
Enumeration Complexity of logical query problems
with second order variables
Arnaud Durand1 and Yann Strozecki2

1,2 IMJ, CNRS UMR 7586
Université Paris Diderot, France
durand@logique.jussieu.fr, strozecki@logique.jussieu.fr

Abstract
We consider query problems defined by first order formulas of the form Φ(x,T) with free first
order and second order variables and study the data complexity of enumerating results of such
queries. By considering the number of alternations in the quantifier prefixes of formulas, we
show that such query problems either admit a constant delay or a polynomial delay enumeration
algorithm or are hard to enumerate. We also exhibit syntactically defined fragments inside the
hard cases that still admit good enumeration algorithms and discuss the case of some restricted
classes of database structures as inputs.

Keywords and phrases Descriptive Complexity, Enumeration, Query Problem

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

Introduction

Query answering for logical formalisms is a fundamental problem in database theory. There
are two natural ways to consider the answering process and consequently to evaluate the
complexity of such problems. Given a query ϕ on a database structure S, one may consider
computing the result ϕ(S) as a global process and measure its data complexity in terms
of the database and the output sizes. Alternatively, one can see this task as a dynamical
process in which one computes the tuples of the solution set one after the other. In this
case, the main measure is the delay spent between two successive output tuples. In recent
years, this approach has deserved some attention in the context of logical query problems:
see, for example, [3] for a study on conjunctive queries, or [4, 1] for monadic second order
lorgic on bounded tree-width structures or [6, 11] for first order queries on structures of
bounded degree. However, having only free first order variables in formulas is not enough
to capture complex objects of non constant size. This is the case when one wants to obtain,
for example, cliques or hypergraph transversals of arbitrary size (see Example 2) or classical
NP properties.

It is known since Fagin’s theorem [7] that NP corresponds exactly to problems definable
in existential second order logic. That is, the language L is in NP, if and only if there
exists an existential second order formula Φ(T) over a signature σ ∪ {T}, such that, for all
σ-structure S :

S ∈ L ⇐⇒ S |= ∃T Φ(T).

In this paper, we consider first order query with possibly free second order variables
and study their enumeration complexity. Since in full generality such formulas may be very

licensed under Creative Commons License NC-ND
Conference title on which this volume is based on.

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Enumeration Complexity of logical query problems with s.o. variables

expressive, we consider fragments defined by the quantifier alternation of formulas1. The
hardness of counting the number of solutions of a problem may sometimes be seen as a
first approach of enumeration complexity. In [12], a descriptive complexity point of view
of counting problems is proposed. They show that for the Σ0 (quantifier free) fragment,
counting the number of solutions can be done in polynomial time and that already at the
first universal level Π1 (only one block of universal quantifiers)]P-complete problems can
be defined. They also show that the Σ1 level (one block of existential quantifiers) and some
other syntactically defined fragment admits a fully polynomial randomized approximation
scheme to count the number of solutions. In this paper, we show that the situation for
enumeration is more complex. Our contributions are as follows.

For any fixed formula Φ(x,T) ∈ Σ0, there exists an algorithm that, given a structure
S, enumerates Φ(S) with polynomial time precomputation and constant delay. Under
a parameterized complexity assumption, the degree of the polynomial in the precompu-
tation step depends on the formula size. To show constant delay enumeration we prove
that one can pass from one solution (of the form (x,T)) to another by only a constant
number of local changes.
We also prove that, for any k, if the structure S is of degree bounded by k, then there is
an enumeration algorithm for the Σ0 fragment with linear precomputation and constant
delay.
For any fixed formula Φ(x,T) ∈ Σ1, there exists an algorithm that, given a structure
S, enumerates Φ(S) with polynomial time precomputation and polynomial time delay.
To this aim, we study the closure under union problem in the context of enumeration
and prove that some closure result holds even for the union of two problems which are
efficiently enumerable but relatively to different orderings (of their respective solution
space).
The class Π1 already contains problems that are hard to enumerate and Π2 is enough to
capture all FO definable problems on ordered structures up to parsimonious reductions.
Finally, we exhibit natural fragments above Π1 that admit efficient enumeration proce-
dures.

Basic definitions about logical query problems, enumeration problems and main enumer-
ation complexity measures are given in Section 1. Results about the enumeration complexity
of Σ0 query problems are given in Section 2 and about the Σ1 query problems in Section 3.
In this latter section, we also discuss the relationship with the enumeration of models of
propositional formulas in disjunctive normal form and shows that the two problems are in-
timately related. The Π1 fragment is studied in Section 4 where both the hardness results
are given and some tractable fragments are exhibited.

1 Preliminaries

Enumeration problem and complexity

Let I,O be two sets and R be a polynomially balanced binary predicate R ⊆ I×O decidable
in polynomial time. In particular, given x ∈ I and y ∈ O, checking whether R(x, y) can be

1 Note that this is the approach to define the classes of the W hierarchy in parameterized complexity

Arnaud Durand and Yann Strozecki 3

done in time polynomial in |x|. One defines the enumeration function associated to R as
follows.

Enum·R
Input: x ∈ I
Output: an enumeration of elements in R(x) = {y : R(x, y)}
In this paper, we consider the random access machine model (RAM) with addition and

subtraction as its basic arithmetic operations. It has read-only input registers I1, I2, . . . (con-
taining the input x), read-write work registers R1, R2, . . . and output registers O1, O2,
Our model is equipped with an additional instruction Output which, when executed, in-
dicates that the non empty output registers contain a partial output y ∈ R(x). Time
complexity is used under the uniform cost model. A RAM is of space complexity O(h(n))
if, for all inputs of size n, it uses working registers Ti of addresses i = O(h(n)) and content
O(max(n, h(n))).

