
Finding optimal strategies of almost acyclic Simple
Stochatic Games

David Auger, Pierre Coucheney, Yann Strozecki
PRiSM, Université de Versailles Saint Quentin

ABSTRACT
The optimal value computation for turned-based stochastic
games with reachability objectives, also known as simple
stochastic games, is one of the few problems in NP ∩ coNP
which are not known to be in P. However, there are some
cases where these games can be easily solved, as for instance
when the underlying graph is acyclic. In this work, we try
to extend this tractability to several classes of games that
can be thought as ”almost” acyclic. We give some fixed-
parameter tractable or polynomial algorithms in terms of
different parameters such as the number of cycles or the size
of the minimal feedback vertex set.

Introduction
A simple stochastic game, SSG for short, is a zero-sum, two-
player, turn-based version, of the more general stochastic
games introduced by Shapley [16]. SSGs were introduced
by Condon [6] and they provide a simple framework that
allows to study the algorithmic complexity issues underlying
reachability objectives. A SSG is played by moving a pebble
on a graph. Some vertices are divided between the players
MIN and MAX: if the pebble attains a vertex controlled
by a player then he has to move the pebble along an arc
leading to another vertex. Some other vertices are ruled by
chance; typically they have two outgoing arcs and a fair coin
is tossed to decide where the pebble will go. Finally, there
is a special vertex named the 1-sink, such that if the pebble
reaches it player MAX wins, otherwise player MIN wins.

Player MAX’s objective is, given a starting vertex for the
pebble, to maximize the probability of winning against any
strategy of MIN. One can show that it is enough to con-
sider stationary deterministic strategies for both players [6].
Though seemingly simple since the number of stationary de-
terministic strategies is finite, the task of finding the pair
of optimal strategies, or equivalently, of computing the so-
called optimal values of vertices, is not known to be in P.

SSGs are closely related to other games such as parity
games or discounted payoff games to cite a few [2]. Inter-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

estingly, those games provide natural applications in model
checking of the modal µ-calculus [17] or in economics. While
it is known that they can be reduced to simple stochastic
games [4], hence appear easier to solve, so far polynomial
algorithm are known either.

Nevertheless, there are some very simple restrictions for
SSGs for which the problem of finding optimal strategies is
tractable. Firstly, if there is only one player, the game is
reduced to a Markov Decision Process which can be solved
by linear programming. In the same vein, if there is no
randomness, the game can be solved in almost linear time [1].

As an extension of that fact, there is a Fixed Parame-
ter Tractable (FPT) algorithm, where the parameter is the
number of average vertices [10]. The idea is to get rid of
the average vertices by sorting them according to a guessed
order. Finally, when the (graph underlying the) game is a
directed acyclic graph (DAG), the values can be found in
linear time by computing them backwardly from sinks.

Without the previous restrictions, algorithms running in
exponential time are known. Among them, the Hoffman-
Karp [12] algorithm proceeds by successively playing a local
best-response named switch for one player, and then a global
best-response for the other player. Generalizations of this
algorithm have been proposed and, though efficient in prac-
tice, they fail to run in polynomial time on a well designed
example [8]. These variations mainly concern the choice of
vertices to switch at each turn of the algorithm which is quite
similar to the choice of pivoting in the simplex algorithm for
linear programming. This is not so surprising since com-
puting the values of an SSG can be seen as a generalization
of solving a linear program. The best algorithm so far is a
randomized sub-exponential algorithm [14] that is based on
an adaptation of a pivoting rule used for the simplex.

In this article, we present several graph parameters such
that, when the parameter is fixed, there is a polynomial time
algorithm to solve the SSG value problem. More precisely,
the parameters we look at will quantify how close to a DAG
is the underlying graph of the SSG, a case that is solvable
in linear time. The most natural parameters that quan-
tify the distance to a DAG would be the tree-width or the
DAG-width, but they seem hard to tackle. In fact, the best
algorithms for bounded tree-width, DAG-width and clique-
width are polynomials but not even FPT in the simpler case
of parity games [15, 3]. Thus we focus on restrictions on the
number of cycles and the size of a minimal feedback vertex
set.

