
Generating sound molecular cages

Dominique Barth Olivier David Franck Quessette
Vincent Reinhard Yann Strozecki Sandrine Vial

Université de Versailles St-Quentin-en-Yvelines
Laboratoire PRiSM

June 2014, 4ème réunion transverse sur la modélisation
moléculaire

Modelling

Generating Planar map with constraints

Overwiew of the algorithm
Generating backbones
Folding the map
Computing the indices

Introduction

Motivation: chemists (Olivier David) wants to build molecular
cages.

But what kind of nice cages can be built from basic components ?

Introduction

Motivation: chemists (Olivier David) wants to build molecular
cages.

But what kind of nice cages can be built from basic components ?

The motifs

Definition
A map G = (Vc, V , E , next) is a motif if
1. Vc contains only one vertex c called the center
2. each vertex in V is colored with a color in A a fixed alphabet
3. E = {(c, u), u ∈ V }
4. next gives an order on the edges of c

Y

a

a

a

I

a

a

X

a a

a a

V

b b

a

next J

a

b

Map of motifs
Definition
A connected planar map G = (Vc, V , E , next) is a map of motifs
based onM if,
1. each vertex in V is connected to at most one vertex in V ,

which is of the complementary colour.
2. when all edges between vertices in V are removed, the

remaining connected components must all be motifs ofM

Y

a

a

a Ia a

Y

a

a

a

Y

a

a

a Ia a

Ia a

Ia a

Y

a

a

a

Figure : Example of two maps of motifs based onM = {Y, I}, the first
map is unsaturated while the second map is saturated.

Molecular map
Definition
Let G = (Vc, V , EG , nextG) be a saturated map of motifs based
onM, we define the molecular map M = (V , EM , nextM):
1. V = Vc

2. (c1, c2) ∈ EM if it exists a path (c1, u, v, c2) in G
3. nextM ((c, c1)) = (c, c2) if it exists two paths (c, u1, v1, c1)

and (c, u2, v2, c2) in G and nextG((c, u1)) = (c, u2)

Y

I

I

I

Y

Figure : The molecular map corresponding to the saturated map of
motifs in Fig. 1

The indices

Why is a molecular map a good representation of a molecula ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1, S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The indices

Why is a molecular map a good representation of a molecula ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1, S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The indices

Why is a molecular map a good representation of a cage ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1, S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The indices

Why is a molecular map a good representation of a cage ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1, S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The indices

Why is a molecular map a good representation of a cage ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1, S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like to design
an algorithm whose complexity (≡ time used) is linear in the
number of outputs.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like to design
an algorithm whose complexity (≡ time used) is linear in the
number of outputs.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like to design
an algorithm whose complexity (≡ time used) is linear in the
number of outputs.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like to design
an algorithm whose complexity (≡ time used) is linear in the
number of outputs.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain

3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!

A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain
3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

Different kind of backbones:

1. Trees

2. Paths
3. Cycles

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

Different kind of backbones:

1. Trees
2. Paths

3. Cycles

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

Different kind of backbones:

1. Trees
2. Paths

3. Cycles

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

Different kind of backbones:

1. Trees
2. Restricted paths
3. Cycles

The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

Different kind of backbones:

1. Trees
2. Restricted paths
3. Cycles

Y

a a

a

L

a

b b

L

a

bb

L

a

b b

Trees

It’s a good idea: Every connected map has a spanning tree, it will
make the generation exhaustive.

It’s a bad idea : A graph has many spanning trees.

To generate them we use a bruteforce method and an isomorphism
test.

Trees

It’s a good idea: Every connected map has a spanning tree, it will
make the generation exhaustive.

It’s a bad idea : A graph has many spanning trees.

To generate them we use a bruteforce method and an isomorphism
test.

Trees

It’s a good idea: Every connected map has a spanning tree, it will
make the generation exhaustive.

It’s a bad idea : A graph has many spanning trees.

To generate them we use a bruteforce method and an isomorphism
test.

J

a

b

V a

a

a

V’b

a

a

Paths

It’s a bad idea : not every planar map has an Hamiltonian path.
But all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

It’s a good idea: paths are simpler than trees (smaller number).

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Paths

It’s a bad idea : not every planar map has an Hamiltonian path.
But all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

It’s a good idea: paths are simpler than trees (smaller number).

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Paths

It’s a bad idea : not every planar map has an Hamiltonian path.
But all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

It’s a good idea: paths are simpler than trees (smaller number).

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

Paths

It’s a bad idea : not every planar map has an Hamiltonian path.
But all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

It’s a good idea: paths are simpler than trees (smaller number).

Bruteforce method: add at the end of a path any possible motif
until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding the non canonical paths.

V a

b

b

Ja a Ja a Va

b

b

V a

b

b

Ja a Ja a Va

b

b

J

J J

J

a a

a a

aa

a a

Cycles

It’s a good idea : There are even less circuits than path. The maps
will be 2-connected.

It’s a bad idea: not every planar map has an Hamiltonian circuit.
But all planar cubic 3-connected graphs of size less than 30 have
one.

For {Y , V1, V2} and 8 motifs we have 40112 trees, 9, 024 paths
and less than 2000 cycles.

Cycles

It’s a good idea : There are even less circuits than path. The maps
will be 2-connected.

It’s a bad idea: not every planar map has an Hamiltonian circuit.
But all planar cubic 3-connected graphs of size less than 30 have
one.

For {Y , V1, V2} and 8 motifs we have 40112 trees, 9, 024 paths
and less than 2000 cycles.

Cycles

It’s a good idea : There are even less circuits than path. The maps
will be 2-connected.

It’s a bad idea: not every planar map has an Hamiltonian circuit.
But all planar cubic 3-connected graphs of size less than 30 have
one.

