
Complexity of enumeration and a practical
example in cheminformatics

Yann Strozecki

Université de Versailles St-Quentin-en-Yvelines
Laboratoire PRiSM

May 2014, Séminaire du LIMOS

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, turning an

implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, turning an

implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, turning an

implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, turning an

implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.

I Motivations: database queries, optimization, turning an
implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, turning an

implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, turning an

implicit representation to an explicit one.

Perfect matchings:

1

2

3

4

5

6

7

8

Solutions :

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

1
2
3
4

5
6
7
8

Enumeration Complexity
Theoretical framework
Methods for enumeration

A practical enumeration problem from cheminformatics
Enumeration of planar maps with constraints
Our algorithm: Kékulé

Framework

Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y | A(x, y)} : counting problem (class]P)
I {y | A(x, y)} : enumeration problem (class EnumP)

In quite a lot of papers, an order on the enumeration is required. It
often makes problems harder and is not considered here.

Framework

Polynomially balanced predicate A(x, y), decidable in polynomial
time.

I ∃?yA(x, y) : decision problem (class NP)
I]{y | A(x, y)} : counting problem (class]P)
I {y | A(x, y)} : enumeration problem (class EnumP)

In quite a lot of papers, an order on the enumeration is required. It
often makes problems harder and is not considered here.

Complexity measure

1. The total time
I polynomial total time: TotalP (Transversal hypergraph)
I constant amortized time: CAT (Tree enumeration)

2. The delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching)
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

3. The space
Polynomial in the instance or in the output ?

Complexity measure

1. The total time
I polynomial total time: TotalP (Transversal hypergraph)
I constant amortized time: CAT (Tree enumeration)

2. The delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching)
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

3. The space
Polynomial in the instance or in the output ?

Complexity measure

1. The total time
I polynomial total time: TotalP (Transversal hypergraph)
I constant amortized time: CAT (Tree enumeration)

2. The delay
I incremental polynomial time: IncP (Circuits of a matroid)
I polynomial delay: DelayP (Perfect Matching)
I Constant or linear delay

I A two steps algorithm: preprocessing + generation
I An ad-hoc RAM model.

3. The space
Polynomial in the instance or in the output ?

Relation between classes

I SDelayP: produce the next solution from the last one only in
polynomial time

I QueryP: produce the i th solution in polynomial time

Proposition
Conditional separation under P 6= NP hypothesis:

QueryP (SDelayP (DelayP ⊆ IncP (TotalP (EnumP

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Issue: No good notion of reduction out of parsimonious reduction
and thus no complete problem except for EnumP!

Relation between classes

I SDelayP: produce the next solution from the last one only in
polynomial time

I QueryP: produce the i th solution in polynomial time

Proposition
Conditional separation under P 6= NP hypothesis:

QueryP (SDelayP (DelayP ⊆ IncP (TotalP (EnumP

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Issue: No good notion of reduction out of parsimonious reduction
and thus no complete problem except for EnumP!

Relation between classes

I SDelayP: produce the next solution from the last one only in
polynomial time

I QueryP: produce the i th solution in polynomial time

Proposition
Conditional separation under P 6= NP hypothesis:

QueryP (SDelayP (DelayP ⊆ IncP (TotalP (EnumP

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Issue: No good notion of reduction out of parsimonious reduction
and thus no complete problem except for EnumP!

Relation between classes

I SDelayP: produce the next solution from the last one only in
polynomial time

I QueryP: produce the i th solution in polynomial time

Proposition
Conditional separation under P 6= NP hypothesis:

QueryP (SDelayP (DelayP ⊆ IncP (TotalP (EnumP

Open question: is DelayP 6= IncP modulo some complexity
hypothesis ?

Issue: No good notion of reduction out of parsimonious reduction
and thus no complete problem except for EnumP!

Randomized enumeration algorithm

Two ways of introducing randomness:

1. We can allow some randomization in our algorithms. They
must satify that all solutions are enumerated correctly with
probability 1− ε.

2. We may want to solve the Uniform generation problem:
generate (almost) uniformly at random a solution of a
problem.

Randomized enumeration algorithm

Two ways of introducing randomness:

1. We can allow some randomization in our algorithms. They
must satify that all solutions are enumerated correctly with
probability 1− ε.

2. We may want to solve the Uniform generation problem:
generate (almost) uniformly at random a solution of a
problem.

Uniform generation + space implies efficient
enumeration

Theorem
If A has a polytime almost uniform random generator, then
Enum·A ∈ IncPP.