A scheme A = (Ap,Ae) (see [2] for a similar definition) computes the enumeration
problem Enum·R if, for any input x:

Ap computes from x an extended input ext(x). This is called the precomputation phase.
Given ext(x), Ae computes one after the other and without repetition the elements of
R(x) and stops immediately after writing the last one.

We denote by timej(x) the moment when A has completed the writing of the jth so-
lution i.e. after the jth Output instruction is executed (by convention, time0(x) = 0). Let
delayj(x) = timej(x)− timej−1(x).

I Definition 1. Let g : N→ N, f : N→ N be two functions. The problem Enum·R belongs
to the class Delay(g, f) if there exists an enumeration scheme A = (Ap,Ae) that computes
Enum·R such that, for all input x:

Precomputation uses time and space O(g(|x|)),
Solutions y ∈ R(x) are computed successively from ext(x) using delay O(f(|x|)) and
space O(maxy∈R(x)(f(|x|), |y|))

The two enumeration classes below are classical:

DelayP =
⋃
k,h

Delay(nk, nh), Constant-Delay =
⋃
k

Delay(nk, O(1)).

Logical definitions

We suppose the reader familiar with the basics of finite model theory and first order logic [10].
A signature σ = {R1, ..., Rk} is a set of relational symbols (constant symbols will also
be authorized). The arity of a predicate Ri is denoted by ar(Ri). A σ-structure S =
〈D,RS1 , . . . , RSk 〉 is composed of a domain D, together with an interpretation RSi ⊆ Dar(Ri)

for symbols Ri of σ. When the context is clear, the interpretation RSi of Ri is denoted by
R∗i . The size of S is equal to the cardinality |D| of its domain plus the sum of the number
of tuples times the arity for all relations. It is denoted by |S|. If n ∈ N such that |D| = n

then, D will often be identified with the initial segment of the integers [n].
Let σ be a signature and T = (T1, . . . , Th) be a tuple of predicate symbols not in σ,

let z = (z1, . . . , zl) be a tuple of variables. We consider first order formulas Φ(z,T) with
free first order and second order variables. Such formulas, of signature σ ∪ T have atomic

4 Enumeration Complexity of logical query problems with s.o. variables

formulas (atoms) built over relations of σ ∪ T and equality symbol =. We denote by Σ0
(or Π0) the set of quantifier free first order formulas. A formula Φ(z,T) is in Σi+1 (resp.
Πi+1), for i ≥ 0, if it is of the form: ∃xψ (resp. ∀xψ) where ψ is in Πi (resp. Σi).

Enumeration Query problems and data complexity

Let F be a subclass of first order formulas and Φ(z,T) ∈ F , we consider the following
variant of the classical query problem.

Enum·Φ
Input: A σ-structure S
Output: an enumeration of elements in Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

We denote by Enum·F the collection of problems Enum·Φ for Φ ∈ F . Note that it can
be supposed without loss of generality that the tuple T contains only one relation T of arity
r = maxi≤h ar(Ti) + 1. To do this, one simply represents each predicate Ti by T and a new
constant symbol ai and replace in formulas each Ti(x) by T (ai,x) where the length of ai is
r − ar(Ti). It suffices to add the new constants in the signature.

I Example 2. The formula IS(T) ≡ ∀x∀y T (x) ∧ T (y) ⇒ ¬E(x, y) holds if and only if
T is an independent set. Remark that the previous formula is in Π1, thus Enum·IS is in
Enum·Π1.

I Example 3. Enum·HS : given a hypergraph H, enumerate the hitting sets (vertex covers)
ofH. The hypergraphH is represented by the incidence structure 〈D, {V,E,R}〉 where V (x)
means that x is a vertex, E(y) that y is an hyperedge and R(x, y) that x is a vertex of the
hyperedge y.

HS(T) ≡ ∀x(T (x)⇒ V (x)) ∧ ∀y∃xE(y)⇒ (T (x) ∧R(x, y))

Therefore the problem Enum·HS is in Enum·Π2.

Note that in the query problem Enum·Φ the formula is fixed i.e. is not part of the input.
The complexity is evaluated in terms of the structure/data only. For such problems, the
notion of constant delay makes sense:

- when the free variables are all first order (in that case each output is of constant size)
- but also and more interestingly when there are second order variables and that comput-

ing the next solution from the preceeding one can be done by changing a constant number
of tuples.

2 Enumeration for Σ0 formulas

In this section, we give enumeration algorithms for the most simple class, that is Enum·Σ0.
Since it is a core procedure of our algorithms, we need to recall how to enumerate all

k-ary relations over any domain with constant delay.

I Lemma 4 (Gray code enumeration). Let D be a finite set, k ∈ N and t1, . . . , ta, s1, . . . , sb

in Dk. Let R = {R ⊆ Dk : t1, . . . , ta ∈ R, s1, . . . , sb 6∈ R}. Then, starting from the relation
R = {t1, . . . , ta}, one can enumerate the relations belonging to R with precomputation and
delay in O(1). Moreover, the process ends by producing a relation R′ such that |R′| = |R|+1.

