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Abstract We study the problem of generating the monomials of a black box
polynomial in the context of enumeration complexity. We present three new
randomized algorithms for restricted classes of polynomials with a polyno-
mial or incremental delay, and the same global running time as the classical
ones. We introduce TotalBPP, IncBPP and DelayBPP, which are prob-
abilistic counterparts of the most common classes for enumeration problems.
Our interpolation algorithms are applied to algebraic representations of sev-
eral combinatorial enumeration problems, which are so proved to belong to
the introduced complexity classes. In particular, the spanning hypertrees of a
3-uniform hypergraph can be enumerated with a polynomial delay. Finally, we
study polynomials given by circuits and prove that we can derandomize the
interpolation algorithms on classes of bounded-depth circuits. We also prove
the hardness of some problems on polynomials of low degree and small circuit
complexity, which suggests that our good interpolation algorithm for multi-
linear polynomials cannot be generalized to degree 2 polynomials. This article
is an improved and extended version of [42] and of the third chapter of the
author’s phd thesis [41].

1 Introduction

1.1 Motivations and connection to previous works

Enumeration, the task of generating all solutions of a given problem, is an in-
teresting generalization of decision and counting. Since a problem typically has
an exponential number of solutions, the time to compute them does not seem
to be a relevant complexity measure. A first solution is to relate the computing
time of an enumeration algorithm to its input and output. For instance, there
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is an algorithm generating the extensions of a partial order in a time linear in
the number of extensions [37]. If we consider that an enumeration algorithm
produces solutions in a dynamic fashion, the most interesting complexity mea-
sure is the delay between two consecutive solutions. One should then design
enumeration algorithm with a good – polynomial in the input – delay. There
is such an algorithm to enumerate the maximal independent sets of a graph in
lexicographic order while strangely there is none for the reverse lexicographic
order unless P = NP [23].

One way to obtain an algorithm for an enumeration problem is to represent
it by a formula in some well-chosen logic. For instance, most of the time we
know how to enumerate the graphs of a given size which satisfy a first-order
property [20]. One can also enumerate all satisfying assignments of an exis-
tential first order formula with second order free variables with a polynomial
delay [14]. There are several other “meta-algorithms” for enumeration of this
kind [13,11] and our aim is here to obtain one based on algebra instead of
logic.

The method we propose in this article is to represent an enumeration prob-
lem by a family of polynomials rather than by a formula. This method had
already a lot of success for decision and search problems. One can associate
a well chosen determinant to the perfect matchings of a graph, and thus de-
cide if there is one in randomized parallel logarithmic time [35]. The beautiful
polynomial time algorithm to decide if a number is prime also relies on a poly-
nomial representation of the number [1]. In parametrized complexity, there
is also a method to solve several combinatorial problems [30] which relies on
detecting multilinear monomials of total degree k in polynomials represented
by circuits.

This later approach is quite similar to what we present here, since we will
also be interested in monomials in multilinear polynomials as representation
of the solutions of an enumeration problem. More precisely, we associate to
an instance of a problem a multivariate polynomial whose monomials are in
bijection with its solutions. We prove that we are able to enumerate the mono-
mials of a polynomial given by some implicit representation with a good delay.
Therefore we obtain an enumeration algorithm for all problems which can be
represented by a family of polynomials enjoying some structural properties
and which can be evaluated in polynomial time.

In other words, we want to solve the problem of interpolating a polyno-
mial, with an emphasis on the delay between the production of two monomials.
The polynomial is represented by a black box, that is an oracle that can be
queried for the value of the polynomial on any point. The black box model
is chosen because we do not want to make assumptions on the representation
of the polynomial. The interpolation of a dense polynomial of a fixed degree,
i.e. with all possible monomials, can be done efficiently through inversion of
a Vandermonde matrix. This method is always exponential in the number of
variables, but better algorithms (both deterministic and probabilistic) have
been designed for a polynomial represented either by a black box or a circuit
[8,49,25,19]. Their complexity polynomially depends on the number of mono-
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mials of the polynomial which can be much smaller than the potential number
of monomials. The deterministic methods rely on evaluating the polynomial
on specific prime numbers, with the drawback that these numbers may be
very large. The probabilistic methods use the Schwarz-Zippel lemma which
describes how to solve the Polynomial Identity Testing problem, that is
deciding whether a polynomial is identically zero, in randomized polynomial
time. This lemma is also essential in this article.

It turns out than most interpolation algorithms have a bad delay, in fact
they produce all the monomials at the same time after a potentially exponen-
tial computation. There is one exception: as a consequence of a result about
random efficient identity testing [29], Klivans and Spielman give an interpola-
tion algorithm, which happens to have an incremental delay. In this article, we
try to further improve this delay by proposing new interpolation algorithms
on restricted classes of polynomials such as multilinear polynomials. Similar
restrictions have been studied in other works about Polynomial Identity
testing for instance depth 3 circuits [39] and multilinear polynomials defined
by a depth 4 circuit [26,38]. Moreover, the result applies to a lot of interesting
polynomials which happen to be multilinear like the Determinant, the Pfaffian,
the Permanent, the elementary symmetric polynomials, and others.

1.2 Main results

The main contributions of the paper are as follows:

– We present a randomized algorithm which enumerates the monomials of a
black box multilinear polynomial with a polynomial delay. Moreover, this
algorithm is easily parallelizable and works over fields of small character-
istic.

– We give a randomized algorithm with an incremental delay which is better
than existing algorithms for polynomials of degree less than 10.

– We introduce the use of polynomials representation and randomization in
the study of enumeration problems. It yields algorithms for several combi-
natorial problems, amongst them the enumeration of the spanning hyper-
trees of a 3-uniform hypergraph for which, to our knowledge, no algorithm
was known.

– We prove a few hardness results for the problem to decide if there is a
given monomial (or to compute its coefficient) in a low degree polynomial
given by a low depth formula. This shows that our polynomial delay algo-
rithm for multilinear polynomials cannot be generalized to non-multilinear
polynomials.

1.3 Organization of the paper

Section 2 is an introduction to enumeration problems and to the basics of
polynomial identity testing and interpolation.
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In Section 3 we present a simple randomized algorithm which produces a
monomial of polynomials satisfying the following property : no two of their
monomials use the same set of variables. We then outline a deep result which
enables to recover the monomial of any polynomial [29]. We also explain how
we can turn both monomial search procedures into an interpolation algorithm
with incremental delay.

In Section 4, the notion of partial degree is defined. We explain how to
compute it in randomized polynomial time. From that result, we design an
interpolation algorithm for multilinear polynomials with a delay polynomial
in the number of variables.

In Section 5, the techniques of the two previous sections are generalized to
build an incremental interpolation algorithm for fixed degree polynomials.

We explain in Section 6 how to turn our interpolation algorithms into
efficient enumeration procedures for several combinatorial problems. These
different procedures serve as an illustration of three probabilistic complexity
classes that we introduce, namely TotalBPP, IncBPP and DelayBPP.

In Section 7 we propose several methods to improve the complexity of
the previous algorithms. Then using some of these tricks, we explain how to
enumerate the spanning hypertrees of a 3-uniform hypergraph with a delay as
small as possible.

Finally, in Section 8 we study a different model: polynomials given by a
circuit rather than a black box. For those polynomials, we give an alternate
method to compute their partial degree. As a consequence we prove that our
algorithm interpolating multilinear polynomials can be derandomized on the
same class of circuits as the polynomial identity test can. To explain why
this algorithm cannot be extended to higher degree polynomials, we prove
that several related decision or counting problems are hard even on restricted
circuits computing polynomials of degree 2 or 3.

2 Introduction to Enumeration Problems and Interpolation

In this section, we recall basic definitions about enumeration problems and
their complexity measures (for further details and examples see [41,7]). Then
we introduce the central problem of this article and a few useful tools.

2.1 Basics of enumeration

The computational model is the random access machine model (RAM) with
addition, subtraction and multiplication as its basic arithmetic operations. It
has read-only input registers I1 , I2 , . . . (containing the input x), read-write
work registers R1 , R2 , . . . and output registers O1 , O2 , . . . Our model is
equipped with an additional instruction Output which, when executed, re-
turns the contents of the non empty output registers. The result of a computa-
tion of such a RAM machine is the sequence of words (w1, . . . , wn), where wi is
encoded in the output registers when the ith Output instruction is executed.
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Let M be such a machine and x a word, we write M(x) the result of
the computation of M on x. Sometimes we will use M(x) to denote the set
of outputs although it is a sequence. We note |M(x)| the size of the output
sequence, which is equal to the number of Output instructions executed.

We prefer a RAM machine to a Turing machine since it may be useful
to deal with an exponential amount of memory in polynomial time, see for
instance the enumeration of the maximal independent sets of a graph [23].

We deal with randomized algorithm in the following, therefore we need to
make our RAM machine probabilistic. To this aim we extend the machine with
a Rand instruction which writes with probability one half 0 or 1 in a special
register. All outcomes of this instruction during a run of a RAM machine are
independent. We say that a probabilistic RAM machine computes the word w
on the instance x with probability p if p is the number of runs on x for which
the machine computes w divided by the total number of runs.

Definition 1 (Enumeration Problem) Let A be a polynomially balanced
binary predicate, i.e. A(x, y) ⇒ |y| ≤ Q(|x|), for a polynomial Q. We write
A(x) for the set of y such that A(x, y). We say that a RAM machine M solves
the enumeration problem associated to A, Enum·A for short, if M(x) = A(x)
and there is no repetition of solutions in the computation.

Given a RAM machine M and an input x, we note T (M,x, i) the number
of instructions executed before the ith Output. This function is defined for
1 ≤ i ≤ |M(x)| and we extend it at i = 0 by 0 and at i = |M(x)| + 1 by the
number of instructions before M stops. Remark that all arithmetic operations
are assumed to be of unit cost regardless to the size of the integers they operate
on. The more realistic bit complexity model takes into account the complexity
of such operations. However, the complexity of the algorithms presented in
this article is very similar in both models since we are cautious to never work
with large integers.

We are interested in two complexity measures, the first one is very similar
to what is used for decision problems:

Definition 2 Let M be a RAM machine, and let x be a word. The total time
taken by M on x is T (M,x, |M(x)| + 1). We say that the machine M has a
total time f(n) if max|x|=n T (M,x, |M(x)|+ 1) = O(f(n)).

The next measure is specific to enumeration and its study is the main goal
of enumeration complexity.

Definition 3 Let M be a RAM machine, let x be a word and i be an integer.
The delay between the ith and the i+ 1th Output is the quantity T (M,x, i+
1) − T (M,x, i), when it is defined. We say that the machine M has a delay
f(n) if max|x|=n maxi≤|M(x)| T (M,x, i+ 1)− T (M,x, i) = O(f(n)).

