
Tutorial on Enumeration Complexity: Defining
Tractability

Yann Strozecki with Florent Capelli and Arnaud Mary

Dagstuhl Seminar on Enumeration in Data Management

Enumeration problems

I Enumeration problems: list all solutions rather than
deciding whether there is one or finding one.

I Complexity measures: total time and delay between solutions.

I Motivations: database queries, counting, optimization,
building libraries, datamining.

Perfect matching ?
Solution space:

Begin

End

Framework

An enumeration problem A is a function which associates to each
input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

The computation model for enumeration is a RAM with uniform
cost measure and an OUPTPUT instruction. Support efficient
data structures.

Complexity measures:

I total time
I delay
I space

Parameters:

I input size
I output size
I single solution size

Complexity classes

Several classes introduced in the 80’s [Johnson, Yannakakis and
Papadimitriou]. Preprocessing for some classes.

1. Polynomially balanced predicate: EnumP
2. Output polynomial: OutputP
3. Incremental polynomial time: IncP
4. Polynomial delay: DelayP
5. Strong polynomial delay: SDelayP
6. Constant Delay: CD

Classes above EnumP in the next talk [Kröll].

Complexity classes

Several classes introduced in the 80’s [Johnson, Yannakakis and
Papadimitriou]. Preprocessing for some classes.

1. Polynomially balanced predicate: EnumP
2. Output polynomial: OutputP
3. Incremental polynomial time: IncP
4. Polynomial delay: DelayP
5. Strong polynomial delay: SDelayP
6. Constant Delay: CD

Classes above EnumP in the next talk [Kröll].

Poly time testing

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in x.

Equivalent to the class NP.

Definition
A parsimonious reduction from A to B, two enumeration
problems, is a pair of polynomial time computable functions f, g
such that for all x, g(x) is a bijection from B(f(x)) to A(x).

I Useful to prove hardness of enumerating solutions of
NP-complete problems.

I Not general enough to prove hardness of natural problems.

Poly time testing

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in x.

Equivalent to the class NP.

Definition
A parsimonious reduction from A to B, two enumeration
problems, is a pair of polynomial time computable functions f, g
such that for all x, g(x) is a bijection from B(f(x)) to A(x).

I Useful to prove hardness of enumerating solutions of
NP-complete problems.

I Not general enough to prove hardness of natural problems.

Output polynomial

An output sensitive algorithm has its complexity depending on
both its input and output.

Definition
A problem A ∈ EnumP is in OutputP if there is a polynomial p
and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP 6= EnumP iff P 6= NP, using enumeration of solutions
of any NP-complete problem.

Question: is there a natural problem in OutputP but not in the
classes below?

Output polynomial

An output sensitive algorithm has its complexity depending on
both its input and output.

Definition
A problem A ∈ EnumP is in OutputP if there is a polynomial p
and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP 6= EnumP iff P 6= NP, using enumeration of solutions
of any NP-complete problem.

Question: is there a natural problem in OutputP but not in the
classes below?

Incremental time
A machine M enumerates A in incremental time f(t)g(n) if on
every input x, M enumerates t elements of A(x) in time f(t)g(|x|)
for every t ≤ |A(x)|.

Definition (Incremental polynomial time)
IncP is the set of enumeration problems such that there is an
algorithm in incremental time O(tanb), for inputs of size n and a, b
constants.

time

t solutions in time tanb

Saturation algorithm

Most algorithms in incremental time are saturation algorithms:
I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Saturation algorithm

Most algorithms in incremental time are saturation algorithms:
I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Relation to search problem

Search problem AnotherSol·A
Input: x and a set of solutions S ⊂ A(x)
Output: y ∈ A(x) \ S or] if there is none.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A ∈ FP.

Used for hardness proof: the generation of maximal models of
Horn formulas [Kavvadias et al.], dualization in distributive lattice
[Babin and Kuznetsov, Defrain and Nourine].

Relation to search problem

Search problem AnotherSol·A
Input: x and a set of solutions S ⊂ A(x)
Output: y ∈ A(x) \ S or] if there is none.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A ∈ FP.

Used for hardness proof: the generation of maximal models of
Horn formulas [Kavvadias et al.], dualization in distributive lattice
[Babin and Kuznetsov, Defrain and Nourine].

Relationship with total functions

Definition
A problem in TFNP is a polynomially balanced polynomial time
predicate A such that for all x, A(x) is not empty. An algorithm
solving A must produce an element of A(x) on input x.

TFNP = FPNP∩coNP

Proposition (Capelli, S. 2018)
TFNP = FP if and only if IncP = OutputP.

