
A panorama of enumeration complexity

Yann Strozecki with Florent Capelli and Arnaud Mary

Laboratoire DAVID, Université de Versailles.

Dagstuhl Seminar on Algorithmic Enumeration

Enumeration problems

I Enumeration problems: list all solutions rather than deciding
whether there is one or finding one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, building libraries,

datamining.

Perfect matching ?
Solution space:

Begin

End

Framework

An enumeration problem A is a function which associates to each
input a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

The computation model for enumeration is a RAM with uniform
cost measure and an OUPTPUT instruction.

Complexity measures:

I total time
I incremental time
I delay

Complexity classes

Several classes introduced in the 80’s (Johnson, Yannakakis and
Papadimitriou). Allow precomputation in some classes.

1. Polynomially balanced predicate: EnumP
2. Output polynomial: OutputP
3. Incremental polynomial time: IncP
4. Polynomial delay: DelayP
5. Strong polynomial delay: SDelayP
6. Constant Delay: CD

Uniform enumeration problem

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in x.

Equivalent to the class NP.

Definition
A parsimonious reduction from A to B, two enumeration problems,
is a pair of polynomial time computable functions f, g such that
for all x, g(x) is a bijection from B(f(x)) to A(x).

I Good for hardness of enumeration of solutions NP-complete
problems.

I Not general enough to prove hardness of natural problems.

Uniform enumeration problem

Definition
A problem A is in EnumP if deciding whether y ∈ A(x) is in P
and if all y ∈ A(x) are of polynomial size in x.

Equivalent to the class NP.

Definition
A parsimonious reduction from A to B, two enumeration problems,
is a pair of polynomial time computable functions f, g such that
for all x, g(x) is a bijection from B(f(x)) to A(x).

I Good for hardness of enumeration of solutions NP-complete
problems.

I Not general enough to prove hardness of natural problems.

Output polynomial

An output sensitive algorithm has its complexity depending on
both its input and output.

Definition
A problem A ∈ EnumP is in OutputP if there is a polynomial p
and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP 6= EnumP if P 6= NP, using enumeration of solutions
of any NP-complete problem.

Question: is there a natural problem in TotalP but not in the
classes below?

Output polynomial

An output sensitive algorithm has its complexity depending on
both its input and output.

Definition
A problem A ∈ EnumP is in OutputP if there is a polynomial p
and a machine M which solves A in total time O(p(|x|, |A(x)|)).

OutputP 6= EnumP if P 6= NP, using enumeration of solutions
of any NP-complete problem.

Question: is there a natural problem in TotalP but not in the
classes below?

Incremental time
A machine M enumerates A in incremental time f(t)g(n) if on
every input x, M enumerates t elements of A(x) in time f(t)g(|x|)
for every t ≤ |A(x)|.

Definition (Incremental polynomial time)
IncP is the set of enumeration problems such that there is an
algorithm in incremental time O(tanb), for inputs of size n and a, b
constants.

time

t solutions in time tanb

Saturation algorithm

Most algorithms in incremental time are saturation algorithms:
I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Saturation algorithm

Most algorithms in incremental time are saturation algorithms:
I begin with a polynomial number of simple solutions
I for each k-uple of already generated solutions apply a rule to

produce a new solution
I stop when no new solutions are found

1. Accessible vertices in a graph by flooding.
2. Generate a finite group from a set of generators.
3. Generating all the circuits of a matroid.
4. Generate all possible unions of sets:

I {12, 134, 23, 14}
I {12, 134, 1234, 23, 14}
I {12, 134, 1234, 23, 123, 14}
I {12, 134, 1234, 23, 123, 14, 124}

Relation to search problem

Search problem AnotherSol·A
Input: x and a set of solutions S ⊂ A(x)
Output: y ∈ A(x) \ S or] if there is none.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A can be solved in polynomial time.

Useful for hardness proof, e.g. the generation of maximal models
of Horn formulas.

Relation to search problem

Search problem AnotherSol·A
Input: x and a set of solutions S ⊂ A(x)
Output: y ∈ A(x) \ S or] if there is none.