Arnaud Durand and Yann Strozecki 5

Proof. Since the tuples t1, ..., ta must belong to each output, they can simply be fixed
and the problem reduces to generate all subsets of Dk\{t1, . . . , ta, s1, . . . , sb} of size up to
n = |D|k−a−b starting from the empty set. Clearly, it is equivalent to generate all subsets of
[n]. Such problems have been widely studied under the name of Gray code enumeration. It
is well known that the enumeration can be done in such a way that the size of the symmetric
difference R1∆R2 between two successive outputs R1 and R2 is 1. Given an output R1, one
can proceed as follows. If R1 has an even number of elements, then set R2 = R1∆{n}.
If not, let R2 = R1∆{i − 1} where i is the greatest element in R1. Clearly, the delay is
constant provided we have access to the information on the parity of number of elements in
R1 and on the value of such i above. The parity can be stored in one bit, that is changed
at each step, while the latter is easy to maintain in constant time by a linked list on the
tuples of each produced relation. To start, one only needs to build this datastructure on the
first relation R which is of size a. It is easy to see that the enumeration ends up with the
relation R′ containing t1, ..., ta and the tuple of Dk\{t1, . . . , sb} indexed by 1. J

I Remark. Note that the memory space required by the preceeding algorithm is linear in n,
the size of one output. It may seem important since, in contrast, the enumeration itself is
constant delay. However, some datastructure is required only to navigate inside each output
relation and make the necessary local changes easily.

There is a standard way to represent a first order query problem by a propositional satis-
fiability problem. We recall it below. We will later introduce a more complex representation.

Let σ be a relational signature and let S be a σ-structure of domain D with |D| = n. Let
Φ(z, T) be a first order formula where z is a k-uple of first order variables and T is a second
order variable of arity r. One rewrites Φ(z, T) by

∨nk−1
i=0 Φ(zi, T) where zi is the ith element

of Dk (for, say, lexicographic ordering on Dk). In each Φ(zi, T) one replaces inductively
(bottom-up in the tree representation of the formula) each sub-formula ∃yϕ(zi,y, T) by
a disjunction

∨np−1
j=0 ϕ(zi,yj , T) with |y| = p (and similarly universal quantification by

conjunction). Finally, one calls Φ̃i the propositional formula obtained from Φ(zi, T) by
replacing every atomic formula R(w) with R ∈ σ by its truth value in S and we set Φ̃ =∨nk−1

i=0 Φ̃i. Variables of Φ̃ are of the form T (w) with w ∈ Dr.

We are now ready to state the first result of this section.

I Theorem 5. Enum·Σ0 ⊆ Constant-Delay. More precisely, it can be computed with
precomputation O(|D|k) and delay O(1) where k is the number of free first order variables
of the formula and D is the domain of the input structure.

Proof. Let S be a σ-structure of domain D. Let Φ(z, T) ∈ Σ0 with T of arity r and let
Φ̃ =

∨nk−1
i=0 Φ̃i be its associated propositional formula.

The idea of the proof consists in determining some canonical assignements for each
Φ̃i from which one can enumerate all models of Φ̃i and then all models of Φ̃ by disjoint
union. Since constant delay is expected, one has to be careful that two consecutive partial
enumerations, say for models of Φ̃i and of Φ̃j with i 6= j, respectively ends and starts with
solutions that are "close" to each other.

Since there is no first order variable other than z, the number of propositional variables
appearing in each Φ̃i is bounded by a constant ci independent of |S|. Let T (yi,j), j ≤ ci, be
such variables with yi,j ∈ Dr.

Let I(Φi) be the set of up to 2ci models of Φ̃i. For I ∈ I(Φi), let I0 (resp. I1) the
set of variables set to false (resp. true) in I. Let T (zi, I) be the set of r-uples yi,j such
that T (yi,j) ∈ I1. This relation contains at most ci tuples. Let now [T (zi, I)] be the set of

6 Enumeration Complexity of logical query problems with s.o. variables

relations generated by T (zi, I) i.e. the relations T ∗ that agrees with T (zi, I) on yi,1, . . . ,yi,ci
.

Clearly, for each i ≤ nk − 1, the set {(zi, T
∗) : (zi, T

∗) ∈ Φ(S)} is equal to the set:

⋃
I∈I(Φi)

⋃
T∗∈[T (zi,I)]

(zi, T
∗).

The enumeration process to compute Φ(S) when Φ ∈ Σ0 can now be described. The
precomputation steps are as follows.

For each zi ∈ Dk, compute Φ̃i and the set I(Φi).
Compute the set Z = {zi ∈ Dk : I(Φi) 6= ∅}.

It holds that |I(Φi)| ≤ 2ci i.e. is constant. Thus, the precomputation requires time
O(|D|k). Now, the enumeration itself proceeds as follows.

For each zi ∈ Z, for each I ∈ I(Φi), generate all relations T ∗ ∈ [T (zi, I)] and output
(zi, T

∗).

From Lemma 4, for given zi and I, one can enumerate the set [T (zi, I)] in delay O(1).
Note that for two distinct zi and zj , the set of outputs are disjoints. Similarly, since two
distinct assignments I, I ′ ∈ I(Φi) differ for at least one variable, it holds that [T (zi, I)] ∩
[T (zi, I

′)] = ∅.
For each zi and I, one starts the enumeration with the relation T (zi, I) of size less than

ci and ends by a relation T ′(zi, I) ∈ [T (zi, I)] with |T ′(zi, I)| = |T (zi, I)|+ 1. Then, for all
I ′ ∈ I(Φi), I ′ 6= I:

|T ′(zi, I)∆T (zi, I
′)| ≤ 2ci + 1.