Organization of the paper
In Section 2 we introduce the class of MAX-acyclic graphs,
for which the value problem is polynomial time solvable
(Theorem 2). For this class the Hoffman-Karp algorithm is
polynomial, which could help explain why it performs well
on real examples.

In Section 3 we give a linear time FPT algorithm for the
value problem on SSGs where the parameter is the number of
cycles (Theorem 4). To obtain linear time, we have to reduce
our problem to several instances of acyclic games, since we
cannot even rely on computing the values in a general game.

Finally, in Section 4, we provide an original method to
“eliminate” vertices in an SSG. We apply it to obtain a poly-
nomial time algorithm for the value problem on SSGs with
a feedback vertex set of bounded size (Theorem 8).

1. DEFINITIONS AND STANDARD RESULTS
Simple stochastic games are turn-based stochastic games

with reachability objectives involving two players named
MAX and MIN. In the original version of Condon [6], all
vertices except sinks have outdegree exactly two, and there
are only two sinks, one with value 0 and another with value
1. Here, we allow more than two sinks with general ratio-
nal values, and more than an outdegree two for positional
vertices.

Definition 1 (SSG). A simple stochastic game (SSG)
is defined by a directed graph G = (V,A), together with a
partition of the vertex set V in four parts VMAX , VMIN ,
VAV E and VSINK . To every x ∈ VSINK corresponds a value
Val(x) which is a rational number in [0, 1]. Moreover, ver-
tices of VAV E have outdegree exactly 2, while sink vertices
have outdegree 1 consisting of a single loop on themselves.

In the article, we denote by nM , nm and na the size of
VMAX , VMIN and VAV E respectively and by n the size of
V . The set of positional vertices, denoted VPOS , is VPOS =
VMAX ∪ VMIN . We now define strategies which we restrict
to be stationary and pure, which turns out to be sufficient
for optimality. Such strategies specify for each vertex of a
player the choice of a neighbour.

Definition 2 (Strategy). A strategy for player MAX
is a map σ from VMAX to V such that

∀x ∈ VMAX , (x, σ(x)) ∈ A.

Strategies for player MIN are defined analogously and are
usually denoted by τ . We denote Σ and T the sets of strate-
gies for players MAX and MIN respectively.

Definition 3 (play). A play is a sequence of vertices
x0, x1, x2, . . . such that for all t ≥ 0,

(xt, xt+1) ∈ A.

Such a play is consistent with strategies σ and τ , respectively
for player MAX and player MIN, if for all t ≥ 0,

xt ∈ VMAX ⇒ xt+1 = σ(xt)

and

xt ∈ VMIN ⇒ xt+1 = τ(xt).

A couple of strategies σ, τ and an initial vertex x0 ∈ V
define recursively a random play consistent with σ, τ by set-
ting:

• if xt ∈ VMAX then xt+1 = σ(xt);

• if xt ∈ VMIN then xt+1 = τ(xt);

• if xt ∈ VSINK then xt+1 = xt;

• if xt ∈ VAVE , then xt+1 is one of the two neighbours of
xt, the choice being made by a fair coin, independently
of all other random choices.

Hence, two strategies σ, τ , together with an initial vertex
x0 define a measure of probability Px0σ,τ on plays consistent
with σ, τ . Note that if a play contains a sink vertex x, then
at every subsequent time the play stays in x. Such a play is
said to reach sink x. To every play x0, x1, . . . we associate
a value which is the value of the sink reached by the play if
any, and 0 otherwise. This defines a random variable X once
two strategies are fixed. We are interested in the expected
value of this quantity, which we call the value of a vertex
x ∈ V under strategies σ, τ :

Valσ,τ (x) = Exσ,τ (X)

where Exσ,τ is the expected value under probability Pxσ,τ . The
goal of player MAX is to maximize this (expected) value,
and the best he can ensure against a strategy τ is

Valτ (x) = max
σ∈Σ

Valσ,τ (x)

while against σ player MIN can ensure that the expected
value is at most

Valσ(x) = min
τ∈T

Valσ,τ (x).