Theorem
An enumeration problem A is in IncP if and only if
AnotherSol·A can be solved in polynomial time.

Useful for hardness proof, e.g. the generation of maximal models
of Horn formulas.

Relationship with total functions

Definition
A problem in TFNP is a polynomially balanced polynomial time
predicate A such that for all x, A(x) is not empty. An algorithm
solving A must produce an element of A(x) on input x.

TFNP = FPNP∩coNP

Proposition (Capelli, S. 2018)
TFNP = FP if and only if IncP = OutputP.

Proof: (⇒)Remark that AnotherSol·A is a TFNP problem
when A ∈ OutputP.
(⇐) Repeat the solutions of A(x) many times to obtain an
OutputP problem.

Relationship with total functions

Definition
A problem in TFNP is a polynomially balanced polynomial time
predicate A such that for all x, A(x) is not empty. An algorithm
solving A must produce an element of A(x) on input x.

TFNP = FPNP∩coNP

Proposition (Capelli, S. 2018)
TFNP = FP if and only if IncP = OutputP.

Proof: (⇒)Remark that AnotherSol·A is a TFNP problem
when A ∈ OutputP.
(⇐) Repeat the solutions of A(x) many times to obtain an
OutputP problem.

Polynomial Delay

The delay is the maximum time between the production of two
consecutive solutions in an enumeration.

Definition (Polynomial delay)
DelayP is the set of enumeration problems solved by an
algorithm whose delay is polynomial in the input.

DelayP ⊆ IncP

time

delay between two solutions nc

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, branch on the elements: generate the sets
which contain 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, branch on the elements: generate the sets
which contain 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Unions in polynomial delay

Closure by union revisited.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: generate all unions of elements in S.

1. Recursive strategy, branch on the elements: generate the sets
which contain 1, then those which do not contain 1.

2. The algorithm should not explore a branch without solutions
(flashlight search), so that we can bound the delay.

3. We must solve the extension problem: given two sets A and
B is there a solution S such that A ⊆ S and S ∩B = ∅?

4. The extension problem is easy to solve in time O(mn) thus
the backtrack search has delay O(mn2).

Partial solution tree
{12, 134, 23, 14}

1 | 1

2 | 1

23 | 1

23

1 | 212

123

1234 123 124 12 134 14

12 | 3 13 | 2 1 | 23

Polynomial delay methods

Flashlight search can be improved by:
I Amortizing the complexity of solving the extension problem

over a branch.
I Proper choice of the variable used for branching.

The extension problem can be used to prove limited hardness
results.

Other methods:
1. Solutions organized in a tree (models of a 2− CNF).
2. Reverse search: solutions organized in a graph (maximal

cliques).

Polynomial delay methods

Flashlight search can be improved by:
I Amortizing the complexity of solving the extension problem

over a branch.
I Proper choice of the variable used for branching.

The extension problem can be used to prove limited hardness
results.

Other methods:
1. Solutions organized in a tree (models of a 2− CNF).
2. Reverse search: solutions organized in a graph (maximal

cliques).

Relationship between incremental and
polynomial delay

Definition (Incremental polynomial time hierarchy)
A problem A ∈ EnumP is in IncPa if there is a machine M which
solves it in incremental time O(tanb) for some constant b.

Proposition
IncP1 = DelayP.

Use amortization of solutions, exponential memory.

Relationship between incremental and
polynomial delay

Definition (Incremental polynomial time hierarchy)
A problem A ∈ EnumP is in IncPa if there is a machine M which
solves it in incremental time O(tanb) for some constant b.

Proposition
IncP1 = DelayP.

Use amortization of solutions, exponential memory.

Are IncP1 and DelayP really equal?

The main difference between IncP1 and DelayP is the regularity
of the delays or equivalently the memory usage.

Theorem (Capelli, S. 2018)
Let I be an incremental linear algorithm for A using polynomial
space such that for all t, in the first t solutions generated, a
polynomial fraction are generated with constant delay. Then
A ∈ DelayP with polynomial space.

Proof: Simulate the algorithm at different points in time and use
the parts with high density of solutions to compensate for sparse
parts.

