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Enumeration problems

I Enumeration problems: list all solutions rather than just
deciding whether there is one.

I Complexity measures: total time and delay between solutions.
I Motivations: database queries, optimization, building

molecular libraries.
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Modelling

Generating Planar map with constraints

Overwiew of the algorithm
Generating backbones
Folding the map
Computing the indices

Overview of frequent questions



Introduction

Motivation: chemists (Olivier David) wants to build molecular
cages.

But what kind of nice cages can be built from basic components ?
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The motifs

Definition
A map G = (Vc, V , E , next) is a motif if
1. Vc contains only one vertex c called the center
2. each vertex in V is colored with a color in A a fixed alphabet
3. E = {(c, u), u ∈ V }
4. next gives an order on the edges of c
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Map of motifs
Definition
A connected planar map G = (Vc, V , E , next) is a map of motifs
based onM if,
1. each vertex in V is connected to at most one vertex in V ,

which is of the complementary colour.
2. when all edges between vertices in V are removed, the

remaining connected components must all be motifs ofM

Y

a

a

a Ia a

Y

a

a

a

Y

a

a

a Ia a

Ia a

Ia a

Y

a

a

a

Figure: Example of two maps of motifs based onM = {Y, I}, the first
map is unsaturated while the second map is saturated.



Molecular map
Definition
Let G = (Vc, V , EG , nextG) be a saturated map of motifs based
onM, we define the molecular map M = (V , EM , nextM ):
1. V = Vc

2. (c1, c2) ∈ EM if it exists a path (c1, u, v, c2) in G
3. nextM ((c, c1)) = (c, c2) if it exists two paths (c, u1, v1, c1)

and (c, u2, v2, c2) in G and nextG((c, u1)) = (c, u2)

Y

I

I

I

Y

Figure: The molecular map corresponding to the saturated map of motifs
in Fig. 1



The indices

Why is a molecular map a good representation of a molecula ?

1. Constraint on the edges: possible chemical connections
2. The size of a cut S = (S1, S2) is the number of edges with

one end in S1 and the other in S2.

sparsity(S) = size(S)
min(|S1|, |S2|)

Sound molecula have high minimum sparsity.

3. Planar graphs and large automorphism groups ≡ spherical
shape.

4. A large face in the graph ≡ an entrance in the cage
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The problem

Enumeration problem
We want to generate, given a set of motifsM and a size n, all
molecular maps based onM and of size n.

The number of maps is exponential in n. We would like to design
an algorithm with a small delay or at least whose total complexity
is linear in the number of outputs.

Is it possible to restrict the solutions generated to the ones with a
large face? with a good minimum sparsity? a large automorphism
group?

What is the meaning of my previous question?
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A three steps approach

1. Generate the backbones which are simple maps of motifs
2. From each backbone we compute all saturated maps of motifs

we can obtain

3. Compute the indices of the solutions generated

Issue: a solution can be obtained several times. No guarantee on
this number.

Our (bad) method: Store all solutions in a good datastructure
(self balanced tree) and for each new solution test whether it has
already been produced (isomorphism test).

The less the steps, the better the algorithm!
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The backbones

We generate different families of backbones. Their free vertices (of
degree 1) will be folded to get a saturated map.

Different kind of backbones:

1. Trees

2. Paths
3. Cycles
4. All previous structures with restriction on their free vertices
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Trees

It’s a good idea: Every connected map has a spanning tree, it will
make the generation exhaustive.

It’s a bad idea : A graph has many spanning trees.

How we do it : a bruteforce method to generate rooted trees and
an isomorphism test. Since we generate planar trees, it is quite
efficient.

Open question : Can we adapt optimal CAT algoritms to
generate unrooted trees to those colored planar trees ?
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Paths

It’s a bad idea : not every planar map has an Hamiltonian path.
But all planar cubic 3-connected graphs of size less than 38 are
Hamiltonian.

