
Enumeration: logic, algebraic and geometric
methods

Yann Strozecki

Université Paris Sud - Paris 11
Equipe ALGO

Février 2011, séminaire MC2 (LIP)

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y | A(x, y)} : counting problem (class]P)
I {y | A(x, y)} : enumeration problem (class EnumP)

Example
Perfect matching:

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to list every perfect matching.

Enumeration problems

Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y | A(x, y)} : counting problem (class]P)
I {y | A(x, y)} : enumeration problem (class EnumP)

Example
Perfect matching:

I The decision problem is to decide if there is a perfect
matching.

I The counting problem is to count the number of perfect
matchings.

I The enumeration problem is to list every perfect matching.

Time complexity measures for enumeration

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching [Uno])
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

Time complexity measures for enumeration

1. the total time related to the number of solutions
I polynomial total time: TotalP

2. the delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching [Uno])
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

Enumeration problems

R: polynomially balanced binary predicate

Enum·R
Input: x ∈ I
Output: an enumeration of elements in R(x) = {y | R(x, y)}

Definition
The problem Enum·R belongs to the class Delay(g, f) if there
exists an enumeration algorithm that computes Enum·R such
that, for all input x:

I Preprocessing in time O(g(|x|)),
I Solutions y ∈ R(x) are computed successively without

repetition with a delay O(f (|x|))

Constant-Delay =
⋃

k Delay(nk , 1).

Enumeration complexity classes

Separation:

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP.

Complete problem:

No good notion of reduction out of parsimonious reduction.

Enumeration complexity classes

Separation:

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP.

Complete problem:

No good notion of reduction out of parsimonious reduction.

Enumeration complexity classes

Separation:

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP.

Complete problem:

No good notion of reduction out of parsimonious reduction.

Enumeration complexity classes

Separation:

QueryP (SDelayP ⊆ DelayP ⊆ IncP (TotalP (EnumP.

Complete problem:

No good notion of reduction out of parsimonious reduction.

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

Arithmetization

Representing a problem by a polynomial:

1. Deciding if there is a perfect matching in randomized parallel
logarithmic time [MVV1987].

2. IP = PSPACE [S 1992]

3. Polynomial time algorithm to decide wether a number is prime
[AKS 2004].

4. Better parametized algorithms for packing and path problems
[K 2008].

5. Enumeration algorithms [S 2010].

Arithmetization

Representing a problem by a polynomial:

1. Deciding if there is a perfect matching in randomized parallel
logarithmic time [MVV1987].

2. IP = PSPACE [S 1992]
3. Polynomial time algorithm to decide wether a number is prime

[AKS 2004].

4. Better parametized algorithms for packing and path problems
[K 2008].

5. Enumeration algorithms [S 2010].

Arithmetization

Representing a problem by a polynomial:

1. Deciding if there is a perfect matching in randomized parallel
logarithmic time [MVV1987].

2. IP = PSPACE [S 1992]
3. Polynomial time algorithm to decide wether a number is prime

[AKS 2004].
4. Better parametized algorithms for packing and path problems

[K 2008].

5. Enumeration algorithms [S 2010].

Arithmetization

Representing a problem by a polynomial:

1. Deciding if there is a perfect matching in randomized parallel
logarithmic time [MVV1987].

2. IP = PSPACE [S 1992]
3. Polynomial time algorithm to decide wether a number is prime

[AKS 2004].
4. Better parametized algorithms for packing and path problems

[K 2008].
5. Enumeration algorithms [S 2010].

Arithmetization

Representing a problem by a polynomial:

1. Deciding if there is a perfect matching in randomized parallel
logarithmic time [MVV1987].

2. IP = PSPACE [S 1992]
3. Polynomial time algorithm to decide wether a number is prime

[AKS 2004].
4. Better parametized algorithms for packing and path problems

[K 2008].
5. Enumeration algorithms [S 2010].

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.

I Determinant of the Kirchoff matrix: spanning trees.
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph. Randomized
algorithm to find the size of a maximal acyclic subhypergraph.

I The polynomial representing the language accepted by a
probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.
I Determinant of the Kirchoff matrix: spanning trees.

I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:
spanning hypertrees of a 3-uniform hypergraph. Randomized
algorithm to find the size of a maximal acyclic subhypergraph.

I The polynomial representing the language accepted by a
probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.
I Determinant of the Kirchoff matrix: spanning trees.
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph. Randomized
algorithm to find the size of a maximal acyclic subhypergraph.