Open problem: Given an enumeration algorithm in polynomial
delay and polynomial space, but with n repetitions of each solution
turn it into a polynomial delay and polynomial space algorithm.

Are IncP1 and DelayP really equal?

The main difference between IncP1 and DelayP is the regularity
of the delays or equivalently the memory usage.

Theorem (Capelli, S. 2018)
Let I be an incremental linear algorithm for A using polynomial
space such that for all t, in the first t solutions generated, a
polynomial fraction are generated with constant delay. Then
A ∈ DelayP with polynomial space.

Proof: Simulate the algorithm at different points in time and use
the parts with high density of solutions to compensate for sparse
parts.

Open problem: Given an enumeration algorithm in polynomial
delay and polynomial space, but with n repetitions of each solution
turn it into a polynomial delay and polynomial space algorithm.

Are IncP1 and DelayP really equal?

The main difference between IncP1 and DelayP is the regularity
of the delays or equivalently the memory usage.

Theorem (Capelli, S. 2018)
Let I be an incremental linear algorithm for A using polynomial
space such that for all t, in the first t solutions generated, a
polynomial fraction are generated with constant delay. Then
A ∈ DelayP with polynomial space.

Proof: Simulate the algorithm at different points in time and use
the parts with high density of solutions to compensate for sparse
parts.

Open problem: Given an enumeration algorithm in polynomial
delay and polynomial space, but with n repetitions of each solution
turn it into a polynomial delay and polynomial space algorithm.

Separation of DelayP and IncP

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof: Problem Padt, input ϕ a CNF, with 2nt trivial solutions
and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Corollary
If ETH holds, then DelayP (IncP.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Separation of DelayP and IncP

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof: Problem Padt, input ϕ a CNF, with 2nt trivial solutions
and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Corollary
If ETH holds, then DelayP (IncP.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Separation of DelayP and IncP

Theorem (Capelli, S. 2018)
If ETH holds, then IncPa (IncPb for all a < b.

Proof: Problem Padt, input ϕ a CNF, with 2nt trivial solutions
and the models of ϕ duplicated 2n times.
Since IncPa = IncPb, Padb−1 gives a O(2

a
b

n) algorithm to solve
SAT.
Using the better SAT algorithm, we have Pad a

b2
∈ IncPb. Repeat

this trick to contradict ETH.

Corollary
If ETH holds, then DelayP (IncP.

Open question: is there a natural problem in IncP not in
DelayP? Do you have any candidate problem?

Restricting IncP: when is saturation in
polynomial delay

Question
Can we solve saturation problems in polynomial delay ?

No, since saturation problems are “equal” to IncP and
IncP 6= DelayP.

We need to restrict the saturation rules. Since it works for the
union, we consider set operations.

Restricting IncP: when is saturation in
polynomial delay

Question
Can we solve saturation problems in polynomial delay ?

No, since saturation problems are “equal” to IncP and
IncP 6= DelayP.

We need to restrict the saturation rules. Since it works for the
union, we consider set operations.

Set operations

A set over {1, . . . , n} is represented by its characteristic vector.

A set operation is a boolean operation {0, 1}k → {0, 1} applied
componentwise to k boolean vectors.

∨

(1
0
1

)
∨

(1
1
0

)
=

(1
1
1

)
∪

+

(1
0
1

)
+

(1
1
0

)
=

(0
1
1

)
4

maj(x, y, z) maj(

(1
0
1

)
,

(1
0
0

)
,

(1
1
0

)
) =

(1
0
0

)
Majority

Set operations

A set over {1, . . . , n} is represented by its characteristic vector.

A set operation is a boolean operation {0, 1}k → {0, 1} applied
componentwise to k boolean vectors.

∨

(1
0
1

)
∨

(1
1
0

)
=

(1
1
1

)
∪

+

(1
0
1

)
+

(1
1
0

)
=

(0
1
1

)
4

maj(x, y, z) maj(

(1
0
1

)
,

(1
0
0

)
,

(1
1
0

)
) =

(1
0
0

)
Majority

Closure by set operation

Let S be a set of boolean vectors of size n and F be a finite set of
boolean operations.