It’s a good idea: paths are simpler than trees (smaller number).

How we do it: bruteforce method, add at the end of a path any
possible motif until the path is of the right size.

The only isomorphic paths are obtained by reversing a path. We
get a CAT algorithm by discarding non canonical paths.
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Cycles

It’s a good idea : There are even less circuits than paths. The
maps will be 2-connected.

It’s a bad idea: not every planar map has an Hamiltonian circuit.
But all planar cubic 3-connected graphs of size less than 30 have
one.

For {Y , V1, V2} and 8 motifs we have 40112 trees, 9024 paths
and less than 2000 cycles.
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Fold and outline

The fold operation on the vertices u and v is adding the edge
(u, v) to G. Valid when u and v are:
1. free
2. of complementary colors
3. in the same face of G

A map is foldable when by successive fold operations we can turn
it into a saturated map.

The outline of a face is the list in order of traversal of the free
vertices. When the backbone is a tree or a path there is a single
outline.
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Example
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outline = {a, a, a, a}

Figure: A map of three motifs on AM = {V, V′, J} and its outline before
a fold operation.
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Figure: A map of three motifs on AM = {V, V′, J} and its outline after a
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When is a map foldable?

The outline is a circular sequence of vertices. The fold remove two
vertices of compatible colours.

Enough to work with the sequence of colours of the vertices. In
the previous example aāāa.

Definition
A word is a Dyck word if we can reduce it to the empty word by
removing consecutive complementary letters.

Lemma
A map is foldable if and only if the associated word is a Dyck word.

This yields a linear time algorithm to test whether a map is
foldable.
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How to avoid non foldable maps?

Definition
A map is almost foldable if for every letter in a ∈ A, there are as
many vertices labeled with a and ā.

Since a foldable backbone is always almost foldabe, we would like
to enumerate almost foldable backbones only.

We use a dynamic programming algorithm of complexity O(nk+1)
where k is the number of letters.

Seems large, but small with regards to the C n paths.
{I , V 1, V 2} of size 18:

I 179, 896, 320 paths in 78.7s
I 1, 277, 952 almost foldable paths in 0.63s.
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How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate the results of all
sequences of reductions which yield an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . . wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letters given by M .
I The preprocessing is in O(n2) and the delay is linear.



How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate the results of all
sequences of reductions which yield an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . . wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letters given by M .
I The preprocessing is in O(n2) and the delay is linear.



How to fold a map?

We call result of a sequence of reductions the set of pairs (i, j)
such that the sequence has paired i and j.

Problem: given a word, we want to generate the results of all
sequences of reductions which yield an empty word.

Another dynamic programming algorithm:
I Build the matrix M such that Mi,j is true if and only if the

subword wi . . . wj is foldable.
I In the enumeration algorithm a partially folded word is a set

of subwords.
I At each step reduce the first non folded letter with all possible

letters given by M .
I The preprocessing is in O(n2) and the delay is linear.



Results

I0

V1

V1

V2

V2

I0

V1

V2

V1

V2

I0

I0



Results

I0

V1

V2

V2

V1

I0
V1

V2

V1

I0

V2

I0



Dealing with duplicates

The algorithm generates many duplicates.
{I , V 1, V 2} of size 18: 1, 658, 070 maps produced but only
23, 901 unique maps

Solution: For each planar map we compute a unique signature. We
store the map with its signature in a self-balancing binary search
tree.

For each edge, compute the DF traversal of the map, the smallest
lexicographically is the signature. The complexity is quadratic.

Open question: more than 50 percent of computation time is spent
in signature computation. Practical linear time algorithme ?
Average linear time algorithm ?
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Indices computations

For each non isomorphic map we must compute indices.

1. Computing all faces and their sizes: O(n)

2. The equivalence class of each vertex: O(n2)
Same idea as the signature : two equivalent vertices yields the
same DF traversal.