Idea:
I generate solutions randomly

I put them in an efficient data structure (to avoid repetitions)
I coupon collector problem
I amortize the output of solutions

The space used is huge as with all enumeration algorithms using a
queue to store all found solutions!

Uniform generation + space implies efficient
enumeration

Theorem
If A has a polytime almost uniform random generator, then
Enum·A ∈ IncPP.

Idea:
I generate solutions randomly
I put them in an efficient data structure (to avoid repetitions)

I coupon collector problem
I amortize the output of solutions

The space used is huge as with all enumeration algorithms using a
queue to store all found solutions!

Uniform generation + space implies efficient
enumeration

Theorem
If A has a polytime almost uniform random generator, then
Enum·A ∈ IncPP.

Idea:
I generate solutions randomly
I put them in an efficient data structure (to avoid repetitions)
I coupon collector problem

I amortize the output of solutions

The space used is huge as with all enumeration algorithms using a
queue to store all found solutions!

Uniform generation + space implies efficient
enumeration

Theorem
If A has a polytime almost uniform random generator, then
Enum·A ∈ IncPP.

Idea:
I generate solutions randomly
I put them in an efficient data structure (to avoid repetitions)
I coupon collector problem
I amortize the output of solutions

The space used is huge as with all enumeration algorithms using a
queue to store all found solutions!

Uniform generation + space implies efficient
enumeration

Theorem
If A has a polytime almost uniform random generator, then
Enum·A ∈ DelayPP.

Idea:
I generate solutions randomly
I put them in an efficient data structure (to avoid repetitions)
I coupon collector problem
I amortize the output of solutions

The space used is huge as with all enumeration algorithms using a
queue to store all found solutions!

Uniform generation + space implies efficient
enumeration

Theorem
If A has a polytime almost uniform random generator, then
Enum·A ∈ DelayPP.

Idea:
I generate solutions randomly
I put them in an efficient data structure (to avoid repetitions)
I coupon collector problem
I amortize the output of solutions

The space used is huge as with all enumeration algorithms using a
queue to store all found solutions!

Combinatorial algorithms

1. Gray codes to enumerate all integers of size n in constant
delay.

2. Tree enumeration or linear extension of a partial order in
constant amortized time by local transformations.

3. Maximal stable sets in lexicographic order using a priority
queue and local transformation (DelayP)

4. Saturation of a set of solutions (IncP)
5. Method with a set of forbidden elements and necessary

elements (DelayP)
6. Parallel enumeration (DelayP)

Combinatorial algorithms

1. Gray codes to enumerate all integers of size n in constant
delay.

2. Tree enumeration or linear extension of a partial order in
constant amortized time by local transformations.

3. Maximal stable sets in lexicographic order using a priority
queue and local transformation (DelayP)

4. Saturation of a set of solutions (IncP)
5. Method with a set of forbidden elements and necessary

elements (DelayP)
6. Parallel enumeration (DelayP)

Combinatorial algorithms

1. Gray codes to enumerate all integers of size n in constant
delay.

2. Tree enumeration or linear extension of a partial order in
constant amortized time by local transformations.

3. Maximal stable sets in lexicographic order using a priority
queue and local transformation (DelayP)

4. Saturation of a set of solutions (IncP)

5. Method with a set of forbidden elements and necessary
elements (DelayP)

6. Parallel enumeration (DelayP)

Combinatorial algorithms

1. Gray codes to enumerate all integers of size n in constant
delay.

2. Tree enumeration or linear extension of a partial order in
constant amortized time by local transformations.

3. Maximal stable sets in lexicographic order using a priority
queue and local transformation (DelayP)

4. Saturation of a set of solutions (IncP)
5. Method with a set of forbidden elements and necessary

elements (DelayP)

6. Parallel enumeration (DelayP)

Combinatorial algorithms

1. Gray codes to enumerate all integers of size n in constant
delay.

2. Tree enumeration or linear extension of a partial order in
constant amortized time by local transformations.

3. Maximal stable sets in lexicographic order using a priority
queue and local transformation (DelayP)

4. Saturation of a set of solutions (IncP)
5. Method with a set of forbidden elements and necessary

elements (DelayP)
6. Parallel enumeration (DelayP)

Combinatorial algorithms

1. Gray codes to enumerate all integers of size n in constant
delay.

2. Tree enumeration or linear extension of a partial order in
constant amortized time by local transformations.

3. Maximal stable sets in lexicographic order using a priority
queue and local transformation (DelayP)

4. Saturation of a set of solutions (IncP)
5. Method with a set of forbidden elements and necessary

elements (DelayP)
6. Parallel enumeration (DelayP)

Logic algorithms

I Stable set ≡ ∀x∀y x ∈ I ∧ y ∈ I ⇒ ¬E(x, y).