Finally, the value of a vertex x, is the common value

Val(x) = max
σ∈Σ

min
τ∈T

Valσ,τ (x) = min
τ∈T

max
σ∈Σ

Valσ,τ (x). (1)

The fact that these two quantities are equal is nontrivial,
and its can be found for instance in [6]. A pair of strategies
σ∗, τ∗ such that, for all vertices x,

Valσ∗,τ∗(x) = Val(x)

always exists and these strategies are said to be optimal
strategies. It is polynomial-time equivalent to compute opti-
mal strategies or to compute the values of all vertices in the
game, since values can be obtained from strategies by solv-
ing a linear system. Conversely if values are known, optimal
strategies are given by greedy choices in linear time (see [6]
and Lemma 1.1). Hence, we shall simply write ”solve the
game” for these tasks.

We shall need the following notion:

Definition 4 (Stopping SSG). A SSG is said to be
stopping if for every couple of strategies all plays eventually
reach a sink vertex with probability 1.

Condon [6] proved that every SSG G can be reduced in
polynomial time into a stopping SSGG′ whose size is quadratic
in the size of G, and whose values almost remain the same.

Theorem 1 (Optimality conditions). Let G be a stop-
ping SSG. The vector of values (Val(x))x∈V is the only vec-
tor w satisfying:

• for every x ∈ VMAX , w(x) = max{w(y) : (x, y) ∈ A};

• for every x ∈ VMIN , w(x) = min{w(y) : (x, y) ∈ A};

• for every x ∈ VAV E w(x) = 1
2
w(x1) + 1

2
w(x2) where

x1 and x2 are the two neighbours of x;

• for every x ∈ VSINK , w(x) = Val(x).

If the underlying graph of an SSG is acyclic, then the
game is stopping and the previous local optimality condi-
tions yield a very simple way to compute values. Indeed, we
can use backward propagation of values since all leaves are
sinks, and the values of sinks are known. We naturally call
these games acyclic SSGs.

Once a pair of strategies has been fixed, the previous the-
orem enables us to see the values as solution of a system
of linear equations. This yields the following lemma, which
gives the shape of the values.

Lemma 1.1. Let G be an SSG with sinks having rational
values of common denominator q. Then under any pair of
strategies σ, τ , the value Valσ,τ (x) of any vertex x can be
computed in time O(nωa), where ω is the exponent of the
matrix multiplication. Moreover, the value can be written as
a rational number a

b
, with

0 ≤ a, b ≤
√

6
na × q.

Proof. We sketch the proof since it is standard. First,
one can easily compute all vertices x such that

Valσ,τ (x) = 0.

Let Z be the set of these vertices. Then:

• all AVE vertices in Z have all their neighbours in Z;

• all MAX (resp. MIN) vertices x in Z are such that
σ(x) (resp. τ(x)) is in Z.

To compute Z, we can start with the set Z of all vertices
except sinks with positive value and iterate the following

• if Z contains an AVE vertex x with a neighbour out of
Z, remove x from Z ;

• if Z contains a MAX (resp. MIN) vertex x with σ(x)
(resp. τ(x)) out of Z, remove x from Z.

This process will stabilize in at most n steps and compute
the required set Z. Once this is done, we can replace all
vertices of Z by a sink with value zero, obtaining a game G′

where under σ, τ , the values of all vertices will be unchanged.
Consider now inG’ two corresponding strategies σ, τ (keep-

ing the same names to simplify) and a positional vertex x.
Let x′ be the first non positional vertex that can be reached
from x under strategies σ, τ . Clearly, x′ is well defined and

Valσ,τ (x) = Valσ,τ (x′).

This shows that the possible values under σ, τ of all ver-
tices are the values of average and sink vertices. The same
is true if one average vertex has its two arcs towards the
same vertex, thus we can forget those also. The value of an
average vertex being equal to the average value of its two
neighbours, we see that we can write a system

z = Az + b (2)

where

• z is the na-dimensional vector containing the values of
average vertices

• A is a matrix where all lines have at most two 1
2

coef-
ficients, the rest being zeros

• b is a vector whose entries are of the form 0, pi
2q

or
pi+pj

2q
, corresponding to transitions from average ver-

tices to sink vertices.

Since no vertices but sinks have value zero, it can be shown
that this system has a unique solution, i.e. matrix I − A is
nonsingular, where I is the na-dimensional identity matrix.
We refer to [6] for details, the idea being that since in n −
1 steps there is a small probability of transition from any
vertex of G′ to a sink vertex, the sum of all coefficients on a
line of An−1 is strictly less than one, hence the convergence
of ∑

k≥0

Ak = (I −A)−1.