Similarly, for all zj 6= zi, and all I ′ ∈ I(Φj) it holds:

|T ′(zi, I)∆T (zj , I
′)| ≤ ci + cj + 1.

Then, the enumeration process remains constant delay when branching from one assign-
ment I to the next and when branching from one zi to the next. J

Is it possible to improve Theorem 5 to find a constant delay enumeration algorithm
for Σ0 formulas with a fixed polynomial (i.e. of degree independent of the formula size)
precomputation? A partial negative answer comes from the following remark. Note that
the k-Clique problem can be expressed at this level on finite ordered graph. For instance,
for k = 3 (see [12]):

Φ(z1, z2, z3) ≡ z1 < z2 ∧ z2 < z3 ∧ E(z1, z2) ∧ E(z2, z3) ∧ E(z3, z1)

Recall that the precomputation plus the delay (which is constant in Theorem 5) corre-
spond to the time necessary to produce the first output, hence to decide if the problem has
at least one solution. Then, a fixed polynomial precomputation for Enum·Σ0 would pro-
vide a fixed parameter tractable algorithm for the parameterized clique problem (see [8] for
definition and references on parameterized complexity). Such an algorithm is generally not
believed to exist (unless the two parameterized classes W[1] and FPT coincide). However,

Arnaud Durand and Yann Strozecki 7

as shown below, such an improvement of Theorem 5 can be found for some restricted class
of structures as input.

A structure S = 〈D,R1, . . . , Ri〉 is of degree bounded by d ∈ N (i.e. is d-degree bounded),
if for every x ∈ D, x occurs in at most d tuples of each relation Ri. The following result
shows that in the case of bounded degree structures as input an algorithm with linear
precomputation can be found. It is proved by using a representation of the query problem by
a mixed problem combining querying (but without second order variable) and satisfiability
testing.

I Theorem 6. Let d ∈ N. On d-degree bounded input structures, Enum·Σ0 ∈ Delay(|D|, 1)
where D is the domain of the input structure S.

Proof. One difference with the proof of Theorem 5 is that Φ(z, T) is now represented by a
pair made of a propositional formula Φ and a set of Σ0 formulas (interpreted on bounded
structure) without second order free variables.

Let c be the total number of distinct atomic formulas that appears in Φ(z, T). Each
atom is of the form T (y) or of the form R(x) with R ∈ σ and x,y subsets of z. Clearly,
Φ(z,T) can be seen as an “abstract“ propositional formula denoted by Φ over propositional
variables T (y) and R(x) where y and x are simply viewed as indices. Let J (Φ) be the set
of up to 2c models of Φ. One can recover elements (z∗,T∗) of Φ(S) from the satisfying
assignments of Φ as follows. Let J ∈ J (Φ) and J0 (resp. J1) the set of variables set to false
(resp. true) in J . Let us consider the first-order formula ϕJ(z) on signature σ below:

∧
T (y)∈J0

∧
T (y′)∈J1

r∨
i=1

yj 6= y′j ∧
∧

R(x)∈J1

R(x) ∧
∧

R(x)∈J0

¬R(x),

Let also:

ϕJ(S) = {z∗ : 〈S, z∗〉 |= ϕJ(z)}.

For z∗ ∈ ϕJ(S), we denote by J(z∗) the truth assignements of the c tuples (of the form
T (y) or R(x) with x and y subsets of variables taken from z) induced by J after instantiation
of the variables in z by z∗. In other words, in J(z∗), T ∗(y∗) is true iff T (y) ∈ J1 and R∗(x∗)
is true iff R(x) ∈ J1.

We now compare with the formulas Φ̃ in Theorem 5. The following are true:
- Let J ∈ J (Φ) and zi, the ith element of Dk. Suppose that zi ∈ ϕJ(S) then, J(zi) ∈

I(Φi).
- Conversely, let zi ∈ Dk and I ∈ I(Φi) then, there exists J ∈ J (Φ) such that zi ∈ ϕJ(S)

and I = J(zi)
From the discussion above, the following holds:

Φ(S) =
⋃

J∈J (Φ)

⋃
z∗∈ϕJ (S)

⋃
T∗∈[T (z∗,J(z∗))]

(z∗, T ∗) (1)

Let J and J ′ be distinct assignments. Observe that, if there exists an atomic formula
R(x) over which J and J ′ has a different value then ϕJ(S) ∩ ϕJ′(S) = ∅. In this case, the
two sets

⋃
z∗∈ϕJ (S)

⋃
T∗∈[T (z∗,J(z∗))]

(z∗, T ∗) and
⋃

z∗∈ϕJ′ (S)

⋃
T∗∈[T (z∗,J′(z∗))]

(z∗, T ∗)

8 Enumeration Complexity of logical query problems with s.o. variables

are obviously disjoint. Moreover, if J and J ′ agree on all atomic formulas of the form R(x),
then they differ on at least one T (y) and, in this case [T (z∗, J(z∗))] ∩ [T (z∗, J ′(z∗))] = ∅.
Thus the two above sets are also disjoint even if there might exist z∗ ∈ ϕJ(S) ∩ ϕJ′(S).

We can now describe how to enumerate Φ(S). The precomputation process is as follows.

Compute Φ, J (Φ) and, for each J ∈ J (Φ), the formula ϕJ(z). All this can be achieved
in constant time.
For each J ∈ J (Φ), run the necessary precomputation phase to enumerate the elements
of ϕJ(S). From [6] it is known that enumerating the result of a first order query over
a structure of bounded degree i.e. computing ϕJ(S) can be done with a O(|D|) pre-
computation and a O(1) delay. Hence, the total precomputation phase requires O(|D|)
steps.

