
Saturation problems and enumerating
maximal solutions

Arnaud Mary1 Yann Strozecki2

1Baobab, Lyon

2Laboratoire DAVID, Versailles

Clermont-Ferrand, WEPA 2016

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.

I Motivations: database queries, optimization, building libraries.

Perfect matching ?
Solution space:

Begin

End

Framework

An enumeration problem A is a function which associates to each
input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

Complexity classes:
A polynomial time precomputation is allowed.

1. Polynomial total time: TotalP
2. Incremental polynomial time: IncP
3. Polynomial delay: DelayP

Incremental time

Definition (Incremental polynomial time)
IncP is the set of enumeration problems such that there is an
algorithm which for all t produces t solutions (if they exist) from
an input of size n in time O(tanb) with a, b constants.

time

t solutions in time tanb

Saturation algorithm

Most algorithms with an incremental delay are saturation
algorithms:

I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Saturation algorithm

Most algorithms with an incremental delay are saturation
algorithms:

I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Saturation algorithm

Most algorithms with an incremental delay are saturation
algorithms:

I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Polynomial Delay

The delay is the maximum time between the production of two
consecutive solutions in an enumeration.

Definition (Polynomial delay)
DelayP is the set of enumeration problems such that there is an
algorithm whose delay is polynomial in the input.

DelayP ⊆ IncP

time

delay between two solutions nc

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, enumerate first the solutions which
contains 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, enumerate first the solutions which
contains 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, enumerate first the solutions which
contains 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, enumerate first the solutions which
contains 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, enumerate first the solutions which
contains 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Partial solution tree
{12, 134, 23, 14}

1 | 1

2 | 1

23 | 1

23

1 | 212

123

1234 123 124 12 134 14

12 | 3 13 | 2 1 | 23

From saturation to polynomial delay

Question
Can we solve saturation problems with a polynomial delay ?

No, since saturation problems are “equals” to IncP and we have
recently proved IncP 6= DelayP.

We need to restrict the saturation rules. Since it works for the
union, we will consider set operations.

Our goal is twofold:
I design a large toolbox of efficient enumeration algorithms
I classify the easy and the not so easy problems

From saturation to polynomial delay

Question
Can we solve saturation problems with a polynomial delay ?

No, since saturation problems are “equals” to IncP and we have
recently proved IncP 6= DelayP.

We need to restrict the saturation rules. Since it works for the
union, we will consider set operations.

Our goal is twofold:
I design a large toolbox of efficient enumeration algorithms
I classify the easy and the not so easy problems

From saturation to polynomial delay

Question
Can we solve saturation problems with a polynomial delay ?

No, since saturation problems are “equals” to IncP and we have
recently proved IncP 6= DelayP.

We need to restrict the saturation rules. Since it works for the
union, we will consider set operations.

Our goal is twofold:
I design a large toolbox of efficient enumeration algorithms
I classify the easy and the not so easy problems

Set operations

A set over {1, . . . , n} will be represented by its characteristic
vector of size n.
A set operation is a boolean operation {0, 1}k → {0, 1} applied
componentwise to k boolean vectors.

∨

(1
0
1

)
∨

(1
1
0

)
=

(1
1
1

)
∪

+

(1
0
1

)
+

(1
1
0

)
=

(0
1
1

)
4

maj(x, y, z) maj(

(1
0
1

)
,

(1
0
0

)
,

(1
1
0

)
) =

(1
0
0

)
Majority

Set operations

A set over {1, . . . , n} will be represented by its characteristic
vector of size n.
A set operation is a boolean operation {0, 1}k → {0, 1} applied
componentwise to k boolean vectors.

∨

(1
0
1

)
∨

(1
1
0

)
=

(1
1
1

)
∪

+

(1
0
1

)
+

(1
1
0

)
=

(0
1
1

)
4

maj(x, y, z) maj(

(1
0
1

)
,

(1
0
0

)
,

(1
1
0

)
) =

(1
0
0

)
Majority

Closure by set operation

Let S be a set of boolean vectors of size n and F be a finite set of
boolean operations.

Closure:
I F0(S) = S
I F i(S) = F i−1(S)∪
{f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F}

I ClF (S) = ∪iF i(S)

Our enumeration problem is then to list the elements of ClF (S).

Closure by set operation

Let S be a set of boolean vectors of size n and F be a finite set of
boolean operations.

Closure:
I F0(S) = S
I F i(S) = F i−1(S)∪
{f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F}

I ClF (S) = ∪iF i(S)

Our enumeration problem is then to list the elements of ClF (S).

Extension problem

ClosureF :

Input: S a set of vectors of size n, and a vector v of size n
Problem: decide whether v ∈ ClF (S).