I The polynomial representing the language accepted by a
probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.
I Determinant of the Kirchoff matrix: spanning trees.
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph. Randomized
algorithm to find the size of a maximal acyclic subhypergraph.

I The polynomial representing the language accepted by a
probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.
I Determinant of the Kirchoff matrix: spanning trees.
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph. Randomized
algorithm to find the size of a maximal acyclic subhypergraph.

I The polynomial representing the language accepted by a
probabilistic automaton.

Only multilinear polynomials.

Motivation

Easy to evaluate polynomials whose monomials represent
interesting combinatorial objects.

I Determinant of the adjacency matrix : cycle covers of a graph.
I Determinant of the Kirchoff matrix: spanning trees.
I Pfaffian Hypertree theorem [Masbaum and Vaintraub 2002]:

spanning hypertrees of a 3-uniform hypergraph. Randomized
algorithm to find the size of a maximal acyclic subhypergraph.

I The polynomial representing the language accepted by a
probabilistic automaton.

Only multilinear polynomials.

Of polynomials and automa

Probabilistic Automaton A = (n,Σ,M , α, η).

A word w = σ1σ2 . . . σk has a probability A(w) = α(
k∏

i=1
M (σi))η.

To an automaton, we associate
∑

w∈Σn
A(w)X1,σ1X2,σ2 . . .Xn,σn

Alternate form: α(
n∏

i=1

∑
σ∈Σ

M (σ)Xi,σ)η.

Theorem
Randomized algorithm to test if two automata have the same
language and to produce a witness.

Of polynomials and automa

Probabilistic Automaton A = (n,Σ,M , α, η).

A word w = σ1σ2 . . . σk has a probability A(w) = α(
k∏

i=1
M (σi))η.

To an automaton, we associate
∑

w∈Σn
A(w)X1,σ1X2,σ2 . . .Xn,σn

Alternate form: α(
n∏

i=1

∑
σ∈Σ

M (σ)Xi,σ)η.

Theorem
Randomized algorithm to test if two automata have the same
language and to produce a witness.

Of polynomials and automa

Probabilistic Automaton A = (n,Σ,M , α, η).

A word w = σ1σ2 . . . σk has a probability A(w) = α(
k∏

i=1
M (σi))η.

To an automaton, we associate
∑

w∈Σn
A(w)X1,σ1X2,σ2 . . .Xn,σn

Alternate form: α(
n∏

i=1

∑
σ∈Σ

M (σ)Xi,σ)η.

Theorem
Randomized algorithm to test if two automata have the same
language and to produce a witness.

Of polynomials and automa

Probabilistic Automaton A = (n,Σ,M , α, η).

A word w = σ1σ2 . . . σk has a probability A(w) = α(
k∏

i=1
M (σi))η.

To an automaton, we associate
∑

w∈Σn
A(w)X1,σ1X2,σ2 . . .Xn,σn

Alternate form: α(
n∏

i=1

∑
σ∈Σ

M (σ)Xi,σ)η.

Theorem
Randomized algorithm to test if two automata have the same
language and to produce a witness.

Of polynomials and automa

Probabilistic Automaton A = (n,Σ,M , α, η).

A word w = σ1σ2 . . . σk has a probability A(w) = α(
k∏

i=1
M (σi))η.

To an automaton, we associate
∑

w∈Σn
A(w)X1,σ1X2,σ2 . . .Xn,σn

Alternate form: α(
n∏

i=1

∑
σ∈Σ

M (σ)Xi,σ)η.

Theorem
Randomized algorithm to test if two automata have the same
language and to produce a witness.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

X1 = 1, X2 = 2, X3 = 1

1 ∗ 2 + 1 ∗ 1 + 2 + 1

Output = 6

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

X1 = −1, X2 = 1, X3 = 2

−1 ∗ 1 +−1 ∗ 2 + 1 + 2

Output = 0

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Complexity: time and number of calls to the oracle.

I Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the
other.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Complexity: time and number of calls to the oracle.
I Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the
other.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Complexity: time and number of calls to the oracle.
I Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the
other.

Polynomial given by a black-box

X3X2X1

Output

P(X1,X2,X3) = X1X2 + X1X3 + X2 + X3

I Problem: interpolation, compute P from its values.
I Complexity: time and number of calls to the oracle.
I Parameters: number of variables and total degree.

Enumeration problem: output the monomials one after the
other.

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

The decision problem

Polynomial Identity Testing
Input: a polynomial given as a black box.
Output: decides if the polynomial is zero.