3. Computing the minimum sparsity of a map. Currently 15
percent of the total time.
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Minimum Sparsity

Problem NP-hard in general and hard to approximate within a
constant factor.

We used a Gray Code to generate all partitions: O(2n). It was
already a bit slow for graphs of size 20.

There is a cubic algorithm for planar graphs !

Idea: To a graph G associates its dual graph DG .

G DG
cut cycles
size of the cut size of the cycle
size of the partition weigth of the cycle

We find a cycle of minimal size for each possible weigth.
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Current challenges

Bottlenecks of Kékulé:

1. Generate maps of motifs which are trees (find a CAT
algorithm).

2. We cannot use paths or cycles in all cases.

3. Computing the signature of a map. Cannot be significantly
improved.

4. Combinatorial explosion. For some set of motifs, fast enough
but to many generated maps.

Solutions?

1. Concatenation of base motifs to form a new base.
2. New generation technique through ear decomposition.
3. Generate only graphs satisfying additional constraints on

connectivity, face size, sparsity. . .
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Data extraction

A very large sequence of conformations of a molecule.
We need to detect each time a bound appears or disappears in the
sequence.

Very easy algorithmically, but very large dataset. We need a linear
complexity or even less by using the fact that two consecutive
images are very similar.

Identify and classify all possible configurations and transitions
between configuration.

Same kind of problem: identify an interesting interaction between
a given ligand and any protein in the PDB.

Filter, so we do not test every possible protein in the PDB.



Data extraction

A very large sequence of conformations of a molecule.
We need to detect each time a bound appears or disappears in the
sequence.

Very easy algorithmically, but very large dataset. We need a linear
complexity or even less by using the fact that two consecutive
images are very similar.

Identify and classify all possible configurations and transitions
between configuration.

Same kind of problem: identify an interesting interaction between
a given ligand and any protein in the PDB.

Filter, so we do not test every possible protein in the PDB.



Data extraction

A very large sequence of conformations of a molecule.
We need to detect each time a bound appears or disappears in the
sequence.

Very easy algorithmically, but very large dataset. We need a linear
complexity or even less by using the fact that two consecutive
images are very similar.

Identify and classify all possible configurations and transitions
between configuration.

Same kind of problem: identify an interesting interaction between
a given ligand and any protein in the PDB.

Filter, so we do not test every possible protein in the PDB.



Data extraction

A very large sequence of conformations of a molecule.
We need to detect each time a bound appears or disappears in the
sequence.

Very easy algorithmically, but very large dataset. We need a linear
complexity or even less by using the fact that two consecutive
images are very similar.

Identify and classify all possible configurations and transitions
between configuration.

Same kind of problem: identify an interesting interaction between
a given ligand and any protein in the PDB.

Filter, so we do not test every possible protein in the PDB.



Data extraction

A very large sequence of conformations of a molecule.
We need to detect each time a bound appears or disappears in the
sequence.

Very easy algorithmically, but very large dataset. We need a linear
complexity or even less by using the fact that two consecutive
images are very similar.

Identify and classify all possible configurations and transitions
between configuration.

Same kind of problem: identify an interesting interaction between
a given ligand and any protein in the PDB.

Filter, so we do not test every possible protein in the PDB.



Isomorphism

Most of the questions we are asked deal with:
I classifying objects:
I caracterizing object:
I comparing objects:

I isomorph up to a constant number of point or by changing a
type of node by another

I are the geometries alike
I description at different scales

where object = molecule, cristal, conformation . . .
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Experiment planning

We have:
I a set of products P1, . . . , Pl
I a set of experiment E1, E2, . . . , Ek
I the result of each experiment on each product represented by

an integer
Question: Given a product P choose a minimal set of experiments
which characterizes P.

Real Question: Devise a strategy (decision tree) such that the
average number of experiments to characterize a molecule is
minimal.

Both problems are NP-hard.
Is there a good heuristic ? A solution when the number of
experiments is small (FPT algorithm) ?
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Thanks!
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