For the enumeration phase, we conclude as for Theorem 5, taking into account that all
components in Equation (1) are pairwise disjoints. J

I Remark. Each query ϕJ(z) in the above proof is evaluated on a bounded degree structure
which makes the global enumeration tractable. However, the representation of a Σ0 formula
Φ(z, T) by an abstract propositional formula Φ and a collection of Σ0 formulas ϕJ(z) without
second order variable is general. Then, if S is any class of structures on which queries of
the form ϕJ(z) admit a linear precomputation and constant delay algorithm then, on S , it
also holds that Enum·Σ0 ⊆ Delay(|D|, 1).

3 Enumeration for Σ1 formulas

In this section, we prove a lemma, which allows to enumerate the union of the solu-
tions of two enumeration problems with a manageable delay. It is then used to prove that
Enum·Σ1 ⊆ DelayP.

I Definition 7. Let R(x, y) and S(x, y) be two polynomially balanced predicates. The union
of R and S, denoted by (R ∪ S), is defined by: for all x, y, (R ∪ S)(x, y) holds if and only if
R(x, y) holds or S(x, y) holds.

Recall that R(x) denotes the finite set {y | R(x, y)}. Assume that Enum·R and Enum·S
are in Delay(g(n), f(n)). If, for all x, R(x)∩S(x) = ∅ then Enum·(R∪S) ∈ Delay(g(n), f(n)).
Similarly, if there exist algorithms with precomputation g(n) and delay f(n) that enumerate
the solutions of Enum·R and Enum·S with respect to the same linear ordering < on the
output space, then Enum·(R ∪ S) ∈ Delay(g(n), f(n)) ([6, 2]). The following result shows
that some kind of closure under union can be established without disjointness conditions
nor assumption on the ordering of enumeration.

I Proposition 8. Let f : N → N, g : N → N, h : N → N and R,S be two polynomially
balanced predicates such that S can be decided in time O(h(n)). Suppose that Enum·R
and Enum·S are in Delay(g(n), f(n)) then, Enum·R ∪ S is in Delay(g(n), f(n) + h(n)).

Proof. Let MR and MS be two RAM machines, which solve Enum·R and Enum·S. One
builds a machine M(R∪S) which solves Enum·(R∪S) by running MR and MS in parallel on
the instance x. The behavior of M(R∪S) is described in Algorithm 1.

At each step M(R∪S) produces a new solution y of R(x) thanks to MR and it tests if
y ∈ S(x) in time h(|x|), by hypothesis. If y /∈ S(x) it outputs it, otherwise it is discarded

Arnaud Durand and Yann Strozecki 9

Algorithm 1: Enumeration algorithm for Enum·(R ∪ S)
Data: An instance x
Result: The elements of R(x) ∪ S(x)
y1 ←− First element of the enumeration of R(x)
y2 ←− First element of the enumeration of S(x)
while y1 6= END ∨ y2 6= END do

if y1 6= END ∧ y1 /∈ S(x) then
Output y1

else
Output y2 ;
y2 ←− next element of the enumeration of S(x)

if y1 6= END then
y1 ←− next element of the enumeration of R(x)

and the next solution of S(x) given by MS is computed and outputted2. If there is no
solution left in R(x) (resp. S(x)), it finishes the enumeration thanks to MR (resp. MS).

Remark that if M(R∪S) has enumerated k elements of S(x) thanks to MS then it has
also found and discarded k elements of R(x) ∩ S(x) given by MR. Therefore if M(R∪S) has
outputted all S(x), it has used MR to produce |S(x)| elements of R(x) ∩ S(x), which must
then satisfy S(x) = S(x) ∩ R(x). Therefore the enumeration of the remaining elements of
R(x) does not create any repetition. Moreover all elements of R(x) ∩ S(x) are enumerated
by MS only, thus the algorithm makes no repetition.

Since, at each step of the algorithm we simulate MR and MS to let them produce at
most one solution, the delay of M(R∪S) is bounded by the sum of the delays of MR and MS ,
that is 2f(|x|) plus h(|x|) the time to do one membership test. J

I Corollary 9. Let Φ(y, T) = ∃xϕ(x,y, T) be a first order formula with |x| = k. Assume that
there is an algorithm such that, for all input structures S of domain D and for all k-tuples
x∗ of S, enumerates the elements of Φx∗(S) where Φx∗(y, T) = ϕ(x∗,y, T), with precom-
putation g(|D|) and delay f(|D|). Then Enum·Φ can be computed with a O(g(|D|)|D|k)
precomputation and a delay O(f(|D|)|D|k).

Proof. Remark that, for all models S of domain D, Φ(S) = ∪x∗∈Dk Φx∗(S). We can apply
the previous proposition to this union of |D|k enumerations problems. For each x∗ ∈ Dk,
one has to compute Φx∗(y, T) and do the corresponding precomputation in time O(g(|D|)),
which accounts for a total precomputation of O(g(|D|)|D|k). A formula Φx∗(y, T) is of
constant size, therefore checking if (S,y∗, T ∗) |= Φx∗(y, T) can be done in constant time.
By induction, one can easily generalize Proposition 8 to handle the union of |D|k predicates.
This yields a delay in O(|D|k × f(|D|) + |D|k) = O(f(|D|)|D|k). J

The previous corollary allows to remove the first level of existential quantification of any
formula with a polynomial slowdown only. As a consequence, we have a polynomial delay
enumeration algorithm for any problem in Enum·Σ1.