Lemma (Schwarz-Zippel)
Let P be a non zero polynomial with n variables of total degree D,
if x1, . . . , xn are randomly chosen in a set of integers S of size D

ε
then the probability that P(x1, . . . , xn) = 0 is bounded by ε.

No way to make PIT deterministic for black box.

Error exponentially small in the size of the integers!

Existing interpolation methods

Sparse interpolation = polynomial total time:
I Ben Or and Tiwari (1988): evaluation on big power of prime

numbers
I Zippel (1990): use a dense interpolation on a polynomial with

a restricted number of variables

I Klivans and Spielman (2001): transformation of a multivariate
into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

Sparse interpolation = polynomial total time:
I Ben Or and Tiwari (1988): evaluation on big power of prime

numbers
I Zippel (1990): use a dense interpolation on a polynomial with

a restricted number of variables
I Klivans and Spielman (2001): transformation of a multivariate

into an univariate one.

I Garg and Schost (2009): non black-box but complexity
independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

Sparse interpolation = polynomial total time:
I Ben Or and Tiwari (1988): evaluation on big power of prime

numbers
I Zippel (1990): use a dense interpolation on a polynomial with

a restricted number of variables
I Klivans and Spielman (2001): transformation of a multivariate

into an univariate one.
I Garg and Schost (2009): non black-box but complexity

independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

Sparse interpolation = polynomial total time:
I Ben Or and Tiwari (1988): evaluation on big power of prime

numbers
I Zippel (1990): use a dense interpolation on a polynomial with

a restricted number of variables
I Klivans and Spielman (2001): transformation of a multivariate

into an univariate one.
I Garg and Schost (2009): non black-box but complexity

independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

Existing interpolation methods

Sparse interpolation = polynomial total time:
I Ben Or and Tiwari (1988): evaluation on big power of prime

numbers
I Zippel (1990): use a dense interpolation on a polynomial with

a restricted number of variables
I Klivans and Spielman (2001): transformation of a multivariate

into an univariate one.
I Garg and Schost (2009): non black-box but complexity

independent from the degree of the polynomial

Enumeration complexity: produce the monomials one at a time
with a good delay.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial Q = the sum of the
generated monomials.
When there is a call, compute P −Q.

Incremental delay.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial Q = the sum of the
generated monomials.
When there is a call, compute P −Q.

Incremental delay.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial Q = the sum of the
generated monomials.
When there is a call, compute P −Q.

Incremental delay.

From finding a monomial to interpolation

Assume there is a procedure which returns a monomial of a
polynomial P, then it can be used to interpolate P.

Idea: Substract the monomial found by the procedure to the
polynomial and recurse to recover the whole polynomial.

Drawback: one has to store the polynomial Q = the sum of the
generated monomials.
When there is a call, compute P −Q.

Incremental delay.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls, n number of variables and D

the total degree

I Question: is it possible to decrease the number of calls to a
more manageable polynomial.

I Yes for polynomial of fixed degree d. One can find the
”highest“ degree polynomial with O(n2Dd−1) calls.

I Yes for polynomial whose each two monomials have distinct
supports: O(n2) calls.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls, n number of variables and D

the total degree
I Question: is it possible to decrease the number of calls to a

more manageable polynomial.

I Yes for polynomial of fixed degree d. One can find the
”highest“ degree polynomial with O(n2Dd−1) calls.

I Yes for polynomial whose each two monomials have distinct
supports: O(n2) calls.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls, n number of variables and D

the total degree
I Question: is it possible to decrease the number of calls to a

more manageable polynomial.
I Yes for polynomial of fixed degree d. One can find the

”highest“ degree polynomial with O(n2Dd−1) calls.

I Yes for polynomial whose each two monomials have distinct
supports: O(n2) calls.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls, n number of variables and D

the total degree
I Question: is it possible to decrease the number of calls to a

more manageable polynomial.
I Yes for polynomial of fixed degree d. One can find the

”highest“ degree polynomial with O(n2Dd−1) calls.
I Yes for polynomial whose each two monomials have distinct

supports: O(n2) calls.

Finding one monomial

Aim: reducing the number of calls to the black-box at each step.
I KS algorithm: O(n7D4) calls, n number of variables and D

the total degree
I Question: is it possible to decrease the number of calls to a

more manageable polynomial.
I Yes for polynomial of fixed degree d. One can find the

”highest“ degree polynomial with O(n2Dd−1) calls.
I Yes for polynomial whose each two monomials have distinct

supports: O(n2) calls.