ClosureF is the extension problem associated to the
computation of ClF (S).

Goal: prove that ClosureF ∈ P for as many sets F as possible, to
use the backtrack search.

Extension problem

ClosureF :

Input: S a set of vectors of size n, and a vector v of size n
Problem: decide whether v ∈ ClF (S).

ClosureF is the extension problem associated to the
computation of ClF (S).

Goal: prove that ClosureF ∈ P for as many sets F as possible, to
use the backtrack search.

Clones and reduction
There are many finite families of boolean operations, how to
reduce their number ?

Definition
Let F be a finite set of operations, the functional clone generated
by F , denoted by < F >, is the set of operations obtained by any
composition of the operations of F and of the projections πn

k

defined by πn
k (x1, . . . , xn) = xk.

For instance (x ∨ y) + x+ z ∈< ∨,+ >.

Lemma
For all set of operations F and all set of vectors S,
ClF (S) = Cl<F>(S).

There are less clones than families and they are well described and
organized in Post’s lattice.

Clones and reduction
There are many finite families of boolean operations, how to
reduce their number ?

Definition
Let F be a finite set of operations, the functional clone generated
by F , denoted by < F >, is the set of operations obtained by any
composition of the operations of F and of the projections πn

k

defined by πn
k (x1, . . . , xn) = xk.

For instance (x ∨ y) + x+ z ∈< ∨,+ >.

Lemma
For all set of operations F and all set of vectors S,
ClF (S) = Cl<F>(S).

There are less clones than families and they are well described and
organized in Post’s lattice.

Clones and reduction
There are many finite families of boolean operations, how to
reduce their number ?

Definition
Let F be a finite set of operations, the functional clone generated
by F , denoted by < F >, is the set of operations obtained by any
composition of the operations of F and of the projections πn

k

defined by πn
k (x1, . . . , xn) = xk.

For instance (x ∨ y) + x+ z ∈< ∨,+ >.

Lemma
For all set of operations F and all set of vectors S,
ClF (S) = Cl<F>(S).

There are less clones than families and they are well described and
organized in Post’s lattice.

Clones and reduction
There are many finite families of boolean operations, how to
reduce their number ?

Definition
Let F be a finite set of operations, the functional clone generated
by F , denoted by < F >, is the set of operations obtained by any
composition of the operations of F and of the projections πn

k

defined by πn
k (x1, . . . , xn) = xk.

For instance (x ∨ y) + x+ z ∈< ∨,+ >.

Lemma
For all set of operations F and all set of vectors S,
ClF (S) = Cl<F>(S).

There are less clones than families and they are well described and
organized in Post’s lattice.

Post’s lattice

How to reduce Post’s lattice

To an operation f we can associate its dual f defined by
f(s1, . . . , st) = ¬f(¬s1, . . . ,¬st).

Proposition
The following problems can be polynomially reduced to
ClosureF :
1. ClosureF
2. ClosureF∪{¬} when F = F
3. ClosureF∪{0}, ClosureF∪{1}, ClosureF∪{0,1}

Reduced Post’s lattice

Clone Base
I2 ∅
L2 x+ y + z

L0 +
E2 ∧
S10 x ∧ (y ∨ z)
Sk

10 Thk+1
k , x ∧ (y ∨ z)

S12 x ∧ (y → z)
Sk

12 Thk+1
k , x ∧ (y → z)

D2 maj
D1 maj, x+ y + z

M2 ∨,∧
R2 x ? y : z
R0 ∨,+ I2

L2

L0

E2

S10
S12

S3
12

S2
12

S3
10

S2
10

D2

D1

M2

R
R0

Figure: Reduced Post’s lattice, the edges represent inclusions of clones

The result

Theorem
For all sets F of boolean operations, ClosureF ∈ P.

Corollary
For all sets F of boolean operations, enumerating ClF is in
DelayP.

We succeeded and we failed: everything is easy but everything is
the same.

The result

Theorem
For all sets F of boolean operations, ClosureF ∈ P.

Corollary
For all sets F of boolean operations, enumerating ClF is in
DelayP.

We succeeded and we failed: everything is easy but everything is
the same.

Five families

1. Conjunction is easy, a simple combinatorial algorithm.

2. < + > (vector space) and < ∨,¬ > (boolean algebra) are
easy because of their algebraic structure. You can compute a
basis of the solutions in polynomial time.

3. < maj > is easy because only projection of size two matters.
Another form of algebraic structure.

Majority

Proposition

Let S be a vector set, a vector v belongs to Cl<maj>(S) if and only
if for all i, j ∈ [n], i 6= j, there exists x ∈ S such that xi,j = vi,j .