I Theorem 10. Enum·Σ1 ⊆ DelayP. More precisely, Enum·Σ1 can be computed with
precomputation O(|D|h+k) and delay O(|D|k) where h is the number of free first order vari-

2 note that it can be y itself

10 Enumeration Complexity of logical query problems with s.o. variables

ables of the formula, k the number of existentially quantified variables and D is the domain
of the input structure.

Proof. Let ∃xϕ(x,y, T) be a formula of Σ1 and S be a structure. By Theorem 5, we know
that for each k-uple x∗, the solutions of ϕ(x∗,y, T) can be enumerated with precomputation
O(|D|h) and a delay O(1). Thus, by Corollary 9, we know that Enum·∃xϕ(x, y, T) can be
computed with precomputation O(|D|h+k) and delay O(|D|k). J

Again, for Σ1 queries on structures of bounded degree a better bound can be found at
least for the model checking problem. The following holds with a proof similar to (the first
steps of) that of Theorem 6.
I Proposition 11. Let d ∈ N. Checking whether Φ(S) = ∅ where Φ(z, T) ∈ Σ1 and S is a
d-degree bounded input structures can be done in time O(|D|) (in data complexity).

It is however open whether the result can be extended in the enumeration setting to
prove a linear delay algorithm for this latter kind of query.

3.1 Relation with DNF formulas
In this part, we examine more closely the relationships between the enumeration problem
for Σ1-queries and the enumeration of the solutions of restricted DNF-formulas. Let ψ be a
DNF-formula such that each clause is of size at most l. Remark that the number of clauses
cannot be larger than nl where n is the number of variables. We say that such a formula is
in DNF(l) and we note Enum·DNF(l) the problem Enum·DNF restricted to DNF(l).

Let now be Φ a formula ∃xϕ(x, T) where T is a second order variable of arity 1 and the
tuple x is such that |x| = k. We also assume that ϕ is quantifier-free in disjunctive normal
form and that each of its clauses contains at most l occurrences of a term involving T .
Remark that l ≤ k, because each occurrence of T in a clause must be applied to a different
variable. On the other hand, if l < k, one can rename the variables used in each clause of ϕ
so that we obtain an equivalent formula with only k variables. Therefore the parameters k
and l are essentially the same. We denote by Σ1(l) the set of such formulas (with k = l).
I Remark. Here we do not allow free first-order variables. It is always possible to take care
of them with a polynomial slowdown in the precomputation only.

Moreover, the restriction on the arity of the second order variable could be lifted and we
would obtain essentially the same results. We choose this restriction, because in this setting,
we have the parameter k and l equal which makes the next propositions easier to state and
understand.
I Proposition 12. If Enum·DNF(l) can be solved with precomputation g(n) and delay f(n),
where n is the number of variables of the formula, then for all formulas Φ ∈ Σ1(l), Enum·Φ
can be solved with precomputation g(n) and delay f(n), where n is the size of the domain.

Proof. To prove that, fix a formula Φ ≡ ∃xϕ(x, T) ∈ Σ1(l). Let S be the input structure
and D its domain. Let Φ̃ be the propositional formula associated to Φ as before. It is the
disjunction of the nl formulas Φ(x∗, T). Each of the formula Φ(x∗, T) is a DNF-formula
with clauses of size at most l. Therefore the formula Φ̃ is in DNF(l), has |D| variables and
its solutions are in bijection with the solutions of Φ. J

I Proposition 13. There is a formula Φ in Σ1(l, l) such that the following holds. If Enum·Φ
can be solved with precomputation g(n) and delay f(n), where n is the size of the domain,
then Enum·DNF(l) can be solved with precomputation g(n) and delay f(n), where n is the
number of variables of the formula.

Arnaud Durand and Yann Strozecki 11

Proof. Let σ be the language {Pi,j}i+j≤l, where Pi,j is a l-ary predicate. A predicate Pi,j

represents, in the reduction, a clause whose first i variables appear positively and the next
j appear negatively. The second order variable T represents the set of variables set to true.
Let

θi,j(T, x1, . . . , xl) ≡
∧
s≤i

xs ∈ T ∧
∧

i<s≤l

xs /∈ T

and let
Φ ≡ ∃x1, . . . , xl

∨
i+j≤l

(Pi,j(x1, . . . , xl) ∧ θi,j(T, x1, . . . , xl)).

Let now ψ be a DNF-formula over the variables V = {v1, . . . , vn}. We reduce the
enumeration of the solutions of ψ to the enumeration of Φ(S). The domain of S is the set
V and Pi,j(x1, . . . , xl) holds if and only if there is a clause in ψ whose variables appearing
positively are x1, . . . , xi and those appearing negatively are xi+1, . . . , xi+j . Remark now that
T ∗ ∈ Φ(S) if and only if T ∗ represents an assignment of the variables in V which satisfies
ψ. Thus the solutions of ψ are in bijection with Φ(S) which achieves the proof. J

The above propositions shows how the enumeration complexity of Σ1 queries and Enum·DNF
are intimately related. Hence, to improve our results on Enum·Σ1, one has to study the
problem Enum·DNF(l). The following question seems quite challenging:

Open Question: prove (or disprove) that there exists an enumeration algorithm for
Enum·DNF(l) whose delay does not depend on l or whose delay is better than O(nl).

4 Enumeration for Π1 formulas and beyond

In [12], it is shown that the propositional satisfiability problem for a 3-CNF formula can
be expressed as a query problem for a Π1 formula. The following result then holds.