I Question : generate the solutions to this kind of query.
I The delay is good when the formula has no quantifier or only

existential ones.
I Solutions of unbounded size.
I Applications: generating maximal stable sets, vertex covers,

edges covers, graph colorations . . .

Logic algorithms

I Stable set ≡ ∀x∀y x ∈ I ∧ y ∈ I ⇒ ¬E(x, y).
I Question : generate the solutions to this kind of query.

I The delay is good when the formula has no quantifier or only
existential ones.

I Solutions of unbounded size.
I Applications: generating maximal stable sets, vertex covers,

edges covers, graph colorations . . .

Logic algorithms

I Stable set ≡ ∀x∀y x ∈ I ∧ y ∈ I ⇒ ¬E(x, y).
I Question : generate the solutions to this kind of query.
I The delay is good when the formula has no quantifier or only

existential ones.

I Solutions of unbounded size.
I Applications: generating maximal stable sets, vertex covers,

edges covers, graph colorations . . .

Logic algorithms

I Stable set ≡ ∀x∀y x ∈ I ∧ y ∈ I ⇒ ¬E(x, y).
I Question : generate the solutions to this kind of query.
I The delay is good when the formula has no quantifier or only

existential ones.
I Solutions of unbounded size.

I Applications: generating maximal stable sets, vertex covers,
edges covers, graph colorations . . .

Logic algorithms

I Stable set ≡ ∀x∀y x ∈ I ∧ y ∈ I ⇒ ¬E(x, y).
I Question : generate the solutions to this kind of query.
I The delay is good when the formula has no quantifier or only

existential ones.
I Solutions of unbounded size.
I Applications: generating maximal stable sets, vertex covers,

edges covers, graph colorations . . .

Logic algorithms

I Stable set ≡ ∀x∀y x ∈ I ∧ y ∈ I ⇒ ¬E(x, y).
I Question : generate the solutions to this kind of query.
I The delay is good when the formula has no quantifier or only

existential ones.
I Solutions of unbounded size.
I Applications: generating maximal stable sets, vertex covers,

edges covers, graph colorations . . .

Logic algorithms (cont’d)

Variation on the formula and the structure:

I If the formula is an acyclic conjunctive query: linear delay
(Simple Paths).

I If the formula is first order + structure of bounded degree:
constant delay (Cliques in a Bounded Degree Graph).

I Regular XPath over data trees in constant delay.
I A linear delay algorithm when the formula is MSO and the

graph is of bounded treewidth or cliquewidth. Use a
combinatorial algorithm on DAGs.

I Dichotomy for boolean CSP either hard or DelayP.

Logic algorithms (cont’d)

Variation on the formula and the structure:

I If the formula is an acyclic conjunctive query: linear delay
(Simple Paths).

I If the formula is first order + structure of bounded degree:
constant delay (Cliques in a Bounded Degree Graph).

I Regular XPath over data trees in constant delay.

I A linear delay algorithm when the formula is MSO and the
graph is of bounded treewidth or cliquewidth. Use a
combinatorial algorithm on DAGs.

I Dichotomy for boolean CSP either hard or DelayP.

Logic algorithms (cont’d)

Variation on the formula and the structure:

I If the formula is an acyclic conjunctive query: linear delay
(Simple Paths).

I If the formula is first order + structure of bounded degree:
constant delay (Cliques in a Bounded Degree Graph).

I Regular XPath over data trees in constant delay.
I A linear delay algorithm when the formula is MSO and the

graph is of bounded treewidth or cliquewidth. Use a
combinatorial algorithm on DAGs.

I Dichotomy for boolean CSP either hard or DelayP.

Logic algorithms (cont’d)

Variation on the formula and the structure:

I If the formula is an acyclic conjunctive query: linear delay
(Simple Paths).

I If the formula is first order + structure of bounded degree:
constant delay (Cliques in a Bounded Degree Graph).

I Regular XPath over data trees in constant delay.
I A linear delay algorithm when the formula is MSO and the

graph is of bounded treewidth or cliquewidth. Use a
combinatorial algorithm on DAGs.

I Dichotomy for boolean CSP either hard or DelayP.

Logic algorithms (cont’d)

Variation on the formula and the structure:

I If the formula is an acyclic conjunctive query: linear delay
(Simple Paths).