Idea of the proof: you build incrementally the vector v by using a
sequence of vectors which have the same pairs as v.

The same phenomenon is true as soon as there is a near unanimity
term in the clone by the Baker-Pixley theorem. If the term is of
arity k, you need to consider all projections of size k − 1.

Majority

Proposition

Let S be a vector set, a vector v belongs to Cl<maj>(S) if and only
if for all i, j ∈ [n], i 6= j, there exists x ∈ S such that xi,j = vi,j .

Idea of the proof: you build incrementally the vector v by using a
sequence of vectors which have the same pairs as v.

The same phenomenon is true as soon as there is a near unanimity
term in the clone by the Baker-Pixley theorem. If the term is of
arity k, you need to consider all projections of size k − 1.

Larger domains

What does not work:

I The lattice of clones is uncountable and not well described.
I Over D = {0, 1, 2}, let f(x, y) = x+ y when x+ y <= 2

otherwise f(x, y) = 2. Closure<f> is NP-hard.

What does work:

I Near unanimity.
I Field, ring, group, some semi-group via the extension problem

(subpower membership problem).
I Associative binary operations with an alternative algorithm

and exponential space.

Larger domains

What does not work:

I The lattice of clones is uncountable and not well described.
I Over D = {0, 1, 2}, let f(x, y) = x+ y when x+ y <= 2

otherwise f(x, y) = 2. Closure<f> is NP-hard.

What does work:

I Near unanimity.
I Field, ring, group, some semi-group via the extension problem

(subpower membership problem).
I Associative binary operations with an alternative algorithm

and exponential space.

Generalizing the closure operation

Two remarks:
I Interesting set systems closed under inclusion, that is if
A ∈ S, A ⊆ B ⇒ B ∈ S.

I All our framework relies on the fact that the closure operators
act componentwise.

Let us combine those two remarks and study the operator
↑ S = {B | A ⊆ B,A ∈ S} which does not act componentwise.

If we allow any set operation and ↑, the Post’s lattice changes
dramatically. Consider < ∧, ↑>, < ¬, ↑>, < +, ↑>.

Generalizing the closure operation

Two remarks:
I Interesting set systems closed under inclusion, that is if
A ∈ S, A ⊆ B ⇒ B ∈ S.

I All our framework relies on the fact that the closure operators
act componentwise.

Let us combine those two remarks and study the operator
↑ S = {B | A ⊆ B,A ∈ S} which does not act componentwise.

If we allow any set operation and ↑, the Post’s lattice changes
dramatically. Consider < ∧, ↑>, < ¬, ↑>, < +, ↑>.

Generalizing the closure operation

Two remarks:
I Interesting set systems closed under inclusion, that is if
A ∈ S, A ⊆ B ⇒ B ∈ S.

I All our framework relies on the fact that the closure operators
act componentwise.

Let us combine those two remarks and study the operator
↑ S = {B | A ⊆ B,A ∈ S} which does not act componentwise.

If we allow any set operation and ↑, the Post’s lattice changes
dramatically. Consider < ∧, ↑>, < ¬, ↑>, < +, ↑>.

A simpler picture

< ∧, ↑>

< maj, ↑>

<↑>

Complexity of the three classes

We have only three different cases :
I Cl<↑> is equivalent to enumerate the models of a monotone
DNF formula. Can be done with delay O(n|S|).

I Cl<F ,↑> where F contains a near unanimity term of arity k
can be solved with delay O(nk−1). Just apply ↑ to the
projections.

I Cl<∧,↑>, one can compute the minimum solution and then
generate all solutions by Gray code enumeration with delay
O(1).

Open question: Can we get rid of the O(|S|) in the algorithm
sovling Cl<↑> or Cl<∪> ?

Complexity of the three classes

We have only three different cases :
I Cl<↑> is equivalent to enumerate the models of a monotone
DNF formula. Can be done with delay O(n|S|).

I Cl<F ,↑> where F contains a near unanimity term of arity k
can be solved with delay O(nk−1). Just apply ↑ to the
projections.

I Cl<∧,↑>, one can compute the minimum solution and then
generate all solutions by Gray code enumeration with delay
O(1).

Open question: Can we get rid of the O(|S|) in the algorithm
sovling Cl<↑> or Cl<∪> ?

Complexity of the three classes

We have only three different cases :
I Cl<↑> is equivalent to enumerate the models of a monotone
DNF formula. Can be done with delay O(n|S|).

I Cl<F ,↑> where F contains a near unanimity term of arity k
can be solved with delay O(nk−1). Just apply ↑ to the
projections.