For {Y , V1, V2} and 8 motifs we have 40112 trees, 9, 024 paths
and less than 2000 cycles.

Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.

Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.

Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.

Example

J

a

b

V a

a

a

V’b

a

a

outline = {a, a, a, a}

Figure : A map of three motifs on AM = {V, V′, J} and its outline
before a fold operation.

Example

J

a

b

V a

a

a

V’b

a

a

outline = {a, a}

Figure : A map of three motifs on AM = {V, V′, J} and its outline after
a fold operation.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

We use a dynamic programming algorithm of complexity O(nk+1)
where k is the number of letters.

Seems large, but small with regards to the C n paths.
{I , V 1, V 2} of size 18:

I 179, 896, 320 paths in 78.7s
I 1, 277, 952 almost foldable paths in 0.63s.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

We use a dynamic programming algorithm of complexity O(nk+1)
where k is the number of letters.

Seems large, but small with regards to the C n paths.
{I , V 1, V 2} of size 18:

I 179, 896, 320 paths in 78.7s
I 1, 277, 952 almost foldable paths in 0.63s.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

We use a dynamic programming algorithm of complexity O(nk+1)
where k is the number of letters.

Seems large, but small with regards to the C n paths.

{I , V 1, V 2} of size 18:
I 179, 896, 320 paths in 78.7s
I 1, 277, 952 almost foldable paths in 0.63s.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

We use a dynamic programming algorithm of complexity O(nk+1)
where k is the number of letters.

Seems large, but small with regards to the C n paths.
{I , V 1, V 2} of size 18:

I 179, 896, 320 paths in 78.7s
I 1, 277, 952 almost foldable paths in 0.63s.

How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

We use a dynamic programming algorithm of complexity O(nk+1)
where k is the number of letters.

Seems large, but small with regards to the C n paths.
{I , V 1, V 2} of size 18:

I 179, 896, 320 paths in 78.7s
I 1, 277, 952 almost foldable paths in 0.63s.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate the results of all
sequences of reductions which yield an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . . wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letters given by M .
I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate the results of all
sequences of reductions which yield an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . . wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letters given by M .
I The preprocessing is in O(n3) and the delay is linear.

How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate the results of all
sequences of reductions which yield an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . . wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letters given by M .
I The preprocessing is in O(n3) and the delay is linear.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). We
compute a signature.

For each non isomorphic map we must compute indices.

2. Computing all faces and their sizes: O(n)

3. The equivalence class of each vertex: O(n3)

4. Computing the minimum sparsity of a map. Currently Gray
Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). We
compute a signature.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)

3. The equivalence class of each vertex: O(n3)

4. Computing the minimum sparsity of a map. Currently Gray
Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). We
compute a signature.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)

3. The equivalence class of each vertex: O(n3)

4. Computing the minimum sparsity of a map. Currently Gray
Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). We
compute a signature.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)

3. The equivalence class of each vertex: O(n3)

4. Computing the minimum sparsity of a map. Currently Gray
Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Additional computations

Some hidden costs:

1. Isomorphism test for each produced map: O(n2). We
compute a signature.

For each non isomorphic map we must compute indices.
2. Computing all faces and their sizes: O(n)

3. The equivalence class of each vertex: O(n3)

4. Computing the minimum sparsity of a map. Currently Gray
Code to generate all partitions: O(2n).
Problem NP-hard in general but cubic algorithm for planar
graphs.

Current challenges

Bottlenecks of Kékulé:

1. Generate maps of motifs which are trees (find a CAT
algorithm)

2. Computing the minimum sparsity of a map. WIP on the
polynomial algorithm.

3. Computing the signature of a map. Cannot be significantly
improved.

4. Combinatorial explosion. For some set of motifs, fast enough
but to many generated maps.

Current challenges

Bottlenecks of Kékulé:

1. Generate maps of motifs which are trees (find a CAT
algorithm)

2. Computing the minimum sparsity of a map. WIP on the
polynomial algorithm.

3. Computing the signature of a map. Cannot be significantly
improved.

4. Combinatorial explosion. For some set of motifs, fast enough
but to many generated maps.

Current challenges

Bottlenecks of Kékulé:

1. Generate maps of motifs which are trees (find a CAT
algorithm)

2. Computing the minimum sparsity of a map. WIP on the
polynomial algorithm.

3. Computing the signature of a map. Cannot be significantly
improved.

4. Combinatorial explosion. For some set of motifs, fast enough
but to many generated maps.

Current challenges

Bottlenecks of Kékulé:

1. Generate maps of motifs which are trees (find a CAT
algorithm)

2. Computing the minimum sparsity of a map. WIP on the
polynomial algorithm.

3. Computing the signature of a map. Cannot be significantly
improved.

4. Combinatorial explosion. For some set of motifs, fast enough
but to many generated maps.

Future research

1. Generate only graphs satisfying additional constraints on
connectivity, face size, sparsity. . .

2. Study specific class of motifs and design algorithms for them.

3. For a specific base of motifs, we fix the indices we want and
we generate a family of graphs with the desired indices.

Future research

1. Generate only graphs satisfying additional constraints on
connectivity, face size, sparsity. . .

2. Study specific class of motifs and design algorithms for them.

3. For a specific base of motifs, we fix the indices we want and
we generate a family of graphs with the desired indices.

Future research

1. Generate only graphs satisfying additional constraints on
connectivity, face size, sparsity. . .

2. Study specific class of motifs and design algorithms for them.

3. For a specific base of motifs, we fix the indices we want and
we generate a family of graphs with the desired indices.

Thanks!

	Modelling
	Generating Planar map with constraints
	Overwiew of the algorithm
	Generating backbones
	Folding the map
	Computing the indices

