without free second order variables.
- ▶ Enumerate the solutions of this formula thanks to [DG 2007].

# Second level: Enum· $\Sigma_1$

#### Theorem

ENUM· $\Sigma_1 \subseteq$  DELAYP. More precisely, ENUM· $\Sigma_1$  can be computed with precomputation  $O(|D|^{h+k})$  and delay  $O(|D|^k)$  where h is the number of free first order variables of the formula, k the number of existentially quantified variables and D is the domain of the input structure.

Idea of Proof:  $\Phi(\mathbf{y}, T) = \exists \mathbf{x} \varphi(\mathbf{x}, \mathbf{y}, T)$ 

Substitute values for x. Collection of formulas of the form:

 $\varphi(\mathbf{x}^*, \mathbf{y}, T)$ 

Need to enumerate the union.

Enumerate the solution of  $ENUM \cdot R$  and  $ENUM \cdot S$ .

## Disjoint union

Union with an order

Enumerate the solution of  $ENUM \cdot R$  and  $ENUM \cdot S$ .

- Disjoint union
- Union with an order
- Union without order

Enumerate the solution of  $ENUM \cdot R$  and  $ENUM \cdot S$ .

- Disjoint union
- Union with an order
- Union without order

**Idea:** run  $ENUM \cdot R$  and  $ENUM \cdot S$  in parallel with appropriate priority.

Enumerate the solution of  $ENUM \cdot R$  and  $ENUM \cdot S$ .

- Disjoint union
- Union with an order
- Union without order

# Idea: run $\mathrm{ENUM}{\cdot}R$ and $\mathrm{ENUM}{\cdot}S$ in parallel with appropriate priority.

**Question:** possible to improve this scheme ? A better algorithm for  $ENUM \cdot DNF(L)$ ?

Enumerate the solution of  $ENUM \cdot R$  and  $ENUM \cdot S$ .

- Disjoint union
- Union with an order
- Union without order

**Idea:** run ENUM·R and ENUM·S in parallel with appropriate priority.

Question: possible to improve this scheme ? A better algorithm for  ${\rm Enum}{\cdot}{\rm DNF}(L)$  ?

## The case $\text{Enum}{\cdot}\Pi_1$

#### Proposition

Unless P = NP, there is no polynomial delay algorithm for  $E_{NUM} \cdot \Pi_1$ .

Proof Direct encoding of SAT.

Hardness even:

- on the class of bounded degree structure
- if all clauses but one have at most two occurences of a second-order free variable

## **Tractable cases**

# Problem $E_{NUM} \cdot \Phi$ with $\Phi \in \Sigma_i$ : transformation of $\Phi$ into a propositional formula $\tilde{\Phi}$ .

#### Corollary

Let  $\Phi(\mathbf{z}, T)$  be a formula, such that, for all  $\sigma$  structures, all propositional formulas  $\tilde{\Phi}$  are either Horn, anti-Horn, affine or bijunctive. Then ENUM· $\Phi \subseteq DELAYP$ .

## **Tractable cases**

Problem ENUM· $\Phi$  with  $\Phi \in \Sigma_i$ : transformation of  $\Phi$  into a propositional formula  $\tilde{\Phi}$ .

### Corollary

Let  $\Phi(\mathbf{z}, T)$  be a formula, such that, for all  $\sigma$  structures, all propositional formulas  $\tilde{\Phi}$  are either Horn, anti-Horn, affine or bijunctive. Then  $\text{ENUM} \cdot \Phi \subseteq \text{DELAYP}$ .

**Example:** independent sets and hitting sets respectively bijunctive and Horn.

## **Tractable cases**

Problem ENUM· $\Phi$  with  $\Phi \in \Sigma_i$ : transformation of  $\Phi$  into a propositional formula  $\tilde{\Phi}$ .