I Proposition 14. Unless P = NP, there is no polynomial delay algorithm for Enum·Π1.
The results still holds even for structure of bounded degree as input.

Proof. See [12]. For the case of bounded degree structures, remark that it is well-known
that the satisfiability problem is hard even for 3-CNF formulas such that each variable
appears (positively or negatively) in at most 3 clauses. For such propositional formulas, the
structures obtained after reduction in [12] is of bounded degree. J

As it is shown below, it is even possible to define the satisfiability problem by a quite
restricted Π1 formula. A 3-CNF formula ϕ can be encoded by a structure Sϕ of signature
{C, a1, a2, a3, a4} where C is a 4-ary predicate and a1, a2, a3, a4 are constants. The domain
of Sϕ contains as many elements as variables in ϕ. Let x, y and z be elements of the
domain, C(ai, x, y, z,) is true if the clause ¬i,1x∨¬i,2y ∨¬i,3z appears in ϕ where ¬i,j = ¬
if i ≤ j (and ¬i,j = ε if not). In other words, i encodes the number of variables that appear
negatively in the clause. Let Ψ(T, T1, T2, T3) be the following Π1 formula:

∀x1∀x2∀x3∀a
(C(a, x1, x2, x3)→ T1(a, x1) ∨ T2(a, x2) ∨ T3(a, x3))∧∧4

i=1
∧3

j=1 Tj(ai, x1)↔ ¬i,jT (x1)
(2)

12 Enumeration Complexity of logical query problems with s.o. variables

Clearly, there is a bijective correspondence between the satisfying assignments of ϕ and
the set Ψ(Sϕ). Remark now that the quantifier free part of Ψ is in CNF and is such that all
its clauses except one have at most two occurences of a second-order free variable.

In [12], a first-order formula Φ defines the problem of computing the cardinal of Φ(S).
Theorem 2 of [12] describes the strict inclusions of the classes of counting functions defined
by the number of quantifier alternations. It can be easily transposed into the following
theorem on enumeration problems, if we assume all models to have a total order.

I Theorem 15. On linearly ordered structures, we have the following inclusions: Enum·Σ0 (
Enum·Σ1 (Enum·Π1 (Enum·Σ2 (Enum·Π2.

Moreover, there is a problem in Enum·Π2, which is complete up to parsimonious re-
duction for all problems definable by a polynomially balanced predicate (a polynomial time
reduction f between two decision problems A and B is parsimonious if, for each valid
instance x, it establishes a bijective correspondance between the solutions sets A(x) and
B(f(x)). See, for example, [12] for a precise definition). Therefore the hierarchy collapses
at Enum·Π2.

4.1 Feasible classes beyond Σ1

We now consider fragments of Π2 and Σ2 with a good expressive power and whose associated
enumeration problems remain tractable. Let C be a subclass of propositional formulas.

Enum·SAT(C)
Input: A propositional CNF formula ϕ in C
Output: an enumeration of the satisfying assignments of ϕ.

A CNF formula is Horn (resp. anti-Horn) if it is equivalent to a formula whose clauses
have at most one positive (resp. negative) literal. It is bijunctive if it is equivalent to a CNF
formula with clauses of length two. Finally, it is affine if it is equivalent to a system of linear
equations over the two-element field. We first examinate the immediate consequence of the
following result and the fact that to solve Enum·Φ, one only has to enumerate the solutions
obtained from those of Φ̃ as in Theorem 5.
I Proposition 16 ([5]). The problem Enum·SAT(C) is in DelayP when C is one of the
following classes: Horn formulas, anti-Horn formulas, affine formulas, bijunctive (2CNF)
formulas

I Corollary 17. Let Φ(z, T) be a formula, such that, for all σ structures, all propositional
formulas Φ̃i are either Horn, anti-Horn, affine or bijunctive. Then Enum·Φ ∈ DelayP.

Proof. Let Φ(z, T) be a formula, with |z| = k and S a structure of domain D. Let zi be an
enumeration of the k-tuples of D. Recall that the set of solutions of Φ(zi, T) is equal to:

⋃
I∈I(Φi)

⋃
T∗∈[T (zi,I)]

(zi, T
∗).

Furthermore, we know that Φ̃i is either Horn, anti-Horn, affine or bijunctive and that
it is a Π1 formula. By construction, it is of size polynomial in |D|, hence its models can
be enumerated in polynomial delay by Proposition 16. The enumeration of the solutions of
Enum·Φ on the model S is done in polynomial delay as follows:

for each zi compute the formula Φ̃i

Arnaud Durand and Yann Strozecki 13

enumerate the models of each Φ̃i in polynomial delay
for each model I of Φ̃i, build in polynomial time the solution (zi, T (zi, I))
for each solution (zi, T (zi, I)), generate by Gray code enumeration the solutions (zi, T

∗)
with T ∗ ∈ [T (zi, I)]

Remark that for two differents zi the enumerated solutions are disjoint.
Moreover, for I 6= J , T (zi, I) and T (zi, J) differs on at least one value. Hence, T (zi, I)∩

T (zi, J) = ∅. Therefore, there are no repetition in the previously described algorithm. J

The condition in Corollary 17 is semantic: it applies to Φ̃ and not to Φ, which makes
it not obvious to characterize. The following result holds and contrast with the case of
Formula (2) which shows that Π1 queries in conjunctive normal form that have one clause
with three occurrences of a second order variable are hard to enumerate.

I Corollary 18. Let Φ(z, T) ≡ ∃y∀xΨ(x,y, z, T) where Ψ is in conjunctive normal form and
all its clauses contain at most 2 occurrences of a free predicate then Enum·Φ ⊆ DelayP.