The delay between ith and the i + 1th solution may depend on both |x|,
the size of the input, and i, the number of already generated solutions. When
the delay is bounded by a polynomial in |x| and i, we say that the algorithm
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has an incremental delay. If the delay is bounded by a polynomial in |x| only,
we say that the algorithm has a polynomial delay. Polynomial delay is often
hard to obtain, but better –though not yet proved to be strictly better– than
incremental delay.

In this article we interpret the problem of interpolating a polynomial given
by a black box as an enumeration problem. It means that we try to list all the
monomials of a polynomial given by the number of its variables and an oracle.
We denote this problem by Enum·Poly.

The oracle allows to evaluate the polynomial on any point in unit time.
To formalize computation with an oracle, let us introduce the RAM machine
with oracle. Such a machine has a sequence of new registers O(0),O(1), . . .
and a new instruction Oracle. The semantic of the machine depends on the
oracle, which is a function f from {0, 1}∗ to {0, 1}∗. We call w the word which
is encoded in the register O(0),O(1), . . . . When the instruction Oracle is
executed, the machine writes in the work register the value of f(w). In our
settings, the function f is the input polynomial.

The complexity measures of this particular model, in addition to the total
time and delay are the number of calls to the oracle and the size of the words
which are given as arguments to the oracle. One usually uses this model to
work with multivariate polynomials since it helps give lower bounds and it
abstracts away the operation of evaluating the polynomial.

2.2 Black box Polynomial Identity Testing and Dense Interpolation

Let introduce all the basic tools and notations we need to build interpolation
algorithms. We study multivariate polynomials in Q[X1, . . . , Xn]. A term Xe =
Xe1

1 X
e2
2 . . . Xen

n is a product of variables, it is defined by the sequence of n
positive integers e = (e1, . . . , en). A monomial is a term Xe multiplied by some
constant λ, it is defined by the pair (λ, e). We call t the number of monomials

of a polynomial P written P (X) =
∑

1≤j≤t

λjX
ej .

The degree of a monomial is the maximum of the degrees of its variables and
the total degree is the sum of the degrees of its variables. Let d (respectively D)
denote the degree (respectively the total degree) of the polynomial we consider,
that is to say the maximum of the degrees (respectively total degrees) of its
monomials. In Section 4 we assume that the polynomial is multilinear, i.e.
d = 1 and D is thus bounded by n. Since we are interested in algorithms for
low degree polynomials, we always assume that the total degree D is at most
polynomial in n. In fact, most of the time d is considered to be a fixed constant
and therefore D is in O(n).

When analyzing the delay of an algorithm solving Enum·Poly, we are
interested in both the number of calls to the black box and the time spent
between two generated monomials. We are also interested in the size of the in-
tegers used in the calls to the oracle, since in some applications the complexity
of the evaluation depends on it.
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Definition 4 The support of a monomial is the set of variables which appear
in the monomial.

Let L be a set of variables, then fL is the homomorphism of Q[X1, . . . , Xn]
defined by: {

fL(Xi) = Xi if Xi ∈ L
fL(Xi) = 0 otherwise

From now on, we denote fL(P ) by PL. It is the polynomial obtained by sub-
stituting 0 to every variable of index not in L, that is to say the sum of the
monomials of P which have their support in L. Let XL be the multilinear term
of support L, it is the product of all Xi in L.

Example 1 Let P be the polynomial 2X2
1−X4X5X

3
6 +3X1X3X7+X2

2X1. The
support of 3X1X3X7 is L = {X1, X3, X7} and PL = 2X2

1 + 3X1X3X7.

In this article, we often need to decide whether a polynomial given by a
black box is the zero polynomial. This problem is called Polynomial Iden-
tity Testing or PIT for short. Remark that PIT can be seen as the deci-
sion version of the interpolation problem we try to solve. For any t evaluation
points, one may build a polynomial with t monomials which vanishes at every
point (see [49]). Therefore, if we do not have any a priori bound on t, we must
evaluate the polynomial on at least (d+1)n n-tuples of integers to decide PIT.
Since such an exponential complexity is not satisfying, we use a probabilistic
algorithm, which has a good complexity and an error bound which can be
made exponentially small.

Lemma 1 (Schwarz-Zippel [40,12,48]) Let P be a non zero polynomial
with n variables of total degree D, if x1, . . . , xn are randomly chosen values
in a set of integers S of size D

ε then the probability that P (x1, . . . , xn) = 0 is
bounded by ε.

The following classical algorithm to decide PIT over polynomials of known
total degree is derived from this lemma. We denote by [x] the set of integers
{1, . . . , dxe}.

Algorithm 1: The procedure not zero(P, ε)

Data: A polynomial P with n variables, its total degree D and the error bound ε
begin

pick x1, . . . , xn randomly in [D
ε

]

if P (x1, . . . , xn) = 0 then
return False

else
return True

Remark that the algorithm never gives a false answer when the polynomial
is zero. The probability of error when the polynomial is not zero is bounded
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by ε thanks to Lemma 1. in fact the problem PIT for polynomials given by
circuits is in coRP [21].

Algorithm 1 makes exactly one call to the black box on integers of size
log(Dε−1). The error rate may then be made exponentially smaller by in-
creasing the size of the integers. There is an other way to achieve the same
reduction of error. Repeat the previous algorithm k times for ε = 1

2 , that is
to say the integers are randomly chosen in [2D]. If all runs return zero, then
the algorithm decides that the polynomial is zero else it decides it is not zero.
Since the random choices are independent in each run, the probability of error
of this algorithm is bounded by 2−k. Hence, to achieve an error bound of ε, we
have to set k = log(ε−1). The procedure that we use in this article and that
we denote by not zero(P, ε) is this latter variant. It uses slightly more random
bits but it only involves numbers less than 2D which is especially convenient
if we want to use the algorithm on a field with a small number of elements.

Dense interpolation It is well known that a univariate polynomial P of total
degree less than D is totally defined by its values in D points. There are a
lot of methods to interpolate P from D points, the simplest being Lagrange
interpolation:

P (X) =

D∑
i=1

P (i)
∏

j≤D, j 6=i

X − j
i− j

The naive expansion of this formula to write P as a sum of monomials
requires D3 operations. It uses only integers as evaluation points, while more
efficient methods relying on Fast Fourier transform use unit roots as evaluation
points.

In fact interpolating P is equivalent to solving a linear system where the
variables are the coefficients of P . Each linear equation is given by the evalua-
tion of the polynomial on a different point. The system forms a Vandermonde
matrix, therefore if the evaluation points have been chosen different (say we
choose 1, . . . , D) it is invertible. Moreover, the structure of the matrix enables
us to find its inverse in O(D2) operations.

Theorem 1 (Section 3 of [49]) Let P be a black box univariate polynomial
of total degree less than D. It can be interpolated in D calls to the black box
on integers of size O(log(D)) and O(D2) arithmetic operations.

The same method can be used to interpolate multivariate polynomials, see
also [49]. The idea is to set the variables of the polynomial to different powers
of the first prime numbers. If the interpolated polynomial is of degree d and
has n variables, it has at most (d + 1)n monomial. The polynomial can be
recovered by inverting a (d+ 1)n × (d+ 1)n Vandermonde matrix.

All the mentioned interpolation methods have a complexity which depends
on the maximal number of monomials of the polynomial. These methods are
said to be dense, since they work well for polynomials with all monomials.
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3 Incremental delay algorithm to interpolate a polynomial

In this section, we explain how to produce one monomial of a black box poly-
nomial. We give an efficient algorithm of our own for a restricted class of
polynomials and we recall the algorithm of [29] which works for any polyno-
mial. We then explain how an algorithm which produces one monomial can be
turned into an interpolation algorithm with an incremental delay.

3.1 Monomials with distinct supports

We define a natural extension of the multilinear polynomials which is exactly
the class of polynomials on which the next algorithm is correct.

Definition 5 Let DS be the set of polynomials with no constant term and
whose monomials have distinct supports.

Remark that being without constant term is not restrictive. We can in-
deed compute the constant term of a polynomial P by a single oracle call
to P (0, . . . , 0). Then we can simulate an oracle call to the polynomial P −
P (0, . . . , 0), which is equal to P without its constant term, with an overhead
of only one arithmetic operation.

Lemma 2 Let P be a polynomial in DS and let L be a set of variables minimal
for inclusion such that PL is not identically zero. Then PL is a single monomial
of support L.

Using Lemma 2 and the procedure not zero which solves the PIT problem,
we give an algorithm which finds, in randomized polynomial time, a monomial
of a polynomial P . Let L be a set of variables and let i be an integer used to
denote the index of the current variable. In the first step of the next algorithm
we build a set of variables L satisfying the hypothesis of Lemma 2 by trying
to set each Xi to 0.

Then once we have found L such that PL is a monomial λXe, we compute
λ and e. The evaluation of PL on (1, . . . , 1) returns λ. For each Xi ∈ L, the
evaluation of PL on Xi = 2 and for j 6= i, Xj = 1 returns λ2ei . From these n
calls to the black box, one can find e in linear time and thus output λXe.

We give the complexity of this algorithm in the next proposition.

Proposition 1 Given a black box polynomial P in DS, Algorithm 2 finds,
with probability 1 − ε, a monomial of P by making O(n log(nε )) calls to the
black box on entries of size log(2D).

Proof We analyze this algorithm, assuming first that the procedure not zero
never returns a wrong answer and that P is not the zero polynomial. In this
case, the algorithm does not answer “Zero” at the beginning. Therefore PL is
not zero at the end of the algorithm, because an element is removed from L
only if this condition is respected. Since removing any other element from L
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Algorithm 2: The procedure find monomial(P, ε)

Data: A polynomial P with n variables, its total degree D and the error bound ε
Result: A monomial of P
begin

L←− {1, . . . , n}
if not zero(P , ε

n+1
) then

for i = 1 to n do
if not zero(PL\{i},

ε
n+1

) then
L←− L \ {i}

return The monomial of support L
else

return “Zero”

would make PL zero by construction, the set L is minimal for the property of
PL being non zero. Then by Lemma 2 we know that PL is a monomial of P ,
which allows us to output it as previously explained.

The only source of error is the subroutine not zero which fails with proba-
bility ε

n+1 . Since this subroutine is called n+ 1 times we can bound the total
probability of error by ε. The total complexity of this algorithm is O(n log(nε ))
since each of the n invocations of not zero makes O(log(nε )) calls to the oracle
in time O(1).

3.2 Klivans and Spielman algorithm

Here we briefly explain an elaborate result to solve PIT on black box poly-
nomials with few random bits [29], which can be used to interpolate sparse
polynomials. The key of the method is a clever transformation of a multivariate
polynomial into a univariate polynomial.

Theorem 2 (Theorem 5 of [29]) There exists a randomized polynomial time
algorithm which maps the zero polynomial to itself and any non zero polyno-
mial P with n variables and total degree at most D to a non zero univariate
polynomial P ′ of degree at most D4n6 with probability 2

3 .