### Corollary

Let  $\Phi(\mathbf{z}, T)$  be a formula, such that, for all  $\sigma$  structures, all propositional formulas  $\tilde{\Phi}$  are either Horn, anti-Horn, affine or bijunctive. Then  $\text{ENUM} \cdot \Phi \subseteq \text{DELAYP}$ .

**Example:** independent sets and hitting sets respectively bijunctive and Horn.

## Add a maximization/minimization operator.

ENUM· $Max_T\varphi(T)$  is the problem of enumerating all maximal models (for inclusion) of  $\varphi$ .

Add a maximization/minimization operator.

ENUM· $Max_T\varphi(T)$  is the problem of enumerating all maximal models (for inclusion) of  $\varphi$ .

We can represent ENUM·MAX-INDSET. Reduction to ENUM·MAX-2SAT: **polynomial delay**.

Add a maximization/minimization operator.

ENUM· $Max_T\varphi(T)$  is the problem of enumerating all maximal models (for inclusion) of  $\varphi$ .

We can represent  $ENUM \cdot MAX$ -INDSET. Reduction to  $ENUM \cdot MAX$ -2SAT: polynomial delay.

We can represent  $ENUM \cdot MIN-HITTINGSET$ . Reduction to  $ENUM \cdot MIN-HORNSAT$ : hard problem.

Add a maximization/minimization operator.

ENUM· $Max_T\varphi(T)$  is the problem of enumerating all maximal models (for inclusion) of  $\varphi$ .

We can represent  $ENUM \cdot MAX$ -INDSET. Reduction to  $ENUM \cdot MAX$ -2SAT: polynomial delay.

We can represent  ${\rm ENUM}{\cdot}{\rm MIN}{\cdot}{\rm HITTINGSET}.$  Reduction to  ${\rm ENUM}{\cdot}{\rm MIN}{\cdot}{\rm HORNSAT}{:}$  hard problem.

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

- 1. Regular automata: equality of language, linear time.
- 2. Probabilistic automata: equality of language, cubic time, better randomized algorithm.

- 1. Regular automata: equality of language, linear time.
- 2. Probabilistic automata: equality of language, cubic time, better randomized algorithm.
- 3. Non-deterministic automata. Equivalence PSPACE-complete. Approximation for the edit distance with moves. ustat<sub>k</sub>(w): the density vector of all the n k + 1 subwords of length k of the word w.

- 1. Regular automata: equality of language, linear time.
- 2. Probabilistic automata: equality of language, cubic time, better randomized algorithm.
- 3. Non-deterministic automata. Equivalence PSPACE-complete. Approximation for the edit distance with moves.  $ustat_k(w)$ : the density vector of all the n k + 1 subwords of length k of the word w.
- 4. Markov decision processes.

- 1. Regular automata: equality of language, linear time.
- 2. Probabilistic automata: equality of language, cubic time, better randomized algorithm.
- 3. Non-deterministic automata. Equivalence PSPACE-complete. Approximation for the edit distance with moves.  $ustat_k(w)$ : the density vector of all the n k + 1 subwords of length k of the word w.
- 4. Markov decision processes.

## Probabilistic automata

The polynomial for the automaton A:

$$\sum_{w\in\Sigma^n} A(w) X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$$

Possible to change n, the size of the generated words.

NP-hard to approximate the bounded maximal distance:  $\max_{w \in \Sigma^n} |A(w) - B(w)|.$ 

## Probabilistic automata

The polynomial for the automaton A:

$$\sum_{w\in\Sigma^n} A(w) X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$$

Possible to change n, the size of the generated words.

NP-hard to approximate the bounded maximal distance:  $\max_{w \in \Sigma^n} |A(w) - B(w)|.$ 

#### Proposition

Let P be a multilinear polynomial given by a black box. There is no polynomial delay algorithm to produce the monomials in decreasing order of coefficient unless P = NP.

## Probabilistic automata

The polynomial for the automaton A:

$$\sum_{w\in\Sigma^n} A(w) X_{1,\sigma_1} X_{2,\sigma_2} \dots X_{n,\sigma_n}$$

Possible to change n, the size of the generated words.