Improving the delay

How to achieve a polynomial delay ?

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

Theorem
There is a randomized algorithm which solves
Partial-Monomial over multilinear polynomials in time
polynomial in n the number of variables and log(ε−1) the error
bound.

Improving the delay

How to achieve a polynomial delay ?

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

Theorem
There is a randomized algorithm which solves
Partial-Monomial over multilinear polynomials in time
polynomial in n the number of variables and log(ε−1) the error
bound.

Improving the delay

How to achieve a polynomial delay ?

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

Theorem
There is a randomized algorithm which solves
Partial-Monomial over multilinear polynomials in time
polynomial in n the number of variables and log(ε−1) the error
bound.

Depth-first traversal of the monomial tree

∅, ∅

{X1}, ∅ ∅, {X1}

0 0

5X2 X1X3−X2X3 2X1

{X1,X2}, ∅ ∅, {X1,X2}

5X2 −X2X3 X1 + X1X3

P(X1,X2,X3) = 2X1 −X2X3 + X1X3 + 5X2

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables. There is an
algorithm which computes the set of monomials of P with
probability 1− ε and a delay polynomial in n and log(ε)−1.

I The algorithm can be parallelized.

I It works on finite fields of small characteristic (can be used to
speed up computation).

I On classes of polynomials given by circuits on which PIT can
be derandomized, this algorithm also can be derandomized.
STOC 2011, Saraf, Volkovich: deterministic identity testing of
depth-4 multilinear circuits with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables. There is an
algorithm which computes the set of monomials of P with
probability 1− ε and a delay polynomial in n and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).

I On classes of polynomials given by circuits on which PIT can
be derandomized, this algorithm also can be derandomized.
STOC 2011, Saraf, Volkovich: deterministic identity testing of
depth-4 multilinear circuits with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables. There is an
algorithm which computes the set of monomials of P with
probability 1− ε and a delay polynomial in n and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).
I On classes of polynomials given by circuits on which PIT can

be derandomized, this algorithm also can be derandomized.
STOC 2011, Saraf, Volkovich: deterministic identity testing of
depth-4 multilinear circuits with bounded top fan-in

Polynomial delay algorithm

Theorem
Let P be a multilinear polynomial with n variables. There is an
algorithm which computes the set of monomials of P with
probability 1− ε and a delay polynomial in n and log(ε)−1.

I The algorithm can be parallelized.
I It works on finite fields of small characteristic (can be used to

speed up computation).
I On classes of polynomials given by circuits on which PIT can

be derandomized, this algorithm also can be derandomized.
STOC 2011, Saraf, Volkovich: deterministic identity testing of
depth-4 multilinear circuits with bounded top fan-in

Comparison to other algorithms

Ben-Or Tiwari Zippel KS My Algorithm
Algorithm type Deterministic Probabilistic Probabilistic Probabilistic
Number of calls 2T tnD tn7D4 tnD(n + log(ε−1))
Total time Quadratic in T Quadratic in t Quadratic in t Linear in t
Enumeration Exponential TotalPP IncPP DelayPP
Size of points T log(n) log(nT2ε−1) log(nDε−1) log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear
polynomials.

Comparison to other algorithms

Ben-Or Tiwari Zippel KS My Algorithm
Algorithm type Deterministic Probabilistic Probabilistic Probabilistic
Number of calls 2T tnD tn7D4 tnD(n + log(ε−1))
Total time Quadratic in T Quadratic in t Quadratic in t Linear in t
Enumeration Exponential TotalPP IncPP DelayPP
Size of points T log(n) log(nT2ε−1) log(nDε−1) log(D)

Figure: Comparison of interpolation algorithms on multilinear polynomials

Good total time and best delay, but only on multilinear
polynomials.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision
problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

The polynomial delay algorithm works by repeatedly solving this
problem.

Proposition
The problem Partial-Monomial restricted to degree 2
polynomials is NP-hard.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision
problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

The polynomial delay algorithm works by repeatedly solving this
problem.

Proposition
The problem Partial-Monomial restricted to degree 2
polynomials is NP-hard.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision
problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

The polynomial delay algorithm works by repeatedly solving this
problem.

Proposition
The problem Partial-Monomial restricted to degree 2
polynomials is NP-hard.

Limits to efficient interpolation

Strategy: relate the enumeration problem to some decision
problem.