The idea of the proof is to map a variable Xi to hzi where h is a new
variable and the zi’s are well chosen linear forms. Each monomial of P is thus
mapped in P ′ to h to the power of a sum of the linear forms zi. A generalized
isolation lemma (Lemma 4 in [29]) proves that among these sums of linear
forms evaluated at random points, there is one which is minimum with high
probability.

Therefore the monomial of lowest degree in P ′ comes with probability 2
3

from a unique monomial of P , denoted by λXe. The polynomial P ′ is inter-
polated in polynomial time in order to find λhl the lowest degree monomial.
This gives λ but one still needs to recover e.

Let P ′′ be a new polynomial, where pih
zi is substituted to Xi and pi is the

ith prime. The linear form zi is evaluated at the same points as in the previous
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step, therefore the lowest degree monomial of P ′′ is λ
∏
peii h

zi . Finally P ′′ is
interpolated to recover e and the monomial λXe is returned.

Theorem 3 (Adapted from Theorem 12 of [29]) There is a randomized
polynomial time algorithm which given a black box access to a non zero poly-
nomial P with n variables and total degree D returns a monomial of P with
probability 2

3 in a time polynomial in n, D and with O(n6D4) calls to the black

box on integers of size log(nDε ).

3.3 From a monomial to the polynomial: an incremental delay algorithm

We build an algorithm which enumerates the monomials of a polynomial in-
crementally once we know how to produce one of its monomials in polynomial
time. The idea is to subtract the monomial to the polynomial and recurse.
The procedure find monomial defined in Proposition 1 is used to find the
monomial.

We also need a procedure subtract(P , Q) which acts as a black box for
the polynomial P − Q when P is given as a black box and Q as an explicit
set of monomials. Let D be the total degree of Q and i is the number of its
monomials. One evaluates the polynomial subtract(P , Q) on an evaluation
point as follows:

1. compute the value of each monomial of Q in O(D) arithmetic operations
2. add the value of each monomial to an accumulator, the sum is obtained in
O(iD) operations

3. call the black box to compute P on the same points and return this value
minus the one we have computed for Q

The integers used in the computation of Q may be large, which would make
the cost of a call to subtract even worse in a bit complexity model. However,
the complexity of subtract could be improved by using a less naive way to
evaluate the explicit polynomial Q, like fast or iterated multiplication. One
other possible improvement would be to do all computations modulo some
small random prime. This idea is developed in Section 7.

Algorithm 3: Incremental computation of the monomials of P
Data: A polynomial P with n variables and the error bound ε
Result: The set of monomials of P
begin

Q←− 0
while not zero(subtract(P ,Q), ε

2n+1 ) do

M ←− find monomial(subtract(P ,Q), ε
2n+1 )

Output(M)
Q←− Q+M
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Theorem 4 Let P be a polynomial in DS with n variables, t monomials and a
total degree D. Algorithm 3 computes the set of monomials of P with probability
1− ε. The delay between the ith and i+ 1th produced monomial is bounded by
O(iDn(n+ log(ε−1))) in time and O(n(n+ log(ε−1))) calls to the oracle. The
whole algorithm performs O(tn(n + log(ε−1))) calls to the oracle on integers
of size log(2D).

Proof Correctness. We analyze Algorithm 3 under the assumption that the
procedures not zero and find monomial never return a wrong answer.

The following is an invariant of the while loop: Q is a subset of the
monomials of P . It is true at the beginning because Q is the zero polyno-
mial. Assume that Q satisfies this property at a certain point of the while
loop. Since not zero(subtract(P ,Q)) is true, the polynomial P −Q is not zero
and is then a non empty subset of the monomials of P . The outcome of
find monomial(subtract(P ,Q)) is thus a monomial of P which is not in Q,
therefore Q plus this monomial still satisfies the invariant. Remark that we
have also proved that the number of monomials of Q is increasing by one at
each step of the while loop. The algorithm must then terminate after t steps
and when it does not zero(subtract(P ,Q)) gives a negative answer meaning
that Q = P .
Probability of error. The probability of failure is bounded by the sum of
the probabilities of error coming from not zero and find monomial. These pro-
cedures are both called t times with an error bounded by ε

2n+1 . There are
2n different supports, hence there is at most 2n monomials in P . The total
probability of error is bounded by 2t

2n+1 ε ≤ ε.
Complexity. The subroutine not zero is called t times and it itself calls the
oracle n+ log(ε−1) times. The subroutine find monomial is called t times and
calls the black box n(n+log(ε−1)) times. In total, we have t(n+1)(n+log(ε−1))
calls to the the black box on evaluation points of size log(2D).

The delay between two solutions is the time to execute find monomial. It is
dominated by the execution of the subroutine subtract(P,Q) at each oracle call.
By Proposition 1 find monomial does n(n+ log(ε−1)) calls to the oracle. The
delay between the ith and i+ 1th produced monomial is O(iDn(n+ log(ε−1)))
since subtract(P,Q) does O(iD) arithmetic operations.

Remark that Theorem 3 can be used to implement find monomial in Algo-
rithm 4. It yields an incremental interpolation algorithm for any polynomial
but with a worse delay over polynomials in DS.

4 A Polynomial Delay Algorithm for Multilinear Polynomials

In this section we first solve the problem of finding the degree of a polynomial
with regard to a set of variables.

Definition 6 Let n be an integer and L ⊆ {X1, . . . , Xn}. The degree of the
term Xe with regard to L is the integer

∑
Xi∈L ei and it is denoted by dL(Xe).
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We write dL(P ) for the degree of a polynomial P with regard to S, it is the
maximum of the degree of its monomials with regard to L.

Remark that d{Xi}(P ) is the degree of Xi in P , while d{X1,...,Xn}(P ) is the
total degree of P . We present a method to efficiently compute the degree of a
polynomial with regard to any set of variables. It transforms the multivariate
polynomial into a univariate one, which is then interpolated. To achieve this,
one uses a polynomial number of calls to the black box on small integers. As
a corollary, an efficient algorithm for the following problem is given, when the
polynomial is multilinear.

Monomial-Factor
Input: a polynomial given as a black box and a term Xe

Output: accept if Xe divides a monomial in the polynomial

We also give a second algorithm, which solves this problem with only one
call to the black box but using exponentially larger integers. We then design
an algorithm which enumerates the monomials of a multilinear polynomial
with a polynomial delay. This algorithm has the interesting property of being
easily parallelizable, which is obviously not the case of the incremental one.

4.1 Small evaluation points

Let P (X) be a n variables polynomial over Q, and let (L1, L2) be a partition
of {X1, . . . , Xn}. We can see P as a polynomial over the ring Q[{Xi ∈ L2}]
with variables Xj ∈ L1. In fact, the total degree of P as a polynomial over

this ring is equal to dL1
(P ). We introduce a new variable Y , the polynomial P̃

is the polynomial P where Y Xi is substituted to Xi when Xi ∈ L1. We have
the equality d{Y }(P̃ ) = dL1

(P ).

Proposition 2 Let P (X) be a non zero polynomial with n variables, a total
degree D and let L be a subset of {X1, . . . , Xn}. There is an algorithm which
computes dL(P ) with probability greater than 2

3 in time polynomial in n and
D.

Proof We define the polynomial P̃ with n + 1 variables from P and L, as

explained previously. We write it

d∑
i=0

Y iQi(X) where d is the degree of P̃ seen

as a univariate polynomial over Q[X1, . . . , Xn]. Recall that d = dL(P ), thus
we want to compute the degree of P̃ .

Now choose randomly in [3D] a value xi for each Xi. The polynomial
P̃ (x1, . . . , xn, Y ) is a univariate polynomial, and the coefficient of Y d is Qd(x).
By Lemma 1, the probability that Qd(x) is zero is bounded by 1

3 since Qd is
a non zero polynomial.

By Theorem 1, the polynomial P̃ (x1, . . . , xn, Y ) can be interpolated from
its value on the integers 1, . . . , D with O(D2) arithmetic operations, because
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it is of degree less or equal to dL(P ) ≤ D. The value of P̃ (x1, . . . , xn, y) can
be computed from an oracle call to P , since it is equal to P (x′1, . . . , x

′
n) where

x′i = yxi if Xi ∈ L and xi otherwise. From the interpolated polynomial we
obtain its degree which is equal to dL(P ) with probability greater than 2

3 .

We now give a solution to the problem Monomial-Factor for terms of
the form XL in a multilinear polynomial as a corollary. In fact to obtain a
better complexity, we do not use directly Proposition 2, but rather the idea of
its proof.

Corollary 1 Let P (X) be a multilinear polynomial with n variables, a total
degree D and let L be a subset of {X1, . . . , Xn}. There is an algorithm which
solves the problem Monomial-Factor on the polynomial P and the term XL

with probability 1− ε. It does |L| log(ε) calls to the black box on points of size
log(|L|) and O(log(ε)|L|2) arithmetic operations.

Proof The polynomial P (X) can be written XLP1(X) + P2(X), where XL

does not divide P2(X). Since P is multilinear, one of its monomials is divided
by XL if and only if dL(P ) = |L|.

Let substitute in P the new variable Y to all Xi ∈ L. Remark that P1 does
not depend on variables in L, since XLP1 is multilinear. Therefore P1 is not
zero after the substitution if and only if it was not zero before substitution.

Now let substitute a random value in [2D] to each Xi /∈ L and interpolate
the obtained univariate polynomial. The bound on the total degree of the
polynomial is |L|, therefore we need |L| calls to the black box on points of size
log(|L|) and O(|L|2) arithmetic operations.

Finally to bring the probability of error from 1
2 down to ε the procedure is

repeated log(ε) times.

4.2 One large evaluation point

We prove here a proposition similar to Corollary 1. If needed, we could adapt
it to give an algorithm which decides the degree of a polynomial with regard
to a set.

Note that in this case we need an a priori bound on the coefficients of
the polynomial, but it is not so demanding since in most applications those
coefficients are bounded by a constant. We also assume that the coefficients
are in Z to simplify the proof.