NP-hard to approximate the bounded maximal distance:  $\max_{w \in \Sigma^n} |A(w) - B(w)|.$ 

#### Proposition

Let P be a multilinear polynomial given by a black box. There is no polynomial delay algorithm to produce the monomials in decreasing order of coefficient unless P = NP.

### The polytope separation

### Let $K_1, K_2$ be two polytopes. We want to produce a point in $K_1 \triangle K_2$ . Enumeration = **uniform sampling**.

Different representation of polytopes:

- 1. Convex hull of a set of given points:  $\mathcal{V}$ -polytope
- 2. A set of linear inequalities:  $\mathcal{H}$ -polytope
- 3. A way to test if a point is in the polytope: strong membership oracle (SMO).

### The polytope separation

Let  $K_1, K_2$  be two polytopes. We want to produce a point in  $K_1 \triangle K_2$ . Enumeration = **uniform sampling**.

Different representation of polytopes:

- 1. Convex hull of a set of given points:  $\mathcal V\text{-polytope}$
- 2. A set of linear inequalities:  $\mathcal{H}$ -polytope
- 3. A way to test if a point is in the polytope: strong membership oracle (SMO).

### A simple solution

#### For $K_1, K_2$ $\mathcal{H}$ -polytopes:

# Negate a constraint of $K_1$ , add it to $K_2$ then decide whether the system has a solution.

**Problem:** we are dealing with other representations. For non-deterministic automaton, a  $\mathcal{V}$ -polytope: the ustat<sub>k</sub> of accepted words.

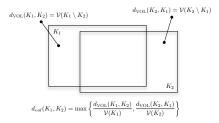
#### A simple solution

For  $K_1, K_2 \mathcal{H}$ -polytopes:

Negate a constraint of  $K_1$ , add it to  $K_2$  then decide whether the system has a solution.

**Problem:** we are dealing with other representations. For non-deterministic automaton, a  $\mathcal{V}$ -polytope: the ustat<sub>k</sub> of accepted words.

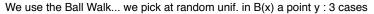
#### Distance and random walk

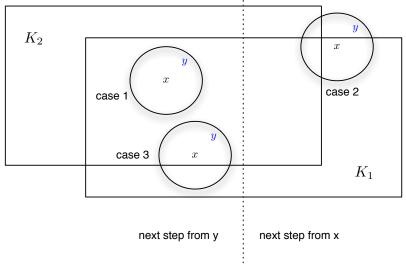


#### Theorem

Let  $K_1$  and  $K_2$  be two polytopes, given as SMOs. For all  $\epsilon > 0$ , if  $d_{vol}(K_1, K_2) \ge \epsilon$ , then the Polytope Separator outputs a point x in  $K_1 \triangle K_2$  with probability greater than 2/3. Moreover, the running time of this algorithm is polynomial in n and  $\epsilon^{-1}$ .

#### The ball walk





#### Approximate verification: witness generation

#### Theorem

Given two regular expressions  $r_1, r_2$  on words and  $\epsilon$ , if  $d_{vol}(H_{r_1}, H_{r_2}) \geq \lambda$ , we can generate  $\epsilon$ -separating words in polynomial time in the dimension and  $1/\lambda$ .

### Thanks!

## Thanks! Thanks,

## Thanks! Thanks, thanks,

### Thanks! Thanks, thanks, thanks,

### Thanks! Thanks, thanks, thanks, thanks,

Thanks! Thanks, thanks, thanks, thanks, thanks,

## Thanks! Thanks, thanks, thanks, thanks, thanks, thanks,

## Thanks! Thanks, thanks, thanks, thanks, thanks, thanks, thanks,

Thanks! Thanks, thanks, thanks, thanks, thanks, thanks, thanks, Thanks! Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, Thanks! Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks

## Thanks! Thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks, thanks Let's all do enumeration