Proof: (⇒)Remark that AnotherSol·A is a TFNP problem
when A ∈ OutputP.
(⇐) Use many distinct copies of A(x) to obtain an OutputP
problem, an IncP algorithm allows to find one solution in FP.

Relationship with total functions

Definition
A problem in TFNP is a polynomially balanced polynomial time
predicate A such that for all x, A(x) is not empty. An algorithm
solving A must produce an element of A(x) on input x.

TFNP = FPNP∩coNP

Proposition (Capelli, S. 2018)
TFNP = FP if and only if IncP = OutputP.

Proof: (⇒)Remark that AnotherSol·A is a TFNP problem
when A ∈ OutputP.
(⇐) Use many distinct copies of A(x) to obtain an OutputP
problem, an IncP algorithm allows to find one solution in FP.

Polynomial Delay

The delay is the maximum time between the production of two
consecutive solutions in an enumeration.

Definition (Polynomial delay)
DelayP is the set of enumeration problems solved by an
algorithm whose delay is polynomial in the input.

DelayP ⊆ IncP

time

delay between two solutions nc

Reduction for DelayP problems

Proposition (Durand, S.)
Let A and B be two problems in DelayP then A ∪B is in
DelayP.

Proof sketch: Output a solution of A if it is not a solution of B
otherwise output a solution of B.

If the solutions are generated in the same order, just merge them
dynamically.

Definition (Polynomial delay reduction)
Turing reduction with only cartesian products and unions keeps
DelayP stable.

Similar to d-DNNF set circuits [Amarilli et al.].

Reduction for DelayP problems

Proposition (Durand, S.)
Let A and B be two problems in DelayP then A ∪B is in
DelayP.

Proof sketch: Output a solution of A if it is not a solution of B
otherwise output a solution of B.

If the solutions are generated in the same order, just merge them
dynamically.

Definition (Polynomial delay reduction)
Turing reduction with only cartesian products and unions keeps
DelayP stable.

Similar to d-DNNF set circuits [Amarilli et al.].

Reduction for DelayP problems

Proposition (Durand, S.)
Let A and B be two problems in DelayP then A ∪B is in
DelayP.

Proof sketch: Output a solution of A if it is not a solution of B
otherwise output a solution of B.

If the solutions are generated in the same order, just merge them
dynamically.

Definition (Polynomial delay reduction)
Turing reduction with only cartesian products and unions keeps
DelayP stable.

Similar to d-DNNF set circuits [Amarilli et al.].

Relationship between incremental and
polynomial delay

Definition (Incremental polynomial time hierarchy)
A problem A ∈ EnumP is in IncPa if there is a machine M which
solves it in incremental time O(tanb) for some constant b.

Proposition
IncP1 = DelayP.

Amortize generation of solutions, using a large queue: exponential
memory.

Relationship between incremental and
polynomial delay

Definition (Incremental polynomial time hierarchy)
A problem A ∈ EnumP is in IncPa if there is a machine M which
solves it in incremental time O(tanb) for some constant b.

Proposition
IncP1 = DelayP.

Amortize generation of solutions, using a large queue: exponential
memory.

Are IncP1 and DelayP really equal?
The main difference between IncP1 and DelayP is the regularity
of the delays or equivalently the memory usage.

Theorem (Capelli, S. 2018)
Let A be a problem with a polynomial space incremental linear
algorithm such that ∀t < |A(x)|, a polynomial fraction of the first
t solutions are generated with polynomial delay. Then
A ∈ DelayP with polynomial space.

Proof sketch: Simulate the algorithm at different points in time
and use the parts with high density of solutions to compensate for
sparse parts.

Open problem: Generalize Cheater’s lemma [Carmeli]. Turn a
polynomial delay and polynomial space enumeration algorithm with
polynomial repetitions into a proper poly delay and poly space
algorithm.

Are IncP1 and DelayP really equal?
The main difference between IncP1 and DelayP is the regularity
of the delays or equivalently the memory usage.

Theorem (Capelli, S. 2018)
Let A be a problem with a polynomial space incremental linear
algorithm such that ∀t < |A(x)|, a polynomial fraction of the first
t solutions are generated with polynomial delay. Then
A ∈ DelayP with polynomial space.

Proof sketch: Simulate the algorithm at different points in time
and use the parts with high density of solutions to compensate for
sparse parts.

Open problem: Generalize Cheater’s lemma [Carmeli]. Turn a
polynomial delay and polynomial space enumeration algorithm with
polynomial repetitions into a proper poly delay and poly space
algorithm.