Closure:
I F0(S) = S
I F i(S) = F i−1(S)∪
{f(v1, . . . , vt) | v1, . . . , vt ∈ F i−1(S) and f ∈ F}

I ClF (S) = ∪iF i(S)

The enumeration problem is to list the elements of ClF (S).

Results

We classify all sets of set operations using Post lattice. It reduces
the problem to a few cases:
I addition (vector space)
I disjunction, conjunction (boolean algebra)
I near unanimity terms (caracterized by projection)
I disjunction (hardest complexity-wise)

Theorem (Mary, S. 2016)
Let F be a set of set operations, then listing the elements of
ClF (S) can be done with delay polynomial in S.

Work either by the flashlight method, transformation to a simple
SAT formula or Gray code for simple algebraic structure.

Results

We classify all sets of set operations using Post lattice. It reduces
the problem to a few cases:
I addition (vector space)
I disjunction, conjunction (boolean algebra)
I near unanimity terms (caracterized by projection)
I disjunction (hardest complexity-wise)

Theorem (Mary, S. 2016)
Let F be a set of set operations, then listing the elements of
ClF (S) can be done with delay polynomial in S.

Work either by the flashlight method, transformation to a simple
SAT formula or Gray code for simple algebraic structure.

Extending the model

We want to capture more saturation operations.
1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) For non boolean domains previous methods work but do not
capture every set of operators. NP-hard extension problem, for
binary associative operators we use a supergraph algorithm with
exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, membership is NP-hard.

Extending the model

We want to capture more saturation operations.
1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) For non boolean domains previous methods work but do not
capture every set of operators. NP-hard extension problem, for
binary associative operators we use a supergraph algorithm with
exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, membership is NP-hard.

Extending the model

We want to capture more saturation operations.
1. Larger domain.
2. Non uniform operation, acting differently on each element.
3. Enumerating maximal/minimal elements only.

(1) For non boolean domains previous methods work but do not
capture every set of operators. NP-hard extension problem, for
binary associative operators we use a supergraph algorithm with
exponential space.

(2) If all operators act on a single coefficient (downward/upward
closure), everything is polynomial delay. For operators acting on 3
coefficients, membership is NP-hard.

Hardness lurking

Generating minimal/maximal elements of a closure is not
guaranteed to be in IncP. Equivalences with several fundamental
problems (in Mary, S. 2018):

1. The enumeration of maximal stable sets (majority). In
DelayP.

2. The enumeration of maximal independent sets in hypergraphs
of dimension k (threshold functions). In IncP.

3. The enumeration of circuits of a binary matroid (symmetric
difference). In IncP.

What is an efficient enumeration algorithm ?

I DelayP: equivalent to P for enumeration.
I SDelayP: polynomial delay in the size of each solution only.
I DC-LIN: constant delay, linear precomputation.

I Memory polynomial in the input.
I From one solution, the next can be output: memory

proportional to the size of a solution.

Relaxations:
I Randomized algorithms.
I Average (or amortized) delay.
I Approximate enumeration?

What is an efficient enumeration algorithm ?

I DelayP: equivalent to P for enumeration.
I SDelayP: polynomial delay in the size of each solution only.
I DC-LIN: constant delay, linear precomputation.
I Memory polynomial in the input.
I From one solution, the next can be output: memory

proportional to the size of a solution.

Relaxations:
I Randomized algorithms.
I Average (or amortized) delay.
I Approximate enumeration?

What is an efficient enumeration algorithm ?

I DelayP: equivalent to P for enumeration.
I SDelayP: polynomial delay in the size of each solution only.
I DC-LIN: constant delay, linear precomputation.
I Memory polynomial in the input.
I From one solution, the next can be output: memory

proportional to the size of a solution.

Relaxations:
I Randomized algorithms.
I Average (or amortized) delay.
I Approximate enumeration?

Three flavors of constant delay

The term constant delay is used to represent very different things.

I Real constant delay.
Enumeration goes from a solution to the next while changing
a constant number of bits. May use amortization.

I Amortized constant delay.
I FPT algorithm, huge dependency in the parameter and

constant size solutions.