Partial-Monomial
Input: a polynomial given as a black box and two sets of variables
L1 and L2
Output: accept if there is a monomial in the polynomial in which
no variables of L1 appear, but all of those of L2 do.

The polynomial delay algorithm works by repeatedly solving this
problem.

Proposition
The problem Partial-Monomial restricted to degree 2
polynomials is NP-hard.

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

Logic in half a slide

First order logic(FO):
I Variables: x, y, z . . .
I The language σ, relations and functions: R(x, y), f (z)
I Unary and binary connectors: ∧, ∨, ¬
I Quantifiers: ∀, ∃
I ϕ ≡ ∀x∃yE(x, y) ∨ E(y, x)

Theorem (Goldberg)
For almost all first order graph property ϕ, the graphs of size n
which satisfies ϕ can be enumerated with polynomial delay in n.

Logic in half a slide

First order logic(FO):
I Variables: x, y, z . . .
I The language σ, relations and functions: R(x, y), f (z)
I Unary and binary connectors: ∧, ∨, ¬
I Quantifiers: ∀, ∃
I ϕ ≡ ∀x∃yE(x, y) ∨ E(y, x)

Theorem (Goldberg)
For almost all first order graph property ϕ, the graphs of size n
which satisfies ϕ can be enumerated with polynomial delay in n.

Logic in half a slide

First order logic(FO):
I Variables: x, y, z . . .
I The language σ, relations and functions: R(x, y), f (z)
I Unary and binary connectors: ∧, ∨, ¬
I Quantifiers: ∀, ∃
I ϕ ≡ ∀x∃yE(x, y) ∨ E(y, x)

Theorem (Goldberg)
For almost all first order graph property ϕ, the graphs of size n
which satisfies ϕ can be enumerated with polynomial delay in n.

Enumeration problem defined by a formula

Second order logic (SO):
Second order variable: T, denotes unknown relation over the
domain.

Let Φ(z,T) be a first order formula with free first and second
order variables.

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Let F be a subclass of first order formulas. We denote by
Enum·F the collection of problems Enum·Φ for Φ ∈ F .

Enumeration problem defined by a formula

Second order logic (SO):
Second order variable: T, denotes unknown relation over the
domain.

Let Φ(z,T) be a first order formula with free first and second
order variables.

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Let F be a subclass of first order formulas. We denote by
Enum·F the collection of problems Enum·Φ for Φ ∈ F .

Enumeration problem defined by a formula

Second order logic (SO):
Second order variable: T, denotes unknown relation over the
domain.

Let Φ(z,T) be a first order formula with free first and second
order variables.

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Let F be a subclass of first order formulas. We denote by
Enum·F the collection of problems Enum·Φ for Φ ∈ F .

Example

Example
Independent sets:

IS(T) ≡ ∀x∀y T (x) ∧ T (y)⇒ ¬E(x, y).

Example
Hitting sets (vertex covers) of a hypergraph represented by the
incidence structure 〈D, {V ,E ,R}〉.

HS(T) ≡ ∀x (T (x)⇒ V (x)) ∧ ∀y∃x E(y)⇒ (T (x) ∧ R(x, y))

First-order queries with free second order
variables

This presentation
I FO queries with free second-order variables
I Data complexity: the query is fixed
I The complexity in term of the size of the input structure’s

domain
I Quantifier depth as a parameter: Enum·Σ1
I Enum·IS ∈ Enum·Π1 and Enum·HS ∈ Enum·Π2

First-order queries with free second order
variables

This presentation
I FO queries with free second-order variables
I Data complexity: the query is fixed
I The complexity in term of the size of the input structure’s

domain
I Quantifier depth as a parameter: Enum·Σ1
I Enum·IS ∈ Enum·Π1 and Enum·HS ∈ Enum·Π2

Previous results

1. Only first-order free variables and bounded degree structures.
Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: linear
preprocessing + constant delay.

2. Only first-order free variables and acyclic conjunctive formula.
Bagan-Durand-Grandjean’07: linear preprocessing + linear
delay

3. Monadic second order formula and bounded tree-width
structure Bagan, Courcelle 2009: almost linear preprocessing
+ linear delay

Example
Enumeration of the k-cliques of a graph of bounded degree.

Previous results

1. Only first-order free variables and bounded degree structures.
Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: linear
preprocessing + constant delay.