Are IncP1 and DelayP really equal?
The main difference between IncP1 and DelayP is the regularity
of the delays or equivalently the memory usage.

Theorem (Capelli, S. 2018)
Let A be a problem with a polynomial space incremental linear
algorithm such that ∀t < |A(x)|, a polynomial fraction of the first
t solutions are generated with polynomial delay. Then
A ∈ DelayP with polynomial space.

Proof sketch: Simulate the algorithm at different points in time
and use the parts with high density of solutions to compensate for
sparse parts.

Open problem: Generalize Cheater’s lemma [Carmeli]. Turn a
polynomial delay and polynomial space enumeration algorithm with
polynomial repetitions into a proper poly delay and poly space
algorithm.

Separation of DelayP and IncP

Corollary (Capelli, S. 2018)
If ETH holds, then DelayP (IncP.

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof sketch: Problem Padt, input ϕ a CNF, with 2nt trivial
solutions and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Separation of DelayP and IncP

Corollary (Capelli, S. 2018)
If ETH holds, then IncP1 (IncPa for a > 1.

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof sketch: Problem Padt, input ϕ a CNF, with 2nt trivial
solutions and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Separation of DelayP and IncP

Corollary (Capelli, S. 2018)
If ETH holds, then IncP1 (IncPa for a > 1.

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof sketch: Problem Padt, input ϕ a CNF, with 2nt trivial
solutions and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Separation of DelayP and IncP

Corollary (Capelli, S. 2018)
If ETH holds, then IncP1 (IncPa for a > 1.

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof sketch: Problem Padt, input ϕ a CNF, with 2nt trivial
solutions and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Restricting IncP: when is saturation in
polynomial delay

Question
Can we solve saturation problems in polynomial delay ?

Yes sometimes, for saturation of sets by union, using binary
partition it can be done in linear delay.

No in general, since saturation problems are “equal” to IncP and
IncP 6= DelayP.

“CSP style”: restrict the saturation rules, consider set operations.

Restricting IncP: when is saturation in
polynomial delay

Question
Can we solve saturation problems in polynomial delay ?

Yes sometimes, for saturation of sets by union, using binary
partition it can be done in linear delay.

No in general, since saturation problems are “equal” to IncP and
IncP 6= DelayP.

“CSP style”: restrict the saturation rules, consider set operations.

Restricting IncP: when is saturation in
polynomial delay

Question
Can we solve saturation problems in polynomial delay ?

Yes sometimes, for saturation of sets by union, using binary
partition it can be done in linear delay.

No in general, since saturation problems are “equal” to IncP and
IncP 6= DelayP.

“CSP style”: restrict the saturation rules, consider set operations.

Set operations

A set over {1, . . . , n} is represented by its characteristic vector.

A set operation is a boolean operation {0, 1}k → {0, 1} applied
componentwise to k boolean vectors.

∨

(1
0
1

)
∨

(1
1
0

)
=

(1
1
1

)
∪

+

(1
0
1

)
+

(1
1
0

)
=

(0
1
1

)
4

maj(x, y, z) maj(

(1
0
1

)
,

(1
0
0

)
,

(1
1
0

)
) =

(1
0
0

)
Majority

Closure by set operation

Let S be a set of boolean vectors of size n and F be a finite set of
boolean operations.

Closure:
I F0(S) = S
I F i(S) = F i−1(S)∪
{f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F}

I ClF (S) = ∪iF i(S)

The enumeration problem is to list the elements of ClF (S).

Classification

We classify all sets of set operations using Post lattice. It reduces
the problem to a few cases:
I addition (vector space)
I disjunction, conjunction (boolean algebra)
I near unanimity terms (caracterized by projection)
I disjunction (hardest complexity-wise)

Theorem (Mary, S. 2016)
Let F be a set of set operations, then listing the elements of
ClF (S) can be done with delay polynomial in S.

Work either by the flashlight search, reduction to a simple SAT
formulas or Gray code enumeration for simple algebraic structure.

Classification

We classify all sets of set operations using Post lattice. It reduces
the problem to a few cases:
I addition (vector space)
I disjunction, conjunction (boolean algebra)
I near unanimity terms (caracterized by projection)
I disjunction (hardest complexity-wise)

Theorem (Mary, S. 2016)
Let F be a set of set operations, then listing the elements of
ClF (S) can be done with delay polynomial in S.

Work either by the flashlight search, reduction to a simple SAT
formulas or Gray code enumeration for simple algebraic structure.

Capturing more saturation operations

1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) Uncountably many new cases. NP-hard extension problem but
polynomial time for several algebraic operators [Bulatov et al.]. For
binary associative operators possible with exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, harder than EnumP.