I Cl<∧,↑>, one can compute the minimum solution and then
generate all solutions by Gray code enumeration with delay
O(1).

Open question: Can we get rid of the O(|S|) in the algorithm
sovling Cl<↑> or Cl<∪> ?

Complexity of the three classes

We have only three different cases :
I Cl<↑> is equivalent to enumerate the models of a monotone
DNF formula. Can be done with delay O(n|S|).

I Cl<F ,↑> where F contains a near unanimity term of arity k
can be solved with delay O(nk−1). Just apply ↑ to the
projections.

I Cl<∧,↑>, one can compute the minimum solution and then
generate all solutions by Gray code enumeration with delay
O(1).

Open question: Can we get rid of the O(|S|) in the algorithm
sovling Cl<↑> or Cl<∪> ?

Another take on ↑

Apply ↑ only once after taking the closure by some clone. It
amounts to enumerate ↑ ClF (S).
No interaction between the operator ↑ and the operators in F : less
degenerate problems.

Using extension problem and a variant of backtrack search,
everything is in polynomial delay.

Let Min(S) = {s ∈ S | ∀e 6= s ∈ S, s (e}.
The previous problem is equivalent to generate ↑Min(ClF (S)).
Efficient algorithm when Min(ClF (S)) is small.

Another take on ↑

Apply ↑ only once after taking the closure by some clone. It
amounts to enumerate ↑ ClF (S).
No interaction between the operator ↑ and the operators in F : less
degenerate problems.

Using extension problem and a variant of backtrack search,
everything is in polynomial delay.

Let Min(S) = {s ∈ S | ∀e 6= s ∈ S, s (e}.
The previous problem is equivalent to generate ↑Min(ClF (S)).
Efficient algorithm when Min(ClF (S)) is small.

Another take on ↑

Apply ↑ only once after taking the closure by some clone. It
amounts to enumerate ↑ ClF (S).
No interaction between the operator ↑ and the operators in F : less
degenerate problems.

Using extension problem and a variant of backtrack search,
everything is in polynomial delay.

Let Min(S) = {s ∈ S | ∀e 6= s ∈ S, s (e}.
The previous problem is equivalent to generate ↑Min(ClF (S)).
Efficient algorithm when Min(ClF (S)) is small.

Minimal solutions

We want algorithms to enumerate Min(ClF (S)).

Easy cases:
I the clone contains ∩: only one element.
I the operators are increasing, compute the minimal elements of

the input.
Interesting cases:

I < + >, the circuits of a binary matroid, incremental
polynomial. Extension problem NP-hard.

I < x+ y + z >, is it different from < + > ?
I < maj > and the other classes with a near unanimity: good

algorithms.

How to solve < maj >

Let S[i] be the set of vectors in S restricted to the first i
coordinates.

General idea:
I Compute the set Min(Cl<maj>(S[i])) from the set
Min(Cl<maj>(S[i−1])) iteratively until i = n.

I Do a DFS to avoid redundancy and obtain a polynomial delay
and space.

I We should define the ancestor of a solution as in reverse
search.

How to solve < maj >

Let S[i] be the set of vectors in S restricted to the first i
coordinates.

General idea:
I Compute the set Min(Cl<maj>(S[i])) from the set
Min(Cl<maj>(S[i−1])) iteratively until i = n.

I Do a DFS to avoid redundancy and obtain a polynomial delay
and space.

I We should define the ancestor of a solution as in reverse
search.

How to solve < maj >

Let S[i] be the set of vectors in S restricted to the first i
coordinates.

General idea:
I Compute the set Min(Cl<maj>(S[i])) from the set
Min(Cl<maj>(S[i−1])) iteratively until i = n.

I Do a DFS to avoid redundancy and obtain a polynomial delay
and space.

I We should define the ancestor of a solution as in reverse
search.

Ancestor

Let’s take a vector v ∈Min(Cl<maj>(S[i])) and let’s define its
ancestor v′ ∈Min(Cl<maj>(S[i−1])).