Proof. Let S be a finite structure and Φ(z, T) as above. For such a Φ(z, T), the formula Φ̃i

is of the form (set |y| = p)

np−1∨
j=1

Ψi(zi,yj)

where Ψi(zi,yj) is a 2-CNF formula of size polynomial in |S|. From Proposition 16, models
of such formulas can be enumerated with polynomial delay. The union of models of the poly-
nomially many formulas Ψi(zi,yj) can be enumerated following the method of Proposition 8.
The delay is then polynomial. J

The above corollary applies to RΣ2 formulas defined in [12]. It has been shown there
that counting the models of such formulas can be done by a fully polynomial randomized
approximation scheme.

I Example 19. The formula IS(T) ≡ ∀x∀yT (x)∧T (y)⇒ ¬E(x, y) satisfies the condition of
the previous corollary therefore Enum·IS ∈ DelayP. Some other interesting objects such
as vertex covers can be defined by a formula of this form.

The next result is similar to corollary 18, but it uses in its proof a Horn or an anti-Horn
formula instead of a 2-CNF formula.

I Corollary 20. Let Φ(z, T) ≡ ∀x∃yΨ1(x, y, z, T) where Ψ is in disjunctive normal form
such that each of its clauses contain only one occurence of a free second order variable and
all these occurences are of the same polarity. Then Enum·Φ ⊆ DelayP.

I Example 21. The formula DS(T) ≡ ∀x∃y T (y) ∧ E(x, y) holds if and only if T is a
dominating set. Since DS(T) satisfies the hypothesis of Corollary 20, Enum·DS ∈ DelayP.

I Example 22. Recall that HS(T) ≡ ∀x(T (x) ⇒ V (x)) ∧ ∀y∃xE(y) ⇒ (T (x) ∧ R(x, y))
characterizes the hitting sets of an hypergraph. It does not exactly satisfy the hypothesis of
the previous corollary because T appears with different polarity in ∀x(T (x)⇒ V (x)) and in
∀y∃xE(y) ⇒ (T (x) ∧ R(x, y)). However, if we consider the formula H̃S(T)i, we see that it
is a Horn formula which enables us to conclude by Corollary 17 that Enum·HS ∈ DelayP.

14 Enumeration Complexity of logical query problems with s.o. variables

5 Concluding remarks

The results of this paper try to give a first overview of the complexity of first order query
problems with possibly free second order variables. Not surprisingly, the complexity in-
creases rapidly with alternation of quantifiers: if the first levels Σ0 and Σ1 admit efficient
enumeration algorithm (with constant or polynomial delay), the Π1 is already able to ex-
press hard problems. However, some interesting subcases beyond Σ1 are exhibited which
admit rather efficient enumeration algorithms.

An interesting question is whether one can extend our result for first order logic with
additional operators (such as fixpoints or maximization/minimization operators). Among
them, let Enum·MaxTΦ(T) be the problem of enumerating all maximal models of ϕ.

It is easy to see that if Φ satisfies the hypotheses of Corollary 18, then Enum·MaxTϕ(T)
is in DelayP by a result of [9] (this case captures among other things the problem of
enumerating the maximal (for inclusion) independent sets of a graph). On the other hand,
since enumerating the maximal models of a Horn formula is hard (see [9] also), obtaining
such a result when hypotheses of Corollary 20 are satisfied seems very unlikely.

References
1 G. Bagan. Mso queries on tree decomposable structures are computable with linear delay.

In Computer Science Logic, volume 4646, pages 208–222, 2006.
2 G. Bagan. Algorithmes et Complexité des Problèmes d’Énumération pour l’Évaluation de

Requêtes Logiques. PhD thesis, Université de Caen, 2009, 2009.
3 G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant

delay enumeration. In Computer Science Logic, 21st International Workshop, CSL 2007,
16th Annual Conference of the EACSL, volume 4646 of Lecture Notes in Computer Science,
pages 208–222. Springer, 2007.

4 B. Courcelle. Linear delay enumeration and monadic second-order logic. Discrete Applied
Mathematics, 157(12):2675–2700, 2009.

5 N. Creignou and J.J. Hébrard. On generating all solutions of generalized satisfiability
problems. RAIRO Theoretical Informatics and Applications, 31(6), 1997.

6 A. Durand and E. Grandjean. First-order queries on structures of bounded degree are
computable with constant delay. ACM Trans. Comput. Log., 8(4), 2007.

7 R. Fagin. Generalized first-order spectra and polynomial-time recognizable sets. American
Mathematical Society, pages 43–74, 1974.

8 J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
9 D.J. Kavvadias, M. Sideri, and E.C. Stavropoulos. Generating all maximal models of a

Boolean expression. Information Processing Letters, 74(3-4):157–162, 2000.
10 L. Libkin. Elements of finite model theory. EATCS Series. Springer, 2004.
11 S. Lindell. A normal form for first-order logic over doubly-linked data structures. Interna-

tional Journal of Foundations of Computer Science, 19(1):205–217, 2008.
12 S. Saluja, K.V. Subrahmanyam, and M.N. Thakur. Descriptive complexity of# P functions.

Journal of Computer and System Sciences, 50(3):493–505, 1995.

	Preliminaries
	Enumeration for 0 formulas
	Enumeration for 1 formulas
	Relation with DNF formulas

	Enumeration for 1 formulas and beyond
	Feasible classes beyond 1

	Concluding remarks