2. Only first-order free variables and acyclic conjunctive formula.
Bagan-Durand-Grandjean’07: linear preprocessing + linear
delay

3. Monadic second order formula and bounded tree-width
structure Bagan, Courcelle 2009: almost linear preprocessing
+ linear delay

Example
Typical database query. Simple paths of length k.

Previous results

1. Only first-order free variables and bounded degree structures.
Durand-Grandjean’07, Lindell’08, Kazana-Segoufin’10: linear
preprocessing + constant delay.

2. Only first-order free variables and acyclic conjunctive formula.
Bagan-Durand-Grandjean’07: linear preprocessing + linear
delay

3. Monadic second order formula and bounded tree-width
structure Bagan, Courcelle 2009: almost linear preprocessing
+ linear delay

Example
Enumeration of the cliques of a bounded tree-width graph.

A hierarchy result for counting functions

From a formula Φ(z,T), one defines the counting function:

#Φ : S 7→ |Φ(S)|.

Theorem (Saluja, Subrahmanyam, Thakur 1995)
On linearly ordered structures:
#Σ0 (#Σ1 (#Π1 (#Σ2 (#Π2 =]P.

Some]P-hard problems in #Σ1 (but existence of FPRAS at this
level).

Corollary
On linearly ordered structures:
Enum·Σ0 (Enum·Σ1 (Enum·Π1 (Enum·Σ2 (Enum·Π2.

A hierarchy result for counting functions

From a formula Φ(z,T), one defines the counting function:

#Φ : S 7→ |Φ(S)|.

Theorem (Saluja, Subrahmanyam, Thakur 1995)
On linearly ordered structures:
#Σ0 (#Σ1 (#Π1 (#Σ2 (#Π2 =]P.

Some]P-hard problems in #Σ1 (but existence of FPRAS at this
level).

Corollary
On linearly ordered structures:
Enum·Σ0 (Enum·Σ1 (Enum·Π1 (Enum·Σ2 (Enum·Π2.

The first level: Enum·Σ0

Theorem
For ϕ ∈ Σ0, Enum·ϕ can be enumerated with preprocessing
O(|D|k) and delay O(1) where k is the number of free first order
variables of ϕ and D is the domain of the input structure.

Simple ingredients:

1. Transformation of a f.o. formula Φ(z,T) into a propositional
formulas for each z.

2. Solve the propositional formula to obtain a minimal solution
for T .

3. Gray Code Enumeration to extend T .

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the O(|D|k) preprocessing.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:
I Another transformation: Φ(z,T) seen as a propositional

formula whose variables are the atoms of Φ.
I From each solution, create a quantifier free formula without

free second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the O(|D|k) preprocessing.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:
I Another transformation: Φ(z,T) seen as a propositional

formula whose variables are the atoms of Φ.
I From each solution, create a quantifier free formula without

free second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].

Bounded degree structure

Remark: The k-clique query is definable.
No hope to improve the O(|D|k) preprocessing.

Theorem
Let d ∈ N, on d-degree bounded input structures,
Enum·Σ0 ∈ Delay(|D|, 1) where D is the domain of the input
structure.

Idea of proof:
I Another transformation: Φ(z,T) seen as a propositional

formula whose variables are the atoms of Φ.
I From each solution, create a quantifier free formula without

free second order variables.
I Enumerate the solutions of this formula thanks to [DG 2007].

Second level: Enum·Σ1

Theorem
Enum·Σ1 ⊆ DelayP. More precisely, Enum·Σ1 can be computed
with precomputation O(|D|h+k) and delay O(|D|k) where h is the
number of free first order variables of the formula, k the number of
existentially quantified variables and D is the domain of the input
structure.

Idea of Proof: Φ(y,T) = ∃xϕ(x,y,T)
I Substitute values for x. Collection of formulas of the form:

ϕ(x∗,y,T)

I Need to enumerate the union.

Enumeration of an union

Enumerate the solution of Enum·R and Enum·S .
I Disjoint union
I Union with an order

I Union without order

Idea: run Enum·R and Enum·S in parallel with appropriate
priority.

Question: possible to improve this scheme ? A better algorithm
for Enum·DNF(l)?

Enumeration of an union

Enumerate the solution of Enum·R and Enum·S .
I Disjoint union
I Union with an order
I Union without order

Idea: run Enum·R and Enum·S in parallel with appropriate
priority.

Question: possible to improve this scheme ? A better algorithm
for Enum·DNF(l)?

Enumeration of an union

Enumerate the solution of Enum·R and Enum·S .
I Disjoint union
I Union with an order
I Union without order

Idea: run Enum·R and Enum·S in parallel with appropriate
priority.