I If the formula is first order + structure of bounded degree:
constant delay (Cliques in a Bounded Degree Graph).

I Regular XPath over data trees in constant delay.
I A linear delay algorithm when the formula is MSO and the

graph is of bounded treewidth or cliquewidth. Use a
combinatorial algorithm on DAGs.

I Dichotomy for boolean CSP either hard or DelayP.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :

I Use known graph polynomials for cycle cover, paths, perfect
matchings . . .

I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .

I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.

I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.
I Words separating probabilistic automata.

Algebraic algorithms

I Spanning tree ≡ monomials of the
determinant of the Kirchoff matrix.

I Question : enumerate the monomials
of an easy to evaluate polynomial.

I Easy when the polynomial is
multilinear, harder otherwise.

I Probabilistic enumeration.

Applications :
I Use known graph polynomials for cycle cover, paths, perfect

matchings . . .
I Spanning hypergraphs.
I Words separating probabilistic automata.

Enumeration Complexity
Theoretical framework
Methods for enumeration

A practical enumeration problem from cheminformatics
Enumeration of planar maps with constraints
Our algorithm: Kékulé

Nice pictures to impress the layman

The motifs

Definition
A map G = (Vc,V ,E , next) is a motif if
1. Vc contains only one vertex c called the center
2. each vertex in V is colored with a color in A a fixed alphabet
3. E = {(c, u), u ∈ V }
4. next gives an order on the edges of c

Y

a

a

a

I

a

a

X

a a

a a

V

b b

a

next J

a

b

Map of motifs
Definition
A connected planar map G = (Vc,V ,E , next) is a map of motifs
based onM if,
1. each vertex in V is connected to at most one vertex in V ,

which is of the complementary colour.
2. when all edges between vertices in V are removed, the

remaining connected components must all be motifs ofM

Y

a

a

a Ia a

Y

a

a

a

Y

a

a

a Ia a

Ia a

Ia a

Y

a

a

a

Figure : Example of two maps of motifs based onM = {Y, I}, the first
map is unsaturated while the second map is saturated.

Molecular map
Definition
Let G = (Vc,V ,EG , nextG) be a saturated map of motifs based
onM, we define the molecular map M = (V ,EM , nextM):
1. V = Vc

2. (c1, c2) ∈ EM if it exists a path (c1, u, v, c2) in G
3. nextM ((c, c1)) = (c, c2) if it exists two paths (c, u1, v1, c1)

and (c, u2, v2, c2) in G and nextG((c, u1)) = (c, u2)

Y

I

I

I

Y

Figure : The molecular map corresponding to the saturated map of
motifs in Fig. 1

The indices

Why is a molecular map a good representation of a molecula ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1,S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The indices

Why is a molecular map a good representation of a cage ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1,S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like an
algorithm in DelayP or at least in linear total time.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like an
algorithm in DelayP or at least in linear total time.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like an
algorithm in DelayP or at least in linear total time.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like an
algorithm in DelayP or at least in linear total time.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain

3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a self balanced tree and
do an isomorphism test for each new solution.

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a self balanced tree and
do an isomorphism test for each new solution.

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a self balanced tree and
do an isomorphism test for each new solution.

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a self balanced tree and
do an isomorphism test for each new solution.

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a self balanced tree and
do an isomorphism test for each new solution.

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a self balanced tree and
do an isomorphism test for each new solution.

The less the steps, the better the algorithm!

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

First idea: generate trees. Since every connected map has a
spanning tree, it will make the generation exhaustive.

To generate them we use a bruteforce method and an isomorphism
test.

Open Problem: find a CAT algorithm to generate maps of motifs
which are trees

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

First idea: generate trees. Since every connected map has a
spanning tree, it will make the generation exhaustive.

To generate them we use a bruteforce method and an isomorphism
test.

Open Problem: find a CAT algorithm to generate maps of motifs
which are trees

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

First idea: generate trees. Since every connected map has a
spanning tree, it will make the generation exhaustive.

To generate them we use a bruteforce method and an isomorphism
test.

Open Problem: find a CAT algorithm to generate maps of motifs
which are trees

A new path

Second idea: paths are simpler than trees.

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Drawback: not every planar map has an Hamiltonian circuit. But
all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

The same can be done with cycles instead of paths.

A new path

Second idea: paths are simpler than trees.

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Drawback: not every planar map has an Hamiltonian circuit. But
all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

The same can be done with cycles instead of paths.

A new path

Second idea: paths are simpler than trees.