Proposition 3 Let P (X) be a multilinear polynomial with n variables, a total
degree D and let L be a subset of {X1, . . . , Xn}. There is an algorithm which
solves the problem Monomial-Factor on the polynomial P and the term
XL with probability 1 − ε. It does one call to the black box on a point of size
O(n+D log(Dε )).
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Proof We write P = XLP1(X) + P2(X) where XL does not divide P2(X) and
we want to decide if P1(X) is the zero polynomial. Let C be a bound on the

size of the coefficients of P . We let α be the integer 22(C+n+D log( 2D
ε )). The

black box is called to compute P (x1, . . . , xn) where (xi)i∈[n] are defined as
follows: {

xi = α if Xi ∈ L
xi is randomly chosen in [ 2Dε ] otherwise

The value of a variable not in L is bounded by 2D
ε , therefore a monomial

of P2 (which contains at most |L| − 1 variables in L) has its contribution to
P (x1, . . . , xn) bounded by 2C( 2D

ε )Dα|L|−1. Since P2 has at most 2n monomials,

its total contribution is bounded in absolute value by 2n+C+D log( 2D
ε )α|L|−1

which is equal to α|L|−
1
2 . If P1(x1, . . . , xn) is zero, this also bounds the absolute

value of P (x1, . . . , xn).
Assume now that P1(x1, . . . , xn) is not zero, it is at least 1 since it is defined

on Z and evaluated on integers. Moreover xL is equal to α|L|, thus the absolute
value of xLP1(x1, . . . , xn) has α|L| for lower bound. By the triangle inequality

|P (x1, . . . , xn)| >
∣∣|xLP1(x1, . . . , xn)| − |P2(x1, . . . , xn)|

∣∣
|P (x1, . . . , xn)| > α|L| − α|L|− 1

2 > α|L|−
1
2

We can then decide if P1(x1, . . . , xn) is zero by comparison of P (x1, . . . , xn)

to α|L|−
1
2 . Remark that P1(x1, . . . , xn) may be zero even if P1 is not zero.

Nonetheless P1 only depends on variables which are not in L and are thus
randomly taken in [ 2Dε ]. By Lemma 1, the probability that the polynomial P1

is not zero although P1(x1, . . . , xn) has value zero is bounded by ε.

4.3 The algorithm

Let P be a multilinear polynomial with n variables and a total degree D. Let
L1 and L2 be two disjoint sets of variables, we want to determine if there is a
monomial of P , whose support contains L2 and is contained in L1 ∪ L2.

Let us consider the polynomial PL1∪L2 , its monomials are the monomials
of P such that their supports are included in L1 ∪ L2. Obviously P has a
monomial whose support contains L2 and is contained in L1 ∪ L2 if and only
if (PL1∪L2

,XL2) ∈ Monomial-Factor. Let us call linear factor(L1, L2, P, ε)
the algorithm given by Corollary 1, which solves this question in polynomial
time with probability 1− ε.

We now describe a binary tree such that there is a bijection between the
leaves of the tree and the monomials of P . The nodes of this tree are pairs
of sets (L1, L2) such that there exists a monomial of support L in P with
L2 ⊆ L ⊆ L1∪L2. Consider a node labeled by (L1, L2), we note i the smallest
element of L1, it has for left child (L1 \ {Xi}, L2) and for right child (L1 \
{Xi}, L2∪{Xi}) if they exist. The root of this tree is ({X1, . . . , Xn}, ∅) and the



16 Yann Strozecki

({X1, X2, X3}, ∅)

({X2, X3}, ∅) ({X2, X3}, {X1})

0 0

5X2 X1X3−X2X3 2X1

({X3}, ∅) ({X3}, {X1, X2})

5X2 −X2X3 X1 +X1X3

Fig. 1 The tree for P = 5X3 −X2X3 + 2X1 +X1X3

leaves are of the form (∅, L2). A leaf (∅, L2) is in bijection with the monomial
of support L2.

To enumerate the monomials of P , Algorithm 4 does a depth first search in
this tree using linear factor. When it visits a leaf, it outputs the correspond-
ing monomial thanks to the procedure coefficient(P , L) that we now describe.
Assume we have found L the support of a monomial of P , we want to find
its coefficient. The same procedure as in Corollary 1 is followed (substitution,
interpolation) and the coefficient of the monomial of the highest degree is
outputed. Indeed, after the substitution of Corollary 1, the obtained univari-
ate polynomial P̃L has a monomial of degree |L| which is the image of the
monomial of support L in P and has thus the same coefficient.

Theorem 5 Let P be a multilinear black box polynomial with n variables, t
monomials and a total degree D. Algorithm 4 computes the set of monomials
of P with probability 1− ε. The delay between the ith and i+ 1th monomials is
bounded by O(D2n(n+ log(ε−1))) in time and by O(nD(n+ log(ε−1))) oracle
calls. The whole algorithm performs O(tnD(n + log(ε−1))) calls to the oracle
on points of size O(log(D)).

Proof Between the visit of two leaves, the subroutine linear factor is called at
most n times. The procedure coefficient is called only once and has the same
complexity than linear factor thus we neglect it. By Corollary 1, one call to
linear factor on a term of support of size at most D with an error parameter
ε
n2n has a O(D2(n+ log(ε−1))) time complexity and does O(D(n+ log(ε−1)))
calls to the oracle on points of size log(D).

Since we call the procedures linear factor and coefficient less than nt times
during the whole algorithm, the error is bounded by nt ε

n2n ≤ ε.
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Algorithm 4: A depth first search of the support of monomials of P
(recursive description)

Data: A multilinear polynomial P with n variables and the error bound ε
Result: All monomials of P
begin

Monomial(L1, L2, i) =
if i = n+ 1 then

Output(coefficient(P,L2),L2)
else

if linear factor(L1 \ {Xi}, L2, P,
ε

2nn
) then

monomial(L1 \ {Xi}, L2, i+ 1)

if linear factor(L1 \ {Xi}, L2 ∪ {Xi}, P, ε
2nn

) then
monomial(L1 \ {Xi}, L2 ∪ {Xi}, i+ 1)

in monomial({X1, . . . , Xn},∅, 1)

Recall that linear factor and coefficient can be implemented thanks to
Proposition 3 when a bound on the size of the coefficients of the polynomial
is known. The number of calls in the algorithm is then less than tn which is
close to the optimal 2t. We have a trade-off: we can either do several calls to
the black box on small points or one on a large point. There are potentially
more efficient ways to implement linear factor when the polynomial is given
by a circuit, see Section 8.

Remark 1 Algorithm 4 has two features which makes it appropriate for real
implementation. First it uses a space quadratic in the number of variables (and
linear when the field is of fixed size), while the other algorithms we present need
a space linear in the output. Second it happens to be paralellizable. Indeed, it is
easy to distribute the computation to different RAM machines while doing the
traversal of the tree. It is a noteworthy feature in enumeration algorithms, since
their total running time is potentially exponential and can thus be distributed
to as many RAM machines.

Remark 2 A polynomial is said to be monotone when its coefficients are ei-
ther all positive or all negative. One can solve PIT without randomness for
these polynomials: one oracle call on strictly positive points returns a non zero
result if and only if the polynomial is not identically zero. Algorithms 3 and
4 may then be modified to work deterministically for monotone polynomials.
The term (n + log(ε−1)) in the time complexity and number of calls of both
algorithms disappears, since there are no more repetitions of the procedures
not zero or linear factor to exponentially decrease the error. Derandomiza-
tion of the polynomial delay algorithm on classes of polynomials represented
by circuits can be obtained, see Section 8.
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5 Interpolating polynomials of small degree

In this section is presented yet another algorithm which produces one mono-
mial of a polynomial. It runs on any polynomial and performs O(nDd) calls
to the oracle. Since its dependency in the degree is exponential it is useful
to interpolate a family of polynomials of fixed degree only. Nonetheless, over
polynomials of degree d < 10, the algorithm performs less than O(n6D4) calls
which is the number needed by the method of Klivans and Spielman outlined
in Section 3. The algorithm is based on a generalization of the ideas used to
design linear factor and Algorithm 3.

Proposition 4 Let P be a polynomial with n variables of degree d and of total
degree D. There is an algorithm, which returns a set L of cardinal l, maximal
such that (XL)d divides a monomial of P with probability greater than 1 − ε.
It uses ldn log(nε−1) calls to the oracle on points of size less than log(D).

Proof By the method of Corollary 1, we can solve Monomial-Factor for
the polynomial P and the term (XL)d: We substitute to all variables in L a
new variable Y and to the other variables random values in [2D]. To solve
the problem, we test wether the degree of the obtained univariate polynomial
is ld. The interpolation procedure calls the black box on integers in [ld] and
[2D], that is of size O(log(D)) since ld ≤ D. To bring the probability of error
down to ε, we repeat the preceding steps log(ε−1) times and return the degree
computed in most of the runs. We call the procedure solving this problem
exist monomial(P ,L,ε).

Algorithm 5: The procedure max monomial(P, ε)

Data: A polynomial P with n variables, degree d and the error bound ε
Result: A list of variables L
begin

L←− ∅
for i = 1 to n do

if exist monomial(P ,L ∪ {Xi}, ε
n+1

) then
L←− L ∪ {Xi}

return L

Algorithm 5 finds a set L maximal for the property that (XL)d divides a
monomial of P . It works in the same way Algorithm 2 does. In total, it does
ldn log(nε−1) calls to the oracle and the randomly chosen points are of size
log(D).

One run of max monomial returns the set L such that P = (XL)dP1 + P2

and (XL)d does not divide any monomial of P2. Since P is of degree d and that
L is maximal for the property that (XL)d divides a monomial of P , P1 is of
degree d−1 at most. We give a way to evaluate P1 in the following proposition.
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We can then apply max monomial recursively and eventually find a monomial
of P .

Proposition 5 Let P be a polynomial with n variables of degree d. Assume
that P = (XL)dP1 + P2 where P1 is not zero and P2 is of degree less than d.
There is an algorithm, denoted by restriction(P,L), which acts as a black box
computing P1. To do one evaluation of P1 on points of size less than s, it does
ld calls to P on points of size less than max(s, log(ld)).

Proof W.l.o.g. say that L is the set [l], the polynomial P1 depends only on the
variables Xl+1, . . . , Xn. We have to compute P1(xl+1, . . . , xn). Let H(Y ) be
the polynomial P where Y is substituted to Xi if i ∈ [l], otherwise Xi = xi. We
have H(Y ) = Y ldP1(x) + P2(x, Y ) where P2(x, Y ) is a univariate polynomial
of degree less than ld. The coefficient of Y ld in H(Y ) is equal to the evaluation
of P1 on the desired values. To compute it, one has only to interpolate H(Y ),
with ld calls to the oracle on points of size bounded by log(ld) and s.

Algorithm 6: A recursive algorithm finding one monomial of P
Data: A polynomial P with n variables, a degree d and the error bound ε
Result: A monomial of P
begin

Monomial(Q, i) =
if i = 0 then

Return(Q(0))
else

L← max monomial(Q, ε
n

) ;

Return L;
Monomial(restriction(Q,L), i− 1) ;

in Monomial(P, d) ;

Theorem 6 Let P be a polynomial with n variables of degree d and of total
degree D. Algorithm 6 returns the sets Ld, . . . , L1 and the integer λ such that

λ

d∏
i=1

(XLi)i is a monomial of P , with probability 1 − ε. It performs O(nDd)

calls to the oracle on points of size log(n
2D
ε ).