(3) Equivalent to fundamental problems in IncP[Mary, S. 2019].

Capturing more saturation operations

1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) Uncountably many new cases. NP-hard extension problem but
polynomial time for several algebraic operators [Bulatov et al.]. For
binary associative operators possible with exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, harder than EnumP.

(3) Equivalent to fundamental problems in IncP[Mary, S. 2019].

Capturing more saturation operations

1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) Uncountably many new cases. NP-hard extension problem but
polynomial time for several algebraic operators [Bulatov et al.]. For
binary associative operators possible with exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, harder than EnumP.

(3) Equivalent to fundamental problems in IncP[Mary, S. 2019].

Capturing more saturation operations

1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) Uncountably many new cases. NP-hard extension problem but
polynomial time for several algebraic operators [Bulatov et al.]. For
binary associative operators possible with exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, harder than EnumP.

(3) Equivalent to fundamental problems in IncP[Mary, S. 2019].

What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration.
I SDelayP: polynomial delay in the size of the last solution.
I CD: constant delay.

I Additional space polynomial in the input or a solution.
I Polynomial time sampling.

Help through relaxations:
I Randomized algorithms.
I Average delay: Total time / Number of solutions.
I Approximate enumeration.

What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration.
I SDelayP: polynomial delay in the size of the last solution.
I CD: constant delay.
I Additional space polynomial in the input or a solution.
I Polynomial time sampling.

Help through relaxations:
I Randomized algorithms.
I Average delay: Total time / Number of solutions.
I Approximate enumeration.

What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration.
I SDelayP: polynomial delay in the size of the last solution.
I CD: constant delay.
I Additional space polynomial in the input or a solution.
I Polynomial time sampling.

Help through relaxations:
I Randomized algorithms.
I Average delay: Total time / Number of solutions.
I Approximate enumeration.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay (Gray code like algorithms).
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I Allow dynamic amortization (generalized OUPTUT
instruction).

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity) [Segoufin].
Often polynomial number of solutions: restricting
preprocessing is fundamental.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay (Gray code like algorithms).
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I Allow dynamic amortization (generalized OUPTUT
instruction).

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity) [Segoufin].
Often polynomial number of solutions: restricting
preprocessing is fundamental.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay (Gray code like algorithms).
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I Allow dynamic amortization (generalized OUPTUT
instruction).

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity) [Segoufin].
Often polynomial number of solutions: restricting
preprocessing is fundamental.

Four flavors of constant delay

The term constant delay is used to denote different things.

I Real constant delay (Gray code like algorithms).
Enumeration goes from a solution to the next while changing
a constant number of bits.

I Constant amortized time (CAT) algorithms. Generation of
combinatorial structures of a given size, subgraphs of graphs.
Pushout amortization [Uno].

I Allow dynamic amortization (generalized OUPTUT
instruction).

I FPT algorithm, arbitrary dependency in the parameter. Many
examples from logic/database (data complexity) [Segoufin].
Often polynomial number of solutions: restricting
preprocessing is fundamental.

The case for strong polynomial delay

Strong polynomial delay is important when the input is large with
regard to the size of one solution.

Relevant for problems on hypergraphs or for infinite enumeration
where the size of the solutions grows arbitrarily.

Why is it so rarely considered ?
1. People are satisfied/used to polynomial delay.
2. Harder to obtain often because of repetitions.
3. In graph problems, typically the instance is of size m = O(n2)

and the solutions are of size n: not a complexity problem.

Much easier to prove lower bound for strong polynomial delay.

The case for strong polynomial delay

Strong polynomial delay is important when the input is large with
regard to the size of one solution.

Relevant for problems on hypergraphs or for infinite enumeration
where the size of the solutions grows arbitrarily.

Why is it so rarely considered ?
1. People are satisfied/used to polynomial delay.
2. Harder to obtain often because of repetitions.
3. In graph problems, typically the instance is of size m = O(n2)

and the solutions are of size n: not a complexity problem.

Much easier to prove lower bound for strong polynomial delay.

The case for strong polynomial delay

Strong polynomial delay is important when the input is large with
regard to the size of one solution.

Relevant for problems on hypergraphs or for infinite enumeration
where the size of the solutions grows arbitrarily.

Why is it so rarely considered ?
1. People are satisfied/used to polynomial delay.
2. Harder to obtain often because of repetitions.
3. In graph problems, typically the instance is of size m = O(n2)

and the solutions are of size n: not a complexity problem.

Much easier to prove lower bound for strong polynomial delay.

