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A Simple Stochastic Game (Shapley, Condon) is defined by a directed
graph with :

o three sets of vertices Viyax, Vmin, Vave of outdegree 2

o two (or more) 'sink’ vertices with rational values

Two players : MAX and MIN, and randomness.
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Strategies and values

General definition of a o for a player MAX:

O : partial play ending in Vj\jax —— probability distribution on outneighbours

The of a vertex x is the best expected value of a sink that MAX can
guarantee starting from x :

v(x) = sup inf |EUJ (value of the sink reached | game starts in X)
o strategy T Strategy ~~ g
forMaX  for MIN Vor (%)

Problem : given a game and a vertex, compute the value of the vertex.

Decision problem : v(x) > 0.5?
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Why simple stochastic games ?

They generalize important models such as:
o Parity games (model checking of u-calculus)
o Mean payoff games (useful for optimisation)
o Linear programming

o Markov decision process

Also there are :

o An example of a problem yet between P and NP
o A simple framework to study stochastic games

@ A good model to study partial information



@ Introduction to Simple Stochastic Games

O Fundamental properties of SSGs

© Almost acyclic SSGs
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Simpler strategies

To compute values we can restrict our strategies to be
o pure : deterministic
o memoryless : does not depend on the entire history
o stationary : does not depend on time step

We call them positional strategies for short.

O'ZVMAx—>V, TZVMIN—’V
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Optimality of positional strategies

Lemma
Against a strategy o, MIN might as well respond positional :
o positional = inf v,;(x)= min v;;(x)
T general T positional

Bellman equation characterizes optimality :

min(v* (x1), v* (x2)) if xe MIN

v* = min lvg,r < Vx, v (%)= %(v* (x1)+v"(x2)) ifx€AVE
T ener Oorl if x € SINK
A solution exists and is unique. e
An optimal positional strategy consists in

playing optimally at each node wrt to v*.



Minimax Theorem

Theorem (Condon 89)
For all vertices x,

v(x) sup inf Vg7 (X)

o general T gener al

inf sup Vg7 (X)
7 general general

max min Vg7 (X)
o positional T positional

= min max Vg, (X)
T positional o positional
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Complexity Considerations

Theorem (Condon 89)
The SSG value problem is in NP n coNP.

Because of the optimality conditions and the symmetry between MAX
and MIN.

Lemma

Stopping game hypothesis = unique pair of optimal strategies.

The problem is in UP n coUP (unique certificate).

The problem is complete for logspace alternating randomized Turing
machine or

Open question : is the value problem in P ?



Computing values

Fix o, T positional strategies.
o if xe MAX, vy (X) = Vg, (0(x))
o if xe MIN, vy (%) = vy 7 (T(X))
o if x€ AVE, U1 (X) = $ g 1 (X1) + 5 V0,7 (%2)
o if xe SINK, vy (x) € [0,1]

This amounts to solve a linear system.



Computing values

Fix o only (best response).
0 if xe MAX, vy (x) = vy (0 (X))
o if xe MIN, v,(x) < vy (x1) and v, (X) < vy (x2)
o if x€AVE, vy (%) = 305, (1) + 1 U5 (x2)
o if x € SINK, vy (x) € [0,1]

o max ) vs(x)
xeMIN

This amounts to solve a linear program.
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The switch operation

xis a MIN vertex and vy (X) = Vg 1z (X1) > Vg7 (X2)

switching 7 at x: 7/(x) = x, and equal to T elsewhere.

Vo,r = 0.7

Such a switch is profitable for MIN :

o forally, vy ()) < Vs ()
o in particular vy /(%) < Vg 7 (%)

Optimality condition : no switch .
Algorithm to find an optimal strategy against o : keep switching.
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(1966, MDP context) is
Q@ choose 79 and let 0y = 0(7¢) (best response)
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based on :
Lemma
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Strategy improvement algorithms

The strategy improvement algorithm a.k.a Hoffman-Karp algorithm
(1966, MDP context) is
Q@ choose 79 and let 0y = 0(7¢) (best response)
Q while (o, 7) is not optimal, obtain 7; by switching 7 ; let
Ok+1=0(Tk+1)
based on :
Lemma
Vo1, 1oy < Vo1, @S long as (o, Ty) is not optimal.

Theorem
The HK algorithm makes at most O(2"/ n) iterations

Unfortunately, this can take exponential time [Condon, Friedman].

When the algorithm ends, say at (6%, 7*), each one plays optimally :

Ug*7+ = Max min vs; = Ml max Vg
0 pos T pos Tpos 0O pos
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Solving an acyclic SSG in linear time

No cycle : compute the values backward from the sinks in time O(n).
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Milder form of acyclicity

: each MAX vertex has at most one outgoing edge in a
cycle.

Assume the graph is strongly connected once sinks are removed = one
outneighbour of each MAX vertex is a sink.

xeMAX is / : the strategy chooses a sink/not a sink.

Theorem

The strategy improvment algorithm (MAX switches + MIN responds
optimally) starting with open MAX vertices performs at most | Vyax|
switches.

proof : once a MAX vertex is closed, it is for ever.

Need to compute values = On*| Vagax).
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1-cycle SSG

With only one cycle the game is both Max-acyclic and Min-acyclic.

In linear time, each of these assumptions can be checked : the optimal
strategy

Al is closed at every vertex

A2 contains at least an open MAX vertex

A3 contains at least an open MIN vertex

algo for checking A2 :

O solve the acyclic SSG obtained when an arbitrary MAX vertex is fixed
to open

Q if A2 s true, the next open MAX vertex (say x) is also open in the
1-cycle SSG

@ so check it by solving the acyclic SSG forced to be open at x.
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k-cycles SSG

Based on the previous algo, by opening a vertex next to each fork vertex :

Theorem
A k-cycles SSG can be solved in time O(nk!)

To be compared to the strategy improvment algorithm : O(n*2F)
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SSG with feedback vertex set of size k

There are k vertices that, once removed, yields an acyclic SSG.

» 0

even if k = 1, the number of cycles can be large

A —a —{a)

Bisection algo with k =1 : x is the vertex to remove to get an acyclic SSG

@ solve the acyclic SSG obtained when x is replaced by a sink

with value s= mx

Q ifvalue s satisfies the local optimality condition (up to some error
bound)

s€ [min(v(x1), v(x2)) —€; min(v(x1), v(x2)) + €]
then sis close to the real value of x in the initial game

@ otherwise if s > min(v(x;), v(x2)) + € = then the value of x is less than
s, go back to 1 with max = s.
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SSG with feedback vertex set of size k

We can use the bisection algorithm on a k-dimensional space.

Problem with the precision of the values — exact computation.

Theorem

A SSG with feedback vertex set of size k can be solved in time O(n**1)

The method can be used to remove k vertices in any SSG and thus makes
other classes of SSG tractable.



Tanks for listening!

Questions ?
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