Question: possible to improve this scheme ? A better algorithm
for Enum·DNF(l)?

Enumeration of an union

Enumerate the solution of Enum·R and Enum·S .
I Disjoint union
I Union with an order
I Union without order

Idea: run Enum·R and Enum·S in parallel with appropriate
priority.

Question: possible to improve this scheme ? A better algorithm
for Enum·DNF(l)?

Enumeration of an union

Enumerate the solution of Enum·R and Enum·S .
I Disjoint union
I Union with an order
I Union without order

Idea: run Enum·R and Enum·S in parallel with appropriate
priority.

Question: possible to improve this scheme ? A better algorithm
for Enum·DNF(l)?

The case Enum·Π1

Proposition
Unless P = NP, there is no polynomial delay algorithm for
Enum·Π1.

Proof Direct encoding of SAT.

Hardness even:
I on the class of bounded degree structure
I if all clauses but one have at most two occurences of a

second-order free variable

Tractable cases

Problem Enum·Φ with Φ ∈ Σi : transformation of Φ into a
propositional formula Φ̃.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃ are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets respectively bijunctive
and Horn.

Tractable cases

Problem Enum·Φ with Φ ∈ Σi : transformation of Φ into a
propositional formula Φ̃.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃ are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets respectively bijunctive
and Horn.

Tractable cases

Problem Enum·Φ with Φ ∈ Σi : transformation of Φ into a
propositional formula Φ̃.

Corollary
Let Φ(z,T) be a formula, such that, for all σ structures, all
propositional formulas Φ̃ are either Horn, anti-Horn, affine or
bijunctive. Then Enum·Φ ⊆ DelayP.

Example: independent sets and hitting sets respectively bijunctive
and Horn.

Further tractable cases

Add a maximization/minimization operator.

Enum·MaxTϕ(T) is the problem of enumerating all maximal
models (for inclusion) of ϕ.

We can represent Enum·Max-INDSET. Reduction to
Enum·Max-2SAT: polynomial delay.

We can represent Enum·Min-HITTINGSET. Reduction to
Enum·Min-HORNSAT: hard problem.

Further tractable cases

Add a maximization/minimization operator.

Enum·MaxTϕ(T) is the problem of enumerating all maximal
models (for inclusion) of ϕ.

We can represent Enum·Max-INDSET. Reduction to
Enum·Max-2SAT: polynomial delay.

We can represent Enum·Min-HITTINGSET. Reduction to
Enum·Min-HORNSAT: hard problem.

Further tractable cases

Add a maximization/minimization operator.

Enum·MaxTϕ(T) is the problem of enumerating all maximal
models (for inclusion) of ϕ.

We can represent Enum·Max-INDSET. Reduction to
Enum·Max-2SAT: polynomial delay.

We can represent Enum·Min-HITTINGSET. Reduction to
Enum·Min-HORNSAT: hard problem.

Further tractable cases

Add a maximization/minimization operator.

Enum·MaxTϕ(T) is the problem of enumerating all maximal
models (for inclusion) of ϕ.

We can represent Enum·Max-INDSET. Reduction to
Enum·Max-2SAT: polynomial delay.

We can represent Enum·Min-HITTINGSET. Reduction to
Enum·Min-HORNSAT: hard problem.

Introduction to Enumeration

Enumeration and polynomials

Enumeration and logic

Enumeration and polytopes

Verification problems

Want to compare and separate two systems:

1. Regular automata: equality of language, linear time.
2. Probabilistic automata: equality of language, cubic time,

better randomized algorithm.

3. Non-deterministic automata. Equivalence PSPACE-complete.
Approximation for the edit distance with moves.
ustatk(w): the density vector of all the n − k + 1 subwords of
length k of the word w.

4. Markov decision processes.

Verification problems

Want to compare and separate two systems:

1. Regular automata: equality of language, linear time.
2. Probabilistic automata: equality of language, cubic time,

better randomized algorithm.
3. Non-deterministic automata. Equivalence PSPACE-complete.

Approximation for the edit distance with moves.
ustatk(w): the density vector of all the n − k + 1 subwords of
length k of the word w.

4. Markov decision processes.

Verification problems

Want to compare and separate two systems:

1. Regular automata: equality of language, linear time.
2. Probabilistic automata: equality of language, cubic time,

better randomized algorithm.
3. Non-deterministic automata. Equivalence PSPACE-complete.