Proof Let Qd, Qd−1 . . . , Q1 be the sequence of polynomials on which the pro-
cedure Monomial of Algorithm 6 is recursively called. We denote by li the size
of Li and by ni the number of variables of Qi for all i ≤ d. Since Proposition
4 proves that Li is maximal, Qi is of degree one less than Qi+1. By a simple
induction, we have that Qi is of degree i. The correction of the algorithm de-
rives from the construction of procedures max monomial and restriction given
in Propositions 4 and 5.

We now bound the number of oracle calls this algorithm performs. One
evaluation of Qi done through the procedure restriction requires O((i+1)li+1)



20 Yann Strozecki

calls to Qi+1 by Proposition 5. By induction we have that one evaluation of

Qi requires

d∏
j=i+1

jlj calls to P . The points on which the oracle is called are of

size less than log(D) for all i.
In Algorithm 6, the procedure max monomial computes Li in inili log(n2ε−1)

calls toQi. By the previous remark, these calls toQi are in fact ni log(n2ε−1)

d∏
j=i

jlj

calls to P .

It holds that

d∑
j=i

jlj ≤ D because the term

d∏
j=i

(XLj )j divides a monomial

of P and thus its total degree is less than the total degree of P . Therefore
d∏
j=i

jlj ≤ Dd−i+1. Since n ≤ ni, the number of calls to P when executing

max monomial on Qi is bounded by n log(n2ε−1)Dd−i+1.
The total number of calls to P in the algorithm is the sum of calls done

by max monomial on each polynomial Qi for 1 ≤ i ≤ d. Hence it is bounded

by

d∑
i=1

n log(n2ε−1)Dd−i+1 = O(nDd log(n2ε−1)).

Remark 3 The complexity of Algorithm 6 depends on the number of degrees
at which the variables of the polynomial appear rather than on the degree
itself. It means that, if we want to find a monomial of a polynomial whose
variables are either at the power one or forty-two, the previous algorithm does
O(nD2) calls and not O(nD42).

Algorithm 6 produces a monomial of a polynomial of any degree with
an arbitrary small probability of error. It can thus be used to implement
find monomial in Algorithm 3, which yields an incremental delay interpolation
algorithm for fixed d.

6 Complexity Classes for Randomized Enumeration

In this section the results about interpolation in the black box formalism are
transposed into complexity results on more classical combinatorial problems.
Let first define how we represent efficiently an enumeration problem by a
family of polynomial.

Definition 7 (Polynomial representation) Let A(x, y) be a polynomially
balanced predicate decidable in polynomial time. The family of polynomial
(Px)x∈Σ∗ represents the problem Enum·A if:

– There is a bivariate polynomial time function f such that for all x ∈ Σ∗,
f(x, .) is a bijection between the monomials of Px and the set of solutions
{y | A(x, y)}.
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– There is an algorithm which computes Px(v) on any values v in a time
polynomial in the size of v and x.

This definition is tailored so that any interpolation algorithms for the
family (Px)x∈Σ∗ gives an algorithm of the same complexity for the problem
Enum·A.

Example 2 Let Enum·Cycle-cover be the problem of listing the cycle covers
of a graph. To each graph G is associated a polynomial PG: the determinant
of its adjacency matrix. The monomials of PG are in bijection with the cycle
covers of G. Moreover the determinant of a matrix can be evaluated in a poly-
nomial time in the matrix, therefore the family (PG) represents the problem
Enum·Cycle-cover.

We recall a few complexity classes for enumeration and introduce their
probabilistic counterparts. We show that different enumeration algorithms en-
able us to prove that several problems are in these classes through the poly-
nomial representation we have just defined.

There are three main enumeration complexity classes (for further details
on their properties and relationships, see Chapter 2 of [41]):

1. the problems that can be solved in polynomial total time, TotalP
2. the problems that can be solved with incremental delay, IncP
3. the problems that can be solved with polynomial delay, DelayP

We now give the probabilistic version of TotalP.

Definition 8 A problem Enum·A is computable in probabilistic polynomial
total time, written TotalBPP, if there is a polynomial Q(x, y) and a machine
M which solves Enum·A with probability greater than 2

3 and satisfies for all
x, T (x, |M(x)|) < Q(|x|, |M(x)|).

The class TotalBPP is very similar to the class BPP for decision prob-
lems. For both classes, the choice of 2

3 is arbitrary, everything larger than 1
2

would do. Indeed, one can increase the probability of success exponentially
in a polynomial time as soon as it is strictly larger than 1

2 . To achieve this,
repeat a polynomial number of times the algorithm working in total polyno-
mial time and return the set of solutions generated in the majority of runs.
To prove that the probability of success has increased properly, one has to use
Chernoff’s bound, which is stated and proved in [5]. Note that this method
requires a space proportional to the number of solutions.

A refinement [25] of Zippel’s algorithm [49] solves Enum·Poly in a time
polynomial in the number of monomials. The polynomial PG of Example 2 can
be interpolated by this algorithm. Each produced monomials is then translated
into a cycle cover ofG and outputted. This proves that Enum·Cycle-cover ∈
TotalBPP. We now explain how the interpolation algorithms we have pre-
sented in this article help improve this result.
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Definition 9 A problem Enum·A is computable in probabilistic incremental
time, written IncBPP, if there is a polynomial Q(x, y) and a machine M
which solves Enum·A with probability greater than 2

3 and satisfies for all x,
T (x, i+ 1)− T (x, i) ≤ Q(|x|, i).

Again, it is possible to improve the error bound in the definition if we are
willing to use a lot of space. However, the proof is more technical than in the
TotalBPP case.

Proposition 6 (Proposition 3.17 of [41]) If Enum·A is in IncBPP then
there is a polynomial Q and a machine M which for all ε computes the solutions
of Enum·A with probability 1− ε and satisfies for all x, T (x, i+ 1)−T (x, i) ≤
Q(|x|, i) log(ε−1).

The class IncBPP may be related to the following search problem:

AnotherSolutionA
Input: an instance x of A and a subset S of A(x)
Output: an element of A(x) \ S and a special value if A(x) = S

Proposition 7 (Proposition 3.19 of [41]) There is an algorithm which com-
putes with probability 2

3 a solution of AnotherSolutionA in polynomial time
if and only if Enum·A ∈ IncBPP.

The last proposition roughly states that if there is an algorithm which pro-
duces one solution of a problem, then there is an incremental delay algorithm
which solves the enumeration problem. It is exactly the method we use in
Section 3 to obtain incremental delay interpolation algorithms.

Example 3 We want to solve the problem Enum·Perfect-Matching, that is
to enumerate the perfect matchings of a graph. To a graph G, we associate the
polynomial PerfMatch(G), whose monomials represent the perfect matchings
of G. We write C the set of perfect matching of G.

PerfMatch(G) =
∑
C∈C

∏
(i,j)∈C

Xi,j

For graphs with a “Pfaffian” orientation, such as the planar graphs, this poly-
nomial is related to a Pfaffian and can be evaluated in polynomial time. Thus
(PerfMatch(G)) is a representation of Enum·Perfect-Matching restricted
to the planar graphs. We can use Algorithm 3 to interpolate any polynomial
of (PerfMatch(G)) therefore Enum·Perfect-Matching ∈ IncBPP. More-
over all the coefficients of PerfMatch(G) are positive therefore the interpola-
tion algorithm is deterministic and Enum·Perfect-Matching ∈ IncP. Note
though that there already exists a very efficient algorithm to list all perfect
matchings [44].

Our two previous examples of enumeration problems are represented by
multilinear polynomials and are thus in the following class, thanks to Algo-
rithm 4.
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Definition 10 A problem Enum·A is computable in probabilistic polynomial
delay DelayBPP if there is a polynomial Q(x, y) and a machine M which
solves Enum·A with probability greater than 2

3 and satisfies for all x, T (x, i+
1)− T (x, i) ≤ Q(|x|).

Example 4 We consider the problem Enum·Spanning-Tree, that is to enu-
merate all spanning trees of a graph. Let G be a graph, the Kirchhoff matrix

K(G) is defined by: for i 6= j, K(G)i,j = −Xi,j and K(G)i,i =
∑

(i,j)∈E(G)

Xi,j .

The Matrix-Tree theorem (see [22]) is the following equality where T is the
set of spanning trees of G:

det(K(G)) =
∑
T∈T

∏
(i,j)∈T

Xi,j

The family (det(K(G))) represents the problem Enum·Spanning-Tree. More-
over for all G, det(K(G)) is multilinear and monotone therefore using Algo-
rithm 4 we have Enum·Spanning-Tree ∈ DelayP.

Example 5 Let A be a probabilistic automaton with n states. For each word
w = σ1σ2 . . . σk we denote by A(w) its probability to be accepted. Associate
with A the polynomial

PA(x) =
∑

k=0...n

∑
w∈Σk

A(w)xσ1,1xσ2,2 . . . xσk,k

to the probabilistic automaton. This polynomial is multilinear, monotone and
can be computed in polynomial time in n a proved in [28].

We want to enumerate the worlds of A along with their probabilities (but
not the words of probability zero), a problem we denote by Enum·Automaton.
Since (PA) represents Enum·Automaton, we have Enum·Automaton ∈
DelayP. In [28], the problem of deciding whether two automata A and B
have the same language is solved by testing if PA−PB . Remark that PA−PB
is not monotone but still multilinear. Therefore the problem of enumerating
all the words of a given size in the symmetric difference of the languages of A
and B is in DelayBPP.

7 A few improvements to interpolation algorithms and an
application

In this section we give several methods to improve the complexity of the algo-
rithms of this article. We denote here by ω the matrix multiplication exponent,
that is the smallest number such that there is an algorithm to multiply two n
by n matrices in time O(nω). The bound on ω has been recently improved to
w < 2, 3727 [10,47].



24 Yann Strozecki

7.1 Finite fields

We first show that the algorithms we have presented works over small finite
fields. We then explain how it can help to speed-up interpolation of polynomials
with coefficients in Z.

Let P be a polynomial of total degree D with coefficient in F a finite field
of cardinality larger than 2D. Algorithm 3 uses evaluation points in [2D] to
interpolate polynomials of total degree D. Since it relies on the Schwarz-Zippel
lemma which holds over a finite field, it works without modification to inter-
polate P . Algorithm 4 in addition to Schwarz-Zippel lemma relies on a dense
interpolation of a univariate polynomial to compute a partial degree. Since
the univariate polynomial is of degree less than D, it is uniquely defined by its
monomials over F and the subroutine to compute the partial degree return a
correct answer. Therefore Algorithm 4 also works over fields with 2D elements
or more. This behavior is good in comparison with other classical algorithms,
for instance the one of [49], which needs exponentially larger evaluation points
and thus cannot be adapted to small finite fields.

If we want to minimize the bit cost of our interpolation algorithms, we have
to use integers as small as possible. Another option is to do the computation on
a finite field of small size. Moreover, if we replace a black box call by an actual
computation, like in Section 6, it may be more efficient to do this computation
over a finite field. For instance, the computation of a determinant can be done
in O(nω) arithmetic operations [10], which have a time complexity of O(log(p))
over Fp.