If vi = 1

v :

1

2

3

...
i−2

i−1

i

1
0
1
...
0
1
1

−→

1
0
1
...
0
1

1

v[i−1] is minimal in Cl<maj>(S[i−1])

Otherwise it would contradict the minimality of v in Cl<maj>(S[i])

Ancestor

Let’s take a vector v ∈Min(Cl<maj>(S[i])) and let’s define its
ancestor v′ ∈Min(Cl<maj>(S[i−1])).
If vi = 1

v :

1

2

3

...
i−2

i−1

i

1
0
1
...
0
1
1

−→

1
0
1
...
0
1

1

v[i−1] is minimal in Cl<maj>(S[i−1])

Otherwise it would contradict the minimality of v in Cl<maj>(S[i])

Ancestor

Let’s take a vector v ∈Min(Cl<maj>(S[i])) and let’s define its
ancestor v′ ∈Min(Cl<maj>(S[i−1])).
If vi = 1

v :

1

2

3

...
i−2

i−1

i

1
0
1
...
0
1
1

−→

1
0
1
...
0
1

1

v[i−1] is minimal in Cl<maj>(S[i−1])

Otherwise it would contradict the minimality of v in Cl<maj>(S[i])

Case vi = 1

v will be obtained from v[i−1] ∈Min(Cl<maj>(S[i−1])) by
appending a "1" at the ith coordinate.

Case vi = 0

v :

1

2

3

...
i−2

i−1

i

1
0
1
...
0
1
0

−→ v[i−1] need not be in Min(Cl<maj>(S[i−1])).

It is the case if the vector

1
0
0
...
0
0
1

belongs to Cl<maj>(S[i])

Case vi = 0

v :

1

2

3

...
i−2

i−1

i

1
0
1
...
0
1
0

−→ v[i−1] need not be in Min(Cl<maj>(S[i−1])).

It is the case if the vector

1
0
0
...
0
0
1

belongs to Cl<maj>(S[i])

Case vi = 0

v :

1

2

3

...
i−2

i−1

i

1
0
1
...
0
1
0

−→ v[i−1] need not be in Min(Cl<maj>(S[i−1])).

It is the case if the vector

1
0
0
...
0
0
1

belongs to Cl<maj>(S[i])

Successors of a vector

v cannot be obtained directly from a vector of
Min(Cl<maj>(S[i−1])) by appending a "0" at the ith coordinate.

I From a vector v ∈Min(Cl<maj>(S[i−1])) we generate vectors
of Min(Cl<maj>(S[i])) by another way than only appending a
"0".

I If a generated vector can be produced by several vectors in
Min(Cl<maj>(S[i−1])), we generate it only if v is the
lexicographically smallest vector among them.

Successors of a vector

v cannot be obtained directly from a vector of
Min(Cl<maj>(S[i−1])) by appending a "0" at the ith coordinate.

I From a vector v ∈Min(Cl<maj>(S[i−1])) we generate vectors
of Min(Cl<maj>(S[i])) by another way than only appending a
"0".

I If a generated vector can be produced by several vectors in
Min(Cl<maj>(S[i−1])), we generate it only if v is the
lexicographically smallest vector among them.

Successor

Assume

1

2

3

...
i−2

i−1

i

1
0
0
...
0
1
0

/∈ Cl<maj>(S[i]).

We append 0 in the ith coordinate and modify the values of the
i− 1 first coordinates that are "incompatible" with the 0 at the ith
coordinate.

By the way, it is < maj >

I Let T ⊆ [i− 1] be the set of coordinates such that j ∈ T if
I vj = 0
I There is no x ∈ S with xj,i = (0, 0)

I Then let v′ obtained from v by turning the coordinates of T
to 1 and by appending 0 to the ith coordinate.

v =

1
0
0
...
0
1

→

1
0
0
...
0
1
0

→ v′ =

1
1
0
...
1
1
0

By the way, it is < maj >

I Let T ⊆ [i− 1] be the set of coordinates such that j ∈ T if
I vj = 0
I There is no x ∈ S with xj,i = (0, 0)

I Then let v′ obtained from v by turning the coordinates of T
to 1 and by appending 0 to the ith coordinate.

v =

1
0
0
...
0
1

→

1
0
0
...
0
1
0

→ v′ =

1
1
0
...
1
1
0

Conclusion

Results:
I For all sets F of boolean operations, ClosureF ∈ P and we

have an efficient enumeration algorithm of ClF .
I Add ↑ and everything is still in DelayP.
I Add Min or Max and using a different algorithm everything

is in DelayP but the circuits of a binary matroid.

Open questions:
I Deal with the clones characterized by projections in an

uniform way.
I Enumerate the circuits of a binary matroids in DelayP.
I Improve the algorithm for monotone DNF.

Conclusion

Results:
I For all sets F of boolean operations, ClosureF ∈ P and we

have an efficient enumeration algorithm of ClF .
I Add ↑ and everything is still in DelayP.
I Add Min or Max and using a different algorithm everything

is in DelayP but the circuits of a binary matroid.

Open questions:
I Deal with the clones characterized by projections in an

uniform way.
I Enumerate the circuits of a binary matroids in DelayP.
I Improve the algorithm for monotone DNF.

Thanks !

Questions ?

