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Separation of systems

Representation by polytopes
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Motivation

Our aim is to compare two sytems.

A specification of a protocol and an implementation each
represented by a probabilistic automaton.

Do they have the same behavior?

Check that these automata accept all words with the same
probability.

When they do not, produce one or several witnesses.

Produce several words accepted with different probabilities.
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System modelisation

1. Regular automata. Equality of language, linear time.

2. Probabilistic automata. Equality of language, cubic time.

3. Non-deterministic automata. Equality of language,
PSPACE-complete.

4. Markov decision processes. Equivalence: for each sequence
of action generated by one MDP with some probability, there
is one policy for the second such that the sequence is
generated with larger probability. Problem is
PSPACE-complete.

Method: representation by an appropriate structured and simple
object → approximation.
Sampling of this object → randomness.
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Probabilistic automaton
Polynomial representation for the automaton A:

PA =
∑

w=σ1...σn∈Σn
A(w)X1,σ1X2,σ2 . . . Xn,σn

where A(w) is the probability that w is accepted by A.

A and B accept the same language ⇐⇒ PA − PB ≡ 0.

Theorem (Kiefer et al. 2011)
Let A and B be two automata with at most n states and m
transitions. We can decide with probability 1− ε whether A ≡ B
in O(nm log(ε−1)) arithmetic operations.

When A and B are not equivalent, a minimal counter-example can
be produced in the same time.

Feature: the algorithm is probabilistic but the counter-examples
are always produced in the same order.
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Representation of a polytope

We represent our system by polytopes of potentially large
dimension.

Different way of representing a polytope:

1. Convex hull of a set of given points: V-polytope.

2. A set of linear inequalities: H-polytope.

3. A polynomial time algorithm to test if a point is in the
polytope: strong membership oracle (SMO).

Remark: Deciding whether a point is in a V or H-polytope can be
done in polynomial time.
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Density vectors of words and languages

Density vector (or k-gram) of a word:

ustatk(w) contains the frequency at which the words of size k
appear in the word w.
Σ = {a, b}, w = aabab
ustat2(aabab) = (aa : 1

4 , ab : 1
2 , ba : 1

4 , bb : 0)

Statistics of an automaton

A is an automaton.
H = {ustatk(w) | A accepts w}.
A accepts a(ab)+a+, that is w = a(ab)mbn .
H = {(aa : 1

2m+n , ab : m
2m+n , ba : m−1

2m+n , bb : n
2m+n )}m,n∈N
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Geometrical embedding of an automaton

Hk(A) = ConvexHull
{
ustatk(w) | for each w compatible loop of Ak

}

(0, 1
2 , 1

2 , 0) (0, 0, 0, 1)

(ab)+ b+

Theorem (Fischer, Magniez and De Rougemont, 2006)
Let A be an automaton with n states, we can construct a
V-representation (extremal vertices) of Hk(A) of size O(n|Σ|k ).

Proposition
Let A be an automaton with n states and w a word it accepts,
then d(ustatk(w), Hk(A)) ≤ n

|w|−k+1 .
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Distance between words
The edit distance with moves between v and w, denoted by
d(v, w), is the minimal number of operations to transform v into
w.
An operation is:

I an insertion of a letter
I a deletion of a letter
I a move of a substring to another position

Theorem (Fischer, Magniez and De Rougemont, 2006)
Let v, w be two words of size n (large enough), then

d(v, w) ≤ n
k2 ⇒ ||ustatk(v)− ustatk(w)||1 ≤

6.1
k

d(v, w) ≥ 5n
k ⇒ ||ustatk(v)− ustatk(w)||1 ≥

6.5
k

Conclusion: A (large) word w is far from any word accepted by A
if and only if ustatk(w) is far from Hk(A).
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Polytope separation

Two polytopes K1 and K2 given
as SMOs.

Problem:

The parameters: the dimension
of K1 and K2 and

dvol(K1, K2) = V(K1 M K2)
V(K1) + V(K2)

Refined problem: Generate
points uniformly in K1 M K2.

K1 K2
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d(x, K1) = miny∈K1 ||x − y||1
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A solution for H-polytopes

K1, K2 H-polytopes:
{

K1 = ∩iEi
K2 = ∩jFj

each Ei or Fj is a half space given by a linear inequality.

Let Ē be the complement of the halfspace E .
K2 \K1 = ∪j(F̄j ∩K1)

For each j, check whether the system F̄j ∩K1 has a solution. If it
is the case output one solution.

Test whether K1 6= K2 in time polynomial in the number of
inequalities defining K1 and K2.
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Hausdorff distance for V-polytopes

Stronger aim : compute the Hausdorff distance between two
polytopes K1, K2.

dh(K1, K2) = max
x∈K1

d(x, K2)

Facts:
I d(x, K2) can be computed in polynomial time (LP) when K2

is a V or H-polytope.