Assume now that we want to interpolate a polynomial P with small integer
coefficients, less than its total degree D. Remark that it is the case in most
examples given in Section 6: the polynomials have coefficients 1 or −1. There
is a prime p between D and 2D. Let us consider P modulo p, it has the same
monomials as P . All computations are then done in the finite field Fp. It is
especially useful to speed up the computation of substract in Algorithms 3 and
6. Indeed, one needs to evaluate a polynomial given explicitly, and arithmetic
operations are computed faster in a small finite field. In particular the result
of the evaluation of a monomial in Fp is always of size O(log(D)), while its
value in Z is of size O(D log(D)).

Finally, assume that P is a polynomial with large coefficients. For complex-
ity reason, one may want to evaluate P only modulo some small number. It is
possible to adapt Algorithms 3 and 4: at each of their step choose a random
prime p > D and do all computations modulo p. With high probability, the
algorithms will work in the same way. The only problem is, once a support L
is found so that PL is a monomial, to compute the coefficient of PL. We can
compute the coefficient, that is PL(1, . . . , 1), modulo several primes. Thanks
to the Chinese remainder theorem, we derive from these values the value over
Z of the coefficient.



On enumerating monomials 25

7.2 A method to decrease the degree

We have seen that the complexity of Algorithm 6 is highly dependent on the
degree of the interpolated polynomial. We propose here a simple technique
to decrease the degree of the polynomial by one, which makes Algorithm 6
competitive for degree 10 polynomials.

Let P be a polynomial of degree d. A procedure similar to the one of
Algorithm 2 is run on P . It finds, with probability 1− ε, a minimal set L such
that PL is not zero, with n log(ε−1) calls to the oracle. In this case, it does not
give a monomial but we can write PL(X) = XLQ(X) and Q is of degree d−1.

We may simulate an oracle call to Q(X) by a call to the oracle giving PL
and a division by the value of XL as long as no Xi is chosen to be 0. Moreover
the monomials of Q are in bijection with those of PL by multiplication by XL.
Therefore to find a monomial of P we only have to find a monomial of Q.

Algorithm 6 does not evaluate the polynomial to 0, hence we can run it on
Q, that we simulate with a low overhead in time, and one call to P for each
evaluation. Since the polynomial Q have degree d− 1, the computation of one
of its monomials requires only nDd−1 calls to the oracle plus the n calls used
to find L.

7.3 Adaptive error bound

In all interpolation algorithms the subroutines are called with an error bound
exponentially small in the number of variables. However, we only need to
set the error bound to be in O( 1

t ), where t is the number of monomials. It is
better when the polynomial is sparse, but t is usually hard to compute. We now
explain how to reduce the error bound without knowing t in Algorithm 3. Note
that the exact same technique works for the other interpolation algorithms.

We add a variable i to count the number of calls to find monomial in
Algorithm 3. The idea is to decrease the error bound at each new mono-
mial, quickly enough so that the probability of error of the whole algorithm
is still small. We replace the call to find monomial(subtract(P ,Q), ε

2n+1 ) by
find monomial(subtract(P ,Q), ε

2i2 ).
There are t calls to find monomial, therefore the error bound of the whole

algorithm is bounded by
∑t
i=1

ε
2i2 . Since

∑∞
i=0

1
i2 = π2

6 < 2, the total prob-
ability of error is less than ε. In the end, the modified algorithm still have a
probability 1− ε to correctly interpolate the polynomial.

The first advantage is obviously that the factor n + log(ε−1) in the delay,
the total time and the number of calls to the oracle of Algorithm 3 becomes
log(t) + log(ε−1). It is an improvement when log(t) is in o(n).

Moreover it could help broaden the class of polynomials which are inter-
polable with an incremental delay. To do that, another implementation of the
procedure find monomial(P, ε) is required. If we use this new way to set the
error bound in Algorithm 3, the complexity of find monomial has only to be
polynomial in ε−1 rather than in log(ε−1).
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7.4 Application: listing the spanning hypertrees

In Section 6, we have seen how to enumerate the spanning trees of a graph
thanks to their representation by a determinant. The generalization of a span-
ning tree in a hypergraph is a connected acyclic subhypergraph or hypertree.
The most well-known notions of acyclicity are Berge, γ, β and α-acyclicity. Let
denote by Spanning Hypertree the problem of deciding whether there is
a spanning hypertree in a hypergraph and by Enum·Spanning Hypertree
the corresponding enumeration problem.

For the three notions γ, β and α-acyclicity and 3-uniform hypergraphs,
Spanning Hypertree is NP-complete [15]. On the other hand, Spanning
Hypertree is NP-complete for Berge-acyclicity and 4-uniform hypergraphs
but not when restricted to 3-uniform hypergraphs. Indeed, one can adapt
Lovász matching algorithm in linear polymatroids [31] to solve Spanning
Hypertree for 3-uniform hypergraphs. This algorithm is very complicated
and not designed for this particular case hence it seems hard to extend it into
an efficient enumeration algorithm of the spanning hypertrees. However it is
easy to give a randomized enumeration algorithm by using Algorithm 4.

To this aim, we must first give a representation of Enum·Spanning Hypertree
by a family of polynomials. Let H be a 3-uniform hypergraph, we denote by
T (H) the set of its spanning hypertrees. We now define a polynomial ZH , such
that its monomials are in bijection with the spanning hypertrees of H.

Definition 11
ZH =

∑
T∈T (H)

ε(T )
∏

e∈E(T )

we

where ε(T ) ∈ {−1, 1}.

The function ε(T ) has a precise definition, see [34], but it is not needed
here. This polynomial has exactly one variable we for each hyperedge e of H.

Definition 12 Let H be a 3-uniform hypergraph, Λ(H) is the Laplacian ma-

trix defined by Λ(H)i,j =
∑
i 6=k,j

εijkw{i,j,k}.

εi,j,k is 0 when {ijk} /∈ E(H), otherwise εijk ∈ {−1, 1}.

The coefficient εijk is equal to 1 when i < j < k or any other cyclic per-
mutation and is equal to −1 when i < k < j or any other cyclic permutation.
Thus εijk is computable in polynomial time in the size of i, j and k. We may
relate to ZH , the Pfaffian of the Laplacian matrix which is of interest since it
is computable in polynomial time. The following theorem is a generalization
of the Matrix-Tree theorem for graphs.

Theorem 7 (Pfaffian-Hypertree (cf. [34])) Let Λ(i) be the minor of Λ(G)
where the column and the line of index i have been removed.

ZH = (−1)i−1Pf(Λ(i))
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For H a hypergraph with n vertices and m hyperedges, ZH is a multilinear
polynomial with m variables, and the size of its coefficients is one. Moreover, it
is of total degree n−1

2 because a spanning hypertree of a 3-uniform hypergraph
has n−1

2 hyperedges. Finally by Theorem 7, ZH is computable in polynomial
time, therefore ZH represents the problem Enum·Spanning Hypertree.

Proposition 8 The problem Enum·Spanning Hypertree for 3-uniform hy-
pergraphs is in DelayBPP. More precisely, there is an algorithm solving the
problem with delay O(mn1+ω(n log(n) + log(ε−1))) (in bit complexity) where
m is the number of hyperedges, n is the number of vertices and ε is a bound
on the probability of error.

Proof The fact that Enum·Spanning Hypertree for 3-uniform hypergraphs
is in DelayBPP is clear since it is represented by a multilinear polynomial
family.

Let now compute precisely the delay. Let H be a hypergraph with n ver-
tices, the degree of ZH is n−1

2 (or 0). Let p be a prime number between n−1
2

and n. We now compute ZH over Fp as explained in a previous section.
To solve Enum·Spanning Hypertree on the instance H, Algorithm 4 is

run on the polynomial ZH . We first evaluate the time taken by the the calls
to the oracle, here the computation of the polynomial ZH . The first step to
compute ZH is to build the (n−1)∗(n−1) matrix Λ(i) and it is negligible with
regard to the time to compute its Pfaffian. The evaluation of a Pfaffian can
be reduced to the evaluation of a Determinant which itself requires as many
arithmetic operations as a matrix product. Since an arithmetic operation over
the field Fp has a complexity O(log(n)), the evaluation of ZH on any points
of Fp has a complexity (nω)1+o(1).

By Theorem 5 there are O(mn(m + log(ε−1))) oracle calls between two
solutions. By using an adaptive error bound as explained in Section 7, we can
decrease it to O(mn(log(t) + log(ε−1))) where t is the number of spanning
hypertrees, which is bounded by nn. In conclusion, the contribution to the
delay of the evaluations of ZH is a O((mnω+1(n+ log(ε−1)))1+o(1)).

One must take into account the cost of the univariate interpolation that the
procedure not zero improved realizes. Since ZH is defined over a finite field,
the size of the evaluations of the polynomial are O(log(n)). Furthermore, its
total degree is n−1

2 , hence the time to do the interpolation is O(n2 log(n)). The
contribution to the delay is negligible, since for one interpolation, there are n
evaluations of ZH , each of them taking more time than the interpolation.

Since the size of a 3-uniform hypergraph is typically m = Θ(n3), the de-
lay is quite good, less than cubic. As one of the anonymous reviewer pointed
out, this algorithm could be derandomized if we can decide in determinis-
tic polynomial time whether a hypergraph has a spanning hypertree, with
some edges forbidden and some others forced. Note that we can forbid an
edge by removing it from the hypergraph. However, contracting an edge is
not equivalent to forcing it to be in any hypertree. For instance the hyper-
graph {{v1, v2, v3}, {v1, v2, v4}} has no spanning hypertree, but when the edge
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{v1, v2, v3} is contracted into a vertex, the resulting hypergraph is a single
edge and thus a hypertree.

8 Polynomials represented by circuits

In this last section, we consider a polynomial represented by an arithmetic
circuit instead of a black box. An arithmetic circuit is a directed acyclic graph,
whose nodes of indegree zero are called input gates and are labeled by either a
variable or an integer. All the other nodes are of indegree two or more and are
labeled by either + or ×. There is one node of outdegree zero which is called
the output gate. The arithmetic circuit defines a polynomial by computing the
value of each node using the appropriate operator and the value of its ancestors.
An arithmetic formula is a circuit whose underlying graph is a directed tree.
The depth of a circuit is the length of its longest directed path.

The representation of a polynomial by a circuit is more explicit than by
a black box. That is why some problems are easier to solve in this setting.
For instance there is an interpolation algorithm which is polynomial in the
number of monomials and in the logarithm of the degree of the polynomial
[19]. Moreover PIT can be solved by deterministic polynomial time algorithms
for several classes of circuits of small depth. In this section, we transfer a
derandomization result to enumeration. We also prove that some problems
related to interpolation are NP-hard or #P-hard over formulas of small depth.