Enumerating the models of a DNF

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments of a DNF.
Why is this problem interesting?

I Extremely simple: solution of terms in constant delay. Union
of regular sets of solutions while dealing with repetitions.

I DNF enumeration is connected to knowledge representation,
minimal transversal enumeration, subset membership queries,
CQ + SO variables, DNF model counting, PAC-learning . . .

Enumerating the models of a DNF

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments of a DNF.
Why is this problem interesting?
I Extremely simple: solution of terms in constant delay. Union

of regular sets of solutions while dealing with repetitions.
I DNF enumeration is connected to knowledge representation,

minimal transversal enumeration, subset membership queries,
CQ + SO variables, DNF model counting, PAC-learning . . .

Lower Bound Conjectures

Best complexity by binary partition (similar to monotone CNF
[Uno]) delay linear in O(mn). Can we get rid of m ?

DNF Enumeration Conjecture
Generating the models of a DNF is not in SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm generating the models of a DNF in delay
o(m) where m is the number of terms.

The conjectures can be made stronger by looking at subclasses of
DNF and average delay.

Lower Bound Conjectures

Best complexity by binary partition (similar to monotone CNF
[Uno]) delay linear in O(mn). Can we get rid of m ?

DNF Enumeration Conjecture
Generating the models of a DNF is not in SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm generating the models of a DNF in delay
o(m) where m is the number of terms.

The conjectures can be made stronger by looking at subclasses of
DNF and average delay.

Lower Bound Conjectures

Best complexity by binary partition (similar to monotone CNF
[Uno]) delay linear in O(mn). Can we get rid of m ?

DNF Enumeration Conjecture
Generating the models of a DNF is not in SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm generating the models of a DNF in delay
o(m) where m is the number of terms.

The conjectures can be made stronger by looking at subclasses of
DNF and average delay.

Results [Capelli, S. 2019]

Class Delay Space
DNF O(||D||) O(||D||)
(?) DNF O(n

√
m) average delay O(||D||)

(?) k-DNF 2O(k) O(||D||)
(?) Monotone DNF O(n2), m2 preprocessing O(|Output|)
(?) Monotone DNF O(log(n) log(nm)) average delay O(mn)

Table: Overview of the results. In this table, D is a DNF, n its number of
variables and m its number of terms. New contributions are annotated
with (?).

Summary

CD ⊆ SDelayP ⊆ DelayP (IncP (OutputP (EnumP

Conditional separation under complexity hypotheses: P 6= NP,
TFNP 6= FP and ETH.

Summary

CD (SDelayP (DelayP (IncP (OutputP

If we remove the condition to be in EnumP: unconditional
separation.
Benny: example of frequent isomorphic subgraphs -> easy to
enumerate, hard to generate (find other exemples)

Open problems
Lower bounds for real problems using (S)ETH for SDelayP,
DelayP, IncPa:
1. Minimal hitting sets of hypergraphs: delay of mO(log(m)).
2. Minimal hitting sets of k-regular hypergraphs in IncPk+2.
3. Maximal cliques of a graph in delay O(mn).
4. Circuits of a binary matroids in IncP2.

Discussion topics for enumeration:
1. Revisit classical problems focusing on amortized delay or linear

incremental time.
2. Circuits for composing constant/polynomial delay algorithms:

better algorithms and reductions. Efficient solution
representation.

3. Diverse solution enumeration: generate a good covering of the
solution space.

Open problems
Lower bounds for real problems using (S)ETH for SDelayP,
DelayP, IncPa:
1. Minimal hitting sets of hypergraphs: delay of mO(log(m)).
2. Minimal hitting sets of k-regular hypergraphs in IncPk+2.
3. Maximal cliques of a graph in delay O(mn).
4. Circuits of a binary matroids in IncP2.

Discussion topics for enumeration:
1. Revisit classical problems focusing on amortized delay or linear

incremental time.
2. Circuits for composing constant/polynomial delay algorithms:

better algorithms and reductions. Efficient solution
representation.

3. Diverse solution enumeration: generate a good covering of the
solution space.

Thanks !

Questions ?

Link between uniform generators and
enumeration

A uniform generator for the problem A is an algorithm, which
given x samples the elements of A(x) with uniform probability.

Theorem
If A ∈ EnumP has a polytime uniform generator, then A is in
randomized DelayP.

The space is proportional to the number of solutions but can be
improved if we accept repetitions.

Proposition
If A ∈ EnumP has a polytime uniform generator, then there is an
enumeration algorithm in randomized IncP1 with repetitions and
polynomial space.