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Drawback: not every planar map has an Hamiltonian circuit. But
all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

The same can be done with cycles instead of paths.

A new path

Second idea: paths are simpler than trees.

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Drawback: not every planar map has an Hamiltonian circuit. But
all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

The same can be done with cycles instead of paths.

A new path

Second idea: paths are simpler than trees.

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Drawback: not every planar map has an Hamiltonian circuit. But
all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

The same can be done with cycles instead of paths.

Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.

Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.

Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.

Example

J

a

b

V a

a

a

V’b

a

a

outline = {a, a, a, a}

Figure : A map of three motifs on AM = {V,V′, J} and its outline
before a fold operation.

Example

J

a

b

V a

a

a

V’b

a

a

outline = {a, a}

Figure : A map of three motifs on AM = {V,V′, J} and its outline after
a fold operation.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

Dynamic programming algorithm:
k is the number of positive letters in A.
We generate a k-dimensional array which allows to decide whether
a path can be extended by l motifs and be almost foldable.

Takes O(nk+1) but there are about C n paths and it reduces their
number by a large factor.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

Dynamic programming algorithm:
k is the number of positive letters in A.
We generate a k-dimensional array which allows to decide whether
a path can be extended by l motifs and be almost foldable.

Takes O(nk+1) but there are about C n paths and it reduces their
number by a large factor.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

Dynamic programming algorithm:
k is the number of positive letters in A.
We generate a k-dimensional array which allows to decide whether
a path can be extended by l motifs and be almost foldable.

Takes O(nk+1) but there are about C n paths and it reduces their
number by a large factor.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:

I Build the matrix M such that Mi,j is true if and only if the
subword wi . . .wj is foldable.

I In the enumeration algorithm a partially folded word is a set
of subwords.

I At each step reduce the first non folded letter with all possible
letter given by M .

I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:

I Build the matrix M such that Mi,j is true if and only if the
subword wi . . .wj is foldable.

I In the enumeration algorithm a partially folded word is a set
of subwords.

I At each step reduce the first non folded letter with all possible
letter given by M .

I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . .wj is foldable.

I In the enumeration algorithm a partially folded word is a set
of subwords.

I At each step reduce the first non folded letter with all possible
letter given by M .

I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . .wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.

I At each step reduce the first non folded letter with all possible
letter given by M .

I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . .wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letter given by M .

I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . .wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letter given by M .
I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate all different results of
sequences of reduction which yields an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . .wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letter given by M .
I The preprocessing is in O(n3) and the delay is linear.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). A signature
is the trace of a DFS. We keep the smallest when trying every
starting point.

For each non isomorphic map we must compute indices.

2. Computing all faces and their sizes: O(n)
3. The equivalence class of each vertex: O(n3)
4. Computing the minimum sparsity of a map. Currently Gray

Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). A signature
is the trace of a DFS. We keep the smallest when trying every
starting point.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)

3. The equivalence class of each vertex: O(n3)
4. Computing the minimum sparsity of a map. Currently Gray

Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). A signature
is the trace of a DFS. We keep the smallest when trying every
starting point.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)
3. The equivalence class of each vertex: O(n3)

4. Computing the minimum sparsity of a map. Currently Gray
Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). A signature
is the trace of a DFS. We keep the smallest when trying every
starting point.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)
3. The equivalence class of each vertex: O(n3)
4. Computing the minimum sparsity of a map. Currently Gray

Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). A signature
is the trace of a DFS. We keep the smallest when trying every
starting point.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)
3. The equivalence class of each vertex: O(n3)
4. Computing the minimum sparsity of a map. Currently Gray

Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Thanks!

Thanks!
Thanks,

Thanks!
Thanks, thanks,

Thanks!
Thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks,
thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks,
thanks, thanks,

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks,
thanks, thanks, thanks

Thanks!
Thanks, thanks, thanks, thanks, thanks, thanks, thanks,
thanks, thanks, thanks
Let’s all do enumeration

Open Questions

Enumeration:

1. Separate DelayP from IncP modulo ETH
2. Design a reduction compatible with low enumeration classes.

Cheminformatics:
1. A CAT algorithm to generate maps of motifs which are trees
2. A smaller family of backbones which still make the generation

exhaustive.
3. A better fold algorithm (constant delay, linear

precomputation).
4. A way to avoid some foldings.

	Enumeration Complexity
	Theoretical framework
	Methods for enumeration

	A practical enumeration problem from cheminformatics
	Enumeration of planar maps with constraints
	Our algorithm: Kékulé