Three flavors of constant delay

The term constant delay is used to represent very different things.

I Real constant delay.
Enumeration goes from a solution to the next while changing
a constant number of bits. May use amortization.

I Amortized constant delay.
I FPT algorithm, huge dependency in the parameter and

constant size solutions.

Constant amortized time (CAT)

Amortized delay = Total Time
Number of Solutions

Best algorithms use a constant time per object produced. Many
ad-hoc methods to generate combinatorial structures. Push-out
amortization [Uno].

1. Trees of size n.
2. Free trees of size n.
3. Spanning trees of a graph.
4. Matchings of a graph.

Constant delay in databases
Φ(z,T) is a second order formula or query. Usually, the formula is
fixed: data complexity.

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Restrictions on the logic:
I Existential FO + second order free variables.
I Acyclic conjunctive queries (lower bound using matrix

multiplication).

Restrictions on the model:
I FO on low degree graphs.
I FO on bounded expansion, nowhere dense graphs.
I MSO on strings.

Open problem: prove that constant delay is impossible for FO
queries over general graphs.

Constant delay in databases
Φ(z,T) is a second order formula or query. Usually, the formula is
fixed: data complexity.

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Restrictions on the logic:
I Existential FO + second order free variables.
I Acyclic conjunctive queries (lower bound using matrix

multiplication).

Restrictions on the model:
I FO on low degree graphs.
I FO on bounded expansion, nowhere dense graphs.
I MSO on strings.

Open problem: prove that constant delay is impossible for FO
queries over general graphs.

Constant delay in databases
Φ(z,T) is a second order formula or query. Usually, the formula is
fixed: data complexity.

Enum·Φ
Input: A σ-structure S
Output: Φ(S) = {(z∗,T∗) : (S, z∗,T∗) |= Φ(z,T)}

Restrictions on the logic:
I Existential FO + second order free variables.
I Acyclic conjunctive queries (lower bound using matrix

multiplication).

Restrictions on the model:
I FO on low degree graphs.
I FO on bounded expansion, nowhere dense graphs.
I MSO on strings.

Open problem: prove that constant delay is impossible for FO
queries over general graphs.

The case for strong polynomial delay

Strong polynomial delay is important when the input is large with
regard to the size of one solution. Relevant for problems on
hypergraphs.

Why is it rarely considered ?

1. People are satisfied/used to polynomial delay.
2. It is harder.
3. In graph problems, typically the instance is of size m = O(n2)

and the solutions are of size n: not a complexity problem.

It may be much easier to prove lower bound.

The case for strong polynomial delay

Strong polynomial delay is important when the input is large with
regard to the size of one solution. Relevant for problems on
hypergraphs.

Why is it rarely considered ?

1. People are satisfied/used to polynomial delay.
2. It is harder.
3. In graph problems, typically the instance is of size m = O(n2)

and the solutions are of size n: not a complexity problem.

It may be much easier to prove lower bound.

The case for strong polynomial delay

Strong polynomial delay is important when the input is large with
regard to the size of one solution. Relevant for problems on
hypergraphs.

Why is it rarely considered ?

1. People are satisfied/used to polynomial delay.
2. It is harder.
3. In graph problems, typically the instance is of size m = O(n2)

and the solutions are of size n: not a complexity problem.

It may be much easier to prove lower bound.

Enumerating the models of a DNF

A DNF is a disjunction of terms
∨m

i=1 Ti.
A term is a conjunction of literals over n variables.

I Enumerating the models of a term can be done in constant
delay.

I Enumerating the models of a DNF in linear delay.
I m the number of terms can be much larger than n.
I Need to deal with redundancies, since a model may satisfy all

terms.

Enumerating the models of a DNF

A DNF is a disjunction of terms
∨m

i=1 Ti.
A term is a conjunction of literals over n variables.

I Enumerating the models of a term can be done in constant
delay.

I Enumerating the models of a DNF in linear delay.
I m the number of terms can be much larger than n.
I Need to deal with redundancies, since a model may satisfy all

terms.

Weak DNF Enumeration Conjecture
Generating the models of a DNF is not in SDelayP.