I maxx∈K1 d(x, K2) is attained by x an extremal point of K1.

Conclusion:

I In P for V-polytopes.
I NP-hard to approximate for H-polytopes.
I Even harder for SMOs.



Hausdorff distance for V-polytopes

Stronger aim : compute the Hausdorff distance between two
polytopes K1, K2.

dh(K1, K2) = max
x∈K1

d(x, K2)

Facts:
I d(x, K2) can be computed in polynomial time (LP) when K2

is a V or H-polytope.
I maxx∈K1 d(x, K2) is attained by x an extremal point of K1.

Conclusion:

I In P for V-polytopes.
I NP-hard to approximate for H-polytopes.
I Even harder for SMOs.



Hausdorff distance for V-polytopes

Stronger aim : compute the Hausdorff distance between two
polytopes K1, K2.

dh(K1, K2) = max
x∈K1

d(x, K2)

Facts:
I d(x, K2) can be computed in polynomial time (LP) when K2

is a V or H-polytope.
I maxx∈K1 d(x, K2) is attained by x an extremal point of K1.

Conclusion:
I In P for V-polytopes.

I NP-hard to approximate for H-polytopes.
I Even harder for SMOs.



Hausdorff distance for V-polytopes

Stronger aim : compute the Hausdorff distance between two
polytopes K1, K2.

dh(K1, K2) = max
x∈K1

d(x, K2)

Facts:
I d(x, K2) can be computed in polynomial time (LP) when K2

is a V or H-polytope.
I maxx∈K1 d(x, K2) is attained by x an extremal point of K1.

Conclusion:
I In P for V-polytopes.
I NP-hard to approximate for H-polytopes.

I Even harder for SMOs.



Hausdorff distance for V-polytopes

Stronger aim : compute the Hausdorff distance between two
polytopes K1, K2.

dh(K1, K2) = max
x∈K1

d(x, K2)

Facts:
I d(x, K2) can be computed in polynomial time (LP) when K2

is a V or H-polytope.
I maxx∈K1 d(x, K2) is attained by x an extremal point of K1.

Conclusion:
I In P for V-polytopes.
I NP-hard to approximate for H-polytopes.
I Even harder for SMOs.



Hausdorff distance for V-polytopes

Stronger aim : compute the Hausdorff distance between two
polytopes K1, K2.

dh(K1, K2) = max
x∈K1

d(x, K2)

Facts:
I d(x, K2) can be computed in polynomial time (LP) when K2

is a V or H-polytope.
I maxx∈K1 d(x, K2) is attained by x an extremal point of K1.

Conclusion:
I In P for V-polytopes.
I NP-hard to approximate for H-polytopes.
I Even harder for SMOs.



Random walk on a polytope
Algorithm used to compute the volume of a polytope [Dyer et al.,
Lovasz, Simonovitz . . . ].

First step: isotropic position i.e. rounding the polytope by linear
transformations.

Second step: random walk (ball walk) with polynomial mixing
time.
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Polytope separator

Theorem

Let K1 and K2 be two polytopes of dimension n, given as SMOs.
The Polytope Separator algorithm outputs a point x such that
x ∈ K1

a
K2 with probability greater than 2/3. Moreover, the

running time of this algorithm is polynomial in n and
dvol(K1, K2)−1.

I Complexity is polynomial but large: O(n5) checks whether a
point is in the polytope.

I Use another random walk like hit and run. Should go down to
O(n4) and even O(n3).

I Adapt the algorithm to the representations we have in the
applications: V-representation or projection of a
H-representation.
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Application to non deterministic automata

Theorem
Given two non deterministic automata A and B with alphabet Σ
and at most n states, let ε = 1

k we can generate ε-separating
words when they exist in time polynomial in N , where N = n|Σ|k .

1. Generate the extremal vertices of Hk(A) and Hk(B). There
are at most N vertices.

2. Find an extremal point x in say Hk(A) which is at maximum
distance d of Hk(B) in time poly(N ).

3. If d ≤ ε then A is close to B.
4. The point x is the ustatk of some loop accepted by A and this

loop w can be found quickly.
5. There is a word uwnv accepted by A and ε-far from the words

accepted by B.
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Thank you!

Questions?



A word on markov decision processes

I State action frequency: to every strategy the ustatk of the
expectation of the trace when the length of the run tends to
∞.

I Consider the k-product of the MDP. From states in S and
actions in Σ to (S × Σ)k .

I Conservation of the limit distribution over the k-product of
the MDP. Yields a H-polytope.

I Projection of the polytope: forget the states of the MDP [De
Rougemont and Tracol].

I Drawback: separating action frequency vector only.
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