Approximation for the edit distance with moves.
ustatk(w): the density vector of all the n − k + 1 subwords of
length k of the word w.

4. Markov decision processes.

Verification problems

Want to compare and separate two systems:

1. Regular automata: equality of language, linear time.
2. Probabilistic automata: equality of language, cubic time,

better randomized algorithm.
3. Non-deterministic automata. Equivalence PSPACE-complete.

Approximation for the edit distance with moves.
ustatk(w): the density vector of all the n − k + 1 subwords of
length k of the word w.

4. Markov decision processes.

Probabilistic automata

The polynomial for the automaton A:∑
w∈Σn

A(w)X1,σ1X2,σ2 . . .Xn,σn

Possible to change n, the size of the generated words.

NP-hard to approximate the bounded maximal distance:
maxw∈Σn |A(w)− B(w)|.

Proposition
Let P be a multilinear polynomial given by a black box. There is
no polynomial delay algorithm to produce the monomials in
decreasing order of coefficient unless P = NP.

Probabilistic automata

The polynomial for the automaton A:∑
w∈Σn

A(w)X1,σ1X2,σ2 . . .Xn,σn

Possible to change n, the size of the generated words.

NP-hard to approximate the bounded maximal distance:
maxw∈Σn |A(w)− B(w)|.

Proposition
Let P be a multilinear polynomial given by a black box. There is
no polynomial delay algorithm to produce the monomials in
decreasing order of coefficient unless P = NP.

Probabilistic automata

The polynomial for the automaton A:∑
w∈Σn

A(w)X1,σ1X2,σ2 . . .Xn,σn

Possible to change n, the size of the generated words.

NP-hard to approximate the bounded maximal distance:
maxw∈Σn |A(w)− B(w)|.

Proposition
Let P be a multilinear polynomial given by a black box. There is
no polynomial delay algorithm to produce the monomials in
decreasing order of coefficient unless P = NP.

The polytope separation

Let K1,K2 be two polytopes. We want to produce a point in
K1

a
K2.

Enumeration = uniform sampling.

Different representation of polytopes:

1. Convex hull of a set of given points: V-polytope
2. A set of linear inequalities: H-polytope
3. A way to test if a point is in the polytope: strong membership

oracle (SMO).

The polytope separation

Let K1,K2 be two polytopes. We want to produce a point in
K1

a
K2.

Enumeration = uniform sampling.

Different representation of polytopes:

1. Convex hull of a set of given points: V-polytope
2. A set of linear inequalities: H-polytope
3. A way to test if a point is in the polytope: strong membership

oracle (SMO).

A simple solution

For K1,K2 H-polytopes:
Negate a constraint of K1, add it to K2 then decide whether the
system has a solution.

Problem: we are dealing with other representations.
For non-deterministic automaton, a V-polytope: the ustatk of
accepted words.

A simple solution

For K1,K2 H-polytopes:
Negate a constraint of K1, add it to K2 then decide whether the
system has a solution.

Problem: we are dealing with other representations.
For non-deterministic automaton, a V-polytope: the ustatk of
accepted words.

Distance and random walk

K2

K1

dVOL(K2, K1) = V(K2 \ K1)
dVOL(K1, K2) = V(K1 \ K2)

dvol(K1, K2) = max

�
dVOL(K1, K2)

V(K1)
,
dVOL(K2, K1)

V(K2)

�

Theorem

Let K1 and K2 be two polytopes, given as SMOs. For all ε > 0, if
dvol(K1,K2) ≥ ε, then the Polytope Separator outputs a point x in
K1

a
K2 with probability greater than 2/3. Moreover, the running

time of this algorithm is polynomial in n and ε−1.

The ball walk

We use the Ball Walk... we pick at random unif. in B(x) a point y : 3 cases

x

y

case 1

x

y

case 2

x

y

case 3

next step from y next step from x

K1

K2

Approximate verification: witness generation

Theorem
Given two regular expressions r1, r2 on words and ε, if
dvol(Hr1 ,Hr2) ≥ λ, we can generate ε-separating words in
polynomial time in the dimension and 1/λ.

Thanks!

Thanks!
Thanks,

Thanks!
Thanks, thanks,

Thanks!
Thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks,
thanks,

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks,
thanks, thanks

Thanks!
Thanks, thanks, thanks, thanks,
thanks, thanks, thanks, thanks,
thanks, thanks
Let’s all do enumeration

	Introduction to Enumeration
	Enumeration and polynomials
	Enumeration and logic
	Enumeration and polytopes