8.1 Derandomization

We give here a solution to the problem Monomial-Factor in a different
model. We say that a circuit is multilinear when each of its gates compute a
multilinear polynomial. We want to solve Monomial-Factor with input a
multilinear circuit C and a set of variable S representing the term XS . Thanks
to a transformation of C into its homogeneous components with regard to S,
we obtain an arithmetic circuit which represents a polynomial different from
zero if and only if the answer to Monomial-Factor is positive.

Proposition 9 Let C be an arithmetic circuit of size c, let P be the polynomial
it computes and S a set of variables of cardinal s. There is a polynomial
time algorithm which produces another circuit C ′ which computes the zero
polynomial if and only if (P, S) ∈ Monomial-Factor. Moreover if C is a
multilinear circuit of depth l and of top fan-in k, C ′′ is a multilinear circuit
of depth at most l and of top fan-in at most k.

Proof Let consider that every variable X in S is replaced in the circuit C by
XY where Y is a new variable. The degree of Y is at most s in the computed
polynomial, that we call Q. By a classical construction, see for instance Lemma
2.14 of [9], we can build a new circuit of size O(s2c) which computes each
homogeneous component in Y of Q. Let C ′ be this circuit where the output
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node is the one computing the homogeneous component of degree s of Q and
where Y is replaced by 1.

Remark now that C ′ does not compute the zero polynomial if and only
if Q is of degree s in Y or said otherwise if the partial degree of P in S is
s. Therefore, to decide whether (P, S) ∈Monomial-Factor is equivalent to
solve the problem PIT on the circuit C ′.

The claims on depth, fanin and multinearity are clear from a careful ex-
amination of the homogenization procedure. Each gate of the circuit is turned
into |S| + 1 gates, which compute the homogeneous components of degree 0
to |S|. The main problem is that multiplication gates are replaced by a sum
of multiplication gates. When inside the circuit, the new addition gate can be
merged with an addition gate of the next layer. But a multiplication gate in
the last or the next to last layer increases either the depth of 1 or the arity of
the top gate. However, since we want to compute only the homogeneous com-
ponent of degree |S|, we can remove most of the added gates and we obtain a
circuit of the same depth and top arity.

If we want to solve Monomial-Factor with the best possible complexity,
it is possible not to build explicitly C ′ but to evaluate its value on inputs
directly from the circuit C. A very efficient parallel algorithm for this kind of
problem can be found in [6].

We recall that if the interpolated polynomials are monotone then both Al-
gorithms 3 and 4 can be made deterministic. We want here to derandomize
our interpolation algorithms for classes of polynomials represented by circuits.
First remark that if we are able to solve Enum·Poly in deterministic poly-
nomial total time over a class of polynomials, then we can also solve PIT
in deterministic polynomial time. Therefore we cannot hope to derandomize
algorithms for Enum·Poly on larger classes of polynomials than for PIT.

The good news is that Algorithms 3 and 4 can be made deterministic on
any class of circuits on which there is a deterministic algorithm for PIT. In
Algorithm 3, the only randomized step is the call to the procedure not zero
which solves PIT on a restriction of the polynomial we want to interpolate.
Therefore a deterministic solution for PIT makes Algorithm 3 deterministic.

The source of randomness in Algorithm 4 is the call to the randomized sub-
routine Monomial-Factor. Since Proposition 9 reduces the problem Monomial-
Factor on a multilinear polynomial given by a circuit to the problem PIT
on a circuit of the same kind, we can also derandomize Algorithm 4.

The largest class of multilinear polynomials for which PIT is known to be
in P is given in the following theorem, which is also implied by some recent
results on algebraically independent polynomials [2].

Theorem 8 (In [38]) Let k, n, s be integers. There is an explicit set of inte-
gers H of size polynomial in n, s and exponential in k that can be constructed
in a time linear in its size such that the following holds. Let P be a non-zero
polynomial on n variables computed by a multilinear circuit of size s, depth 4
and top fanin k. Then there is some α ∈ H such that P (α) = 0.
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Corollary 2 The problem Enum·Poly restricted to polynomials represented
by multilinear circuits of depth 4 and bounded top fanin is in DelayP.

Theorem 8 gives a black box algorithm for PIT: it only requires to be able
to evaluate the polynomial and does not need its representation by a circuit.
But the algorithm used to solve the problem Monomial-Factor need the
circuit itself for the homogenization. However our algorithm can be made black
box thanks to the following proposition inspired by Proposition 2.

Proposition 10 Let P be a polynomial given by a black box and D its total
degree. Let k ≤ D, it is possible to simulate a black box for Pk the homogeneous
component of P of degree k with D calls to P .

Proof Let x be the point on which we want to compute Pk. The polynomial
P̃ is obtained by substituting formally to each variable Xi of P the product
XiXn+1. The univariate polynomial P̃ (x, Xn+1) is interpolated with D calls
to the oracle. The coefficient of the term Xk

n+1 is Pk(x) the value we had to
compute.

Remark that the structural homogenization method is still needed to prove
that, when P is representable by a circuit of low depth, Pk is representable by
a circuit of the same depth. This method does not prove that a polynomial
represented by a formula of unbounded depth has its homogeneous components
representable by formulas of size polynomial in the original one. By a different
technique involving univariate interpolation, this result holds (see the proof
of Theorem 2 in [24]). But this cannot be used to deal with bounded-read
formulas since this property is not preserved by the homogenization. Though,
we can work on the formula itself to solve in deterministic polynomial time,
using the deterministic algorithm for PIT [4] as in [32]. In conclusion, we can
derandomize Algorithm 4 on any class of multilinear bounded-read formulas.

8.2 Hard problems for low degree low depth polynomials

We describe four (families of) polynomials, representable by formulas or cir-
cuits. Their sizes and the degree of the polynomials computed at each of their
nodes are polynomial in the number of their variables therefore the repre-
sented polynomials can be evaluated in polynomial time. We prove that we
can encode hard combinatorial questions in these polynomials such as the
Monomial Factor problem or one of the two following problems:

Non-Zero-Monomial
Input: a polynomial given as a circuit and a term Xe

Output: accept if Xe has a coefficient different from zero in the polynomial

Monomial-Coefficient
Input: a polynomial given as a circuit and a term Xe

Output: return the coefficient of Xe in the polynomial

We now explain how these three problems are related.
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Proposition 11 If the problem Monomial-Factor can be solved in prob-
abilistic polynomial time (in the number of variables and the total degree of
the polynomial) for a class of polynomials, then Non-Zero-Monomial can
be solved in probabilistic polynomial time for the same class.

Proof Let P be a polynomial of total degree D with n variables and Xe a
term. Let k be the total degree of Xe, we denote by Pk the sum of monomials
of P of total degree k. Let us remark that (P,Xe) ∈ Non-Zero-Monomial
if and only if (Pk,X

e) ∈Monomial-Factor.
By Proposition 10 it is possible to evaluate Pk in polynomial time since

P itself can be evaluated in polynomial time. Therefore we can test whether
(Pk,X

e) ∈Monomial-Factor in polynomial time.

The converse of the proposition does not seems to hold, that is Monomial-
Factor may be harder than Non-Zero-Monomial. The problem Monomial-
Coefficient is the search version of Non-Zero-Monomial and is thus also
harder. Therefore, the best result we can achieve is to prove that Non-Zero-
Monomial is a hard problem on a family of polynomials.

Note that Monomial-Factor is exactly the problem solved for multilin-
ear polynomials by the procedure linear factor and Monomial-Coefficient
the problem solved by coefficient. In what follows, we prove that these problems
are not likely to be solvable in probabilistic polynomial time, even restricted
to polynomials of small degree representable by formulas of small depth. As a
consequence, Algorithm 4, which is based on repeatedly solving Monomial-
Factor, cannot be generalized to polynomials of degree 2 unless RP = NP.
Therefore a new method must be devised to find a polynomial delay algorithm
for polynomials of degree two and more.

The results of the next sections are recapped in the following table. Finer
completeness results which uses some of the polynomial families introduced
in the next sections can be found in [17] but these results do not take into
account the degree of the polynomials.

Unbounded degree Degree 3 Degree 2 Degree 2
Depth-2 Depth-3 Circuit Depth-4

Non-Zero-Monomial P NP-hard NP-hard ?
Monomial-Coefficient #P-hard #P-hard #P-hard ?
Monomial-Factor P NP-hard NP-hard NP-hard

8.3 Depth-3 formula, unbounded degree

As a warm-up we present a simple hardness result obtained thanks to a classi-
cal polynomial introduced by Valiant (see [46]). The polynomial Q has n2 +n
variables, degree n and is defined by:

Q(X,Y ) =

n∏
i=1

(

n∑
j=1

Xi,jYj)
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If we see Q as a polynomial in the variables Yj only, the term T =

n∏
j=1

Yj has

∑
σ∈Σn

n∏
i=1

Xi,σ(i) for coefficient, which is the Permanent in the variables Xi,j .

Proposition 12 The problem Monomial-Coefficient is #P-hard over poly-
nomials given by depth-3 formulas.

Proof One can reduce the problem Monomial-Coefficient in polynomial
time to the computation of the Permanent. Assume one wants to compute the
Permanent of the n2 values xi,j . Let us consider the polynomial Q(x,Y) where
xi,j has been substituted to Xi,j . It is represented by a depth-3 formula of size
polynomial in n. The coefficient of T in Q(x,Y) is the Permanent of the xi,j ’s
and it is also the solution to Monomial-Coefficient when given Q(x,Y)
and T as input. Since the computation of the Permanent is #P-complete,
the problem Monomial-Coefficient is #P-hard over polynomials given by
depth-3 formulas.

8.4 Depth-3 formula, degree 3

We now prove a hardness result for the problem Non-Zero-Monomial over
depth-3 formulas of degree at most 3. In the next subsection, we prove a
similar result where the degree bound is improved to 2, but the polynomials
are represented by circuits of any depth.

Proposition 13 The problem Non-Zero-Monomial restricted to degree 3
polynomials represented by a depth-3 formula is NP-hard.

Proof Let C be a collection of three-elements subsets of [n] (3-uniform hyper-
graphs). We construct a polynomial from C, on the variables (Xi)i∈[n], as fol-

lows. To each subset C ′ of C we associate the monomial χ(C ′) =
∏

{i,j,k}∈C′
XiXjXk.

Let QC be the polynomial: ∑
C′⊆C

χ(C ′)

It can be represented by a depth-3 formula polynomial in the size of C, since
it is equal to: ∏

{i,j,k}∈C

(XiXjXk + 1)

The degree of QC is the maximal number of occurrences of an integer in
elements of C. If each integer of [n] appears in at most three elements of
C, QC is of degree 3 and the problem of finding an exact cover of C is still
NP-complete [18].

By definition of χ, a subset C ′ is an exact cover of [n] if and only if χ(C ′) =∏
i∈[n]Xi. Therefore to decide if C ′ has an exact cover, we only have to decide
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if
∏
i∈[n]Xi has a coefficient different from zero. It proves that Non-Zero-

Monomial is NP-hard over circuits representing degree 3 polynomials.