Enumerating the models of a DNF

A DNF is a disjunction of terms
∨m

i=1 Ti.
A term is a conjunction of literals over n variables.

I Enumerating the models of a term can be done in constant
delay.

I Enumerating the models of a DNF in linear delay.
I m the number of terms can be much larger than n.
I Need to deal with redundancies, since a model may satisfy all

terms.

Strong DNF Enumeration Conjecture
There is no algorithm generating the models of a DNF in delay
o(m) where m is the number of terms.

Partial results on DNF

Theorem (Capelli, S. 2018)
The models of a monotone DNF can be generated in strong
polynomial delay and exponential space.

Open question: Is it in strong polynomial delay and space ?

Theorem (Capelli, S. 2018)
The models of a DNF can be generated in amortized delay
O(
√
mn).

Open question: Evaluate the smallest number of models of a
DNF with m terms.

Theorem (Capelli, S. 2018)
The models of a k −DNF can be generated in delay 2O(k).

Partial results on DNF

Theorem (Capelli, S. 2018)
The models of a monotone DNF can be generated in strong
polynomial delay and exponential space.

Open question: Is it in strong polynomial delay and space ?

Theorem (Capelli, S. 2018)
The models of a DNF can be generated in amortized delay
O(
√
mn).

Open question: Evaluate the smallest number of models of a
DNF with m terms.

Theorem (Capelli, S. 2018)
The models of a k −DNF can be generated in delay 2O(k).

Partial results on DNF

Theorem (Capelli, S. 2018)
The models of a monotone DNF can be generated in strong
polynomial delay and exponential space.

Open question: Is it in strong polynomial delay and space ?

Theorem (Capelli, S. 2018)
The models of a DNF can be generated in amortized delay
O(
√
mn).

Open question: Evaluate the smallest number of models of a
DNF with m terms.

Theorem (Capelli, S. 2018)
The models of a k −DNF can be generated in delay 2O(k).

Summary

CD ⊆ SDelayP ⊆ DelayP (IncP (OutputP (EnumP

Conditional separation under complexity hypotheses as P 6= NP,
TFNP 6= FP and ETH.

Summary

CD (SDelayP (DelayP (IncP (OutputP

If we remove the condition to be in EnumP: unconditional
separation.

A few interesting open problems
Prove lower bounds on classical problems using (S)ETH:
1. Minimal hitting sets of hypergraphs: delay of mO(log(m)). In

IncP?
2. Minimal hitting sets of k-regular hypergraphs in IncPk+2.

Optimal?
3. Maximal cliques of a graph in delay O(mn). Optimal?
4. Circuits of a binary matroids in IncP2. Not in IncP1?

Food for thought:

1. Settle IncP1 vs DelayP.
2. A grammar for composing constant/polynomial delay

algorithms: better algorithms and reductions.
3. Revisiting classical problems with amortized delay in mind.
4. Representative or user guided enumeration: generate a good

covering of the solution space.

A few interesting open problems
Prove lower bounds on classical problems using (S)ETH:
1. Minimal hitting sets of hypergraphs: delay of mO(log(m)). In

IncP?
2. Minimal hitting sets of k-regular hypergraphs in IncPk+2.

Optimal?
3. Maximal cliques of a graph in delay O(mn). Optimal?
4. Circuits of a binary matroids in IncP2. Not in IncP1?

Food for thought:

1. Settle IncP1 vs DelayP.
2. A grammar for composing constant/polynomial delay

algorithms: better algorithms and reductions.
3. Revisiting classical problems with amortized delay in mind.
4. Representative or user guided enumeration: generate a good

covering of the solution space.

Thanks !

Questions ?

Link between uniform generators and
enumeration

A uniform generator for the problem A is an algorithm, which
given x samples the elements of A(x) with uniform probability.

Theorem
If A ∈ EnumP has a polytime uniform generator, then A is in
randomized DelayP.

The space is proportional to the number of solutions but can be
improved if we accept repetitions.

Proposition
If A ∈ EnumP has a polytime uniform generator, then there is an
enumeration algorithm in randomized IncP1 with repetitions and
polynomial space.