8.5 Circuit, degree 2

To obtain the hardness result of this subsection we have to drop all assumption
on the structure of the circuit. Indeed, we use a determinant in the proof
which can “efficiently“ simulate a large class of polynomials representable by
a polynomial size circuit (see [43,33]).

Proposition 14 The problem Non-Zero-Monomial restricted to degree 2
polynomials given by circuits is NP-hard.

Proof Let G be a directed graphs on n vertices, the Laplace matrix L(G) is

defined by L(G)i,j = −Xi,j when (i, j) ∈ E(G), L(G)i,i =
∑

(i,j)∈E(G)

Xi,j and 0

otherwise. Let Ts be the set of spanning trees of G, rooted in s and such that
all edges of a spanning tree is oriented away from s. Let L(G)s,t be the minor
of L(G) where the row s and the column t have been deleted.

The Matrix-Tree theorem (see [3] for more details) is the following equality:

det(L(G)s,t)(−1)s+t =
∑
T∈Ts

∏
(i,j)∈T

Xi,j

We substitute to Xi,j the product of variables YiZj in det(L(G)s,t) which
makes it a polynomial in 2n variables. This polynomial is derived from a
Determinant and can thus be represented by a polynomial size circuit. Every
monomial is in bijection with a spanning tree whose maximum outdegree is
the degree of the monomial. We assume that every vertex of G has indegree
and outdegree less or equal to 2 therefore det(L(G)s,t) is of degree 2.

Remark now that a spanning tree, all of whose vertices have outdegree
and indegree less or equal to 1 is an Hamiltonian path. Therefore G has an
Hamiltonian path beginning by s and finishing by a vertex v if and only if
det(L(G)s,t) contains the monomial YsZv

∏
i/∈{s,v} YiZi. To decide whether G

has an Hamiltonian path, one has only to solve Non-Zero-Monomial on the
polynomial det(L(G)s,t) and the term YsZv

∏
i/∈{s,v} YiZi, for all pairs (s, v)

which are in polynomial number. The Hamiltonian path problem restricted
to directed graphs of outdegree and indegree at most 2 is NP-complete [36].
Therefore Non-Zero-Monomial is NP-hard over degree 2 polynomials.

8.6 Depth-4 formula, degree 2

Here we give a hardness result for the problem Monomial-Factor over de-
gree 2 polynomials. Since Non-Zero-Monomial reduces by Proposition 11
to Monomial-Factor it should be obvious, but we also restrict the input to
be a depth-4 formula.
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Proposition 15 The problem Monomial-Factor restricted to degree 2 poly-
nomials represented by a depth-4 formula is NP-hard.

Proof Let φ be a 2-CNF formula, it is a conjunction of n clauses Ci and each
of them is the disjunction of two literals, which are either a variable or the
negation of a variable. We note V the set of variables of φ and v ∈ Ci if v is
one of the literal of Ci. We build the polynomial Qφ from φ. It has n variables
Xi which represent the clauses Ci and one special variable Y .

Qφ(X, Y ) =
∏
v∈V

((Y
∏
¬v∈Cj

Xj) + (
∏
v∈Ci

Xi)) (1)

Any empty product in the equation is 1.

Remark that each clause has at most two literals, thus any variable Xi

appears in at most two factors of the outermost product. Therefore the poly-
nomial is of degree 2 in the variables Xi. We rewrite Qφ by expanding the
product over V . In the next equation, the function d can be seen as a distri-
bution of truth values or as a choice in each factor of Qφ of the left or right
part of the sum. The integer α(d) is the number of j such that d(j) = 0 and
β(d, i) is the number of literals in Ci made true by d.

Qφ(X, Y ) =
∑
d∈2|V |

Y α(d)
∏
i

X
β(d,i)
i

We write Qφ(X, Y ) =

|V |∑
k=1

Y kQk(X). Equation 1 allows us to build a circuit

of size and formal degree polynomial in φ, which represents Qφ. By homog-
enization, as in Proposition 9, one builds from the formula representing Qφ,
a formula which represents Qk(X). Its depth is one more than the original
formula, that is 4.

Finally, a monomial comes from a truth value assignment which satisfies

φ if and only if T =

n∏
i=1

Xi divides the monomial. In addition, a monomial

represents an assignment of Hamming weight k if and only if it is in Qk.
The problem Monomial-Factor for the polynomial Qk and the term T is
hence equivalent to the problem of deciding if φ has a satisfying assignment
of Hamming weight equal to k. This latter problem is NP-complete over 2-
CNF formulas [16]. Therefore, Monomial-Factor is NP-hard over degree 2
polynomials.

Remark that Monomial-Coefficient is solved in polynomial time for
multilinear polynomials by Corollary 1, while it is NP-hard for degree 2 poly-
nomials, by the last proposition. Since Algorithm 4 relies on a subroutine
solving Monomial-Coefficient it cannot be generalized to degree 2 poly-
nomials unless RP = NP or equivalently P = NP.
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8.7 Depth-2 formula, unbounded degree

Here we consider depth-2 formulas but we drop all restrictions on the degree
of the computed polynomials. We try to determine if the considered problems
are still hard on this class of polynomials on which for instance PIT is solvable
in deterministic polynomial time.

A polynomial represented by a depth-2 formula whose top gate is labeled
by a + has only a number of monomials linear in the size of the formula. There-
fore it can be interpolated in polynomial time and from its explicit represen-
tation by monomials it is easy to solve Non-Zero-Monomial, Monomial-
Coefficient and Monomial-Factor. Therefore in the next proofs we al-
ways assume that the top gate is labeled by ×.

Proposition 16 The problem Non-Zero-Monomial is in P over depth-2
formulas.

Proof Let P =

k∏
i=1

Ti where Ti is a sum of variables in {X1, . . . , Xn}. We

reduce Non-Zero-Monomial to the problem of deciding if there is a perfect
matching in a graph. To P and the term Xe, we associate the bipartite graph
G = (V,E) defined by:

1. V = {u1, . . . , uk} ∪ {vlj | j ∈ [n] and l ≤ ej}
2. E = {(ui, vlj) | Xj has a non-zero coefficient in Ti}

A vertex ui represents the linear form Ti, while the vertices v1j . . . , v
ej
j

represent the variable Xj (ej is its degree in Xe). There is an edge (ui, v
l
j)

if Xj has a coefficient different from zero in Ti. A perfect matching M of G
corresponds to the choice of one variable Xα(i) for each Ti. If we expand the
product in the definition of P , we obtain the term

∏
iXα(i). Since all terms

obtained by expansion have positive coefficients, they do not cancel out and∏
iXα(i) has a coefficient different from zero in P . All vertices vlj are saturated

by M , because it is a perfect matching. It means that
∏
iXα(i) = Xe.

Conversely, and for the same reasons, the term Xe has a non zero coeffi-
cient in P , if there is a perfect matching in G. This proves that Non-Zero-
Monomial is reducible to the problem of finding a perfect matching in a
bipartite graph, which is in P.

By a slight modification of the reduction, we could prove that Monomial-
Factor is in P over depth-2 formulas. We now show that a slight general-
ization of the class of considered polynomials makes the problem Non-Zero-
Monomial hard.

Proposition 17 The problem Non-Zero-Monomial is NP-hard over the
polynomials represented by depth-2 formulas where the input gates may be
labeled by a variable times a constant in {−1, 0, 1, 2, 3}.
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Proof Let M be a n×n matrix with coefficients in −1, 0, 1, 2, 3. We substitute
Mi,j to Xi,j in the polynomial Q introduced at Section 8.3. Its monomial
n∏
j=1

Yj has for coefficients the permanent of the matrix M . Deciding whether a

matrix with coefficients in {−1, 0, 1, 2, 3} has a permanent 0 is NP-hard [45].
Thus Non-Zero-Monomial is also NP-hard.

Finally, the evaluation of the Permanent is #P-complete for Turing re-
duction, even for matrices with coefficients in {0, 1}, which yields the next
proposition.

Proposition 18 The problem Monomial-Coefficient is #P-complete over
depth 2 circuits.

9 Conclusion

As a conclusion, we recall the complexity of our three interpolation algorithms
and we compare them to three methods of the literature. In Ben-Or/Tiwari
and Zippel algorithms a bound on t, the number of monomials, must be ex-
plicitly given, we denote it by T . In the row labeled Enumeration is written
the enumeration complexity of the interpolation method when applied to a
polynomial computable in polynomial time.

Ben-Or/Tiwari [8] Zippel [49] KS [29]
Algorithm type Deterministic Probabilistic Probabilistic
Number of calls 2T tnD tn7D4

Total time Quadratic in T Quadratic in t Quadratic in t
Enumeration Exponential Polynomial total time Incremental delay
Size of points T log(n) log(nT 2ε−1) log(nDε−1)

Theorem 4 Theorem 5 Theorem 6
Algorithm type Probabilistic Probabilistic Probabilistic

Number of calls tn(n+ log(ε−1)) tnD(n+ log(ε−1)) tnDd−1(n+ log(ε−1))
Total time Quadratic in t Linear in t Quadratic in t
Enumeration Incremental delay Polynomial delay Incremental delay
Size of points log(D) log(D) log(D)
Restriction DS Multilinear Fixed degree

Fig. 2 Classical and new interpolation algorithms

Remark that Algorithm 6 given by Theorem 6 has a better total complexity
and delay than KS algorithm when the degree is less or equal to 10.

Open question: is it possible to turn Algorithm 6 into a fixed parameter
algorithm? That is to reduce the number of calls to O(naDbf(d)) with a
and b small but f increasing exponentially fast or worse. In this case, the
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interpolation algorithm obtained would be better than KS algorithm for any
fixed d.
Open question: is there an interesting class of non-multilinear polynomials
which can be interpolated with polynomial delay? What about the class of
(degree 2) polynomials computed by a read-twice formula ?

Finally, note that the speed of the different interpolation algorithms often
depends on the degree of the interpolated polynomial. Therefore we should
compute it before choosing the interpolation algorithm. When the total de-
gree is polynomially bounded it can be easily done: using the Algorithm of
Proposition 2 we compute the degree in each variable with high probability.

However the complexity of finding the degree of a polynomial of unbounded
total degree is an open question even for univariate polynomials. The best up-
per bound for polynomials given by circuits is coRPPP [27] but the problem
could well be in P. Remark that the problem to find a lexicographically max-
imal monomial in a multivariate polynomial of degree d can be reduced to
the problem of finding the degree by mapping Xi to Xdi . Thus if there is a
polynomial time algorithm to compute the degree, we could enumerate the
monomials in lexicographic order with an incremental delay. We would then
obtain an enumeration algorithm in a given order, in the spirit of [23] which
gives an enumeration algorithm for the maximal independent sets in lexico-
graphic order.
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