Rewriting (2) as

2(I −A)z = 2b,

we can use Cramer’s rule to obtain that the value zv of an
average vertex v is

zv =
detBv

det 2(I −A)

where Bv is matrix 2(I−A) with the column corresponding
to v replaced by 2b. Hence by expanding the determinant
we see that zv is of the form

1

det 2(I −A)

∑
w∈VAV E

±2bw det(2(I −A)v,w)

where 2(I − A)v,w is matrix 2(I − A) where the line corre-
sponding to v and the column corresponding to w have been
removed.

Since 2bw has either value 0, pi
q

or
pi+pj
q

for some 1 ≤
i, j ≤ na, we can write the value of zv as a fraction of integers∑

w∈v ±2bwq · det(2(I −A)v,w)

det 2(I −A) · q
It remains to be seen, by Hadamard’s inequality, that since
the nonzero entries of 2(I−A) on a line are a 2 and at most
two −1, we have

det 2(I −A) ≤
√

6
na
,

which concludes the proof.

The bound
√

6
na

is almost optimal. Indeed a caterpillar
tree of n average vertices connected to the 0 sink except the
last one, which is connected to the 1 sink, has a value of 1

2

n

at the root. Note that the lemma is slightly more general
(rational values on sinks) and the bound a bit better (

√
6

instead of 4) than what is usually found in the literature.
In all this paper, the complexity of the algorithms will

be given in term of number of arithmetic operations and
comparisons on the values as it is customary. The numbers
occurring in the algorithms are rationals of value at most
exponential in the number of vertices in the game, therefore
the bit complexity is increased by at most an almost linear
factor.

2. MAX-ACYCLIC SSGS
In this section we define a class of SSG that generalize

acyclic SSGs and still have a polynomial-time algorithm
solving the value problem.

A cycle of an SSG is an oriented cycle of the underlying
graph.

Definition 5. We say that an SSG is MAX-acyclic (re-
spectively MIN-acyclic) if from any MAX vertex x (resp.
MIN vertex), for all outgoing arcs a but one, all plays going
through a never reach x again.

Therefore this class contains the class of acyclic SSgs and
we can see this hypothesis as being a mild form of acyclicity.
From now on, we will stick to MAX-acyclic SSGs, but any
result would be true for MIN-acyclic SSGs also. There is
a simple characterization of MAX-acyclicity in term of the
structure of the underlying graph.

Lemma 1.2. An SSG is MAX-acyclic if and only if every
MAX vertex has at most one outgoing arc in a cycle.

Let us specify the following notion.

Definition 6. We say that an SSG is strongly connected
if the underlying directed graph, once sinks are removed, is
strongly connected.

Lemma 1.3. Let G be a MAX-acyclic, strongly connected
SSG. Then for each MAX x, all neighbours of x but one
must be sinks.

Proof. Indeed, if x has two neighbours y and z which
are not sinks, then by strong connexity there are directed
paths from y to x and from z to x. Hence, both arcs xy and
xz are on a cycle, contradicting the assumption of MAX-
acyclicity.

From now on, we will focus on computing the values of
a strongly connected MAX-acyclic SSG. Indeed, it easy to
reduce the general case of a MAX-acyclic SSG to strongly
connected by computing the DAG of the strongly connected
components in linear time. We then only need to com-
pute the values in each of the components, beginning by
the leaves.

We will show that the Hoffman-Karp algorithm [12, 7],
when applied to a strongly connected MAX-acyclic SSG,
runs for at most a linear number of steps before reaching an
optimal solution. Let us remind the notion of switchability
in simple stochastic games. If σ is a strategy for MAX, then
a MAX vertex x is switchable for σ if there is an neighbour
y of x such that Valσ(y) > Valσ(σ(x)). Switching such a
vertex x consists in considering the strategy σ′, equal to σ
but for σ′(x) = y.

For two vectors v and w, we note v ≥ w if the inequality
holds componentwise, and v > w if moreover at least one
component is strictly larger.

Lemma 1.4 (See Lemma 3.5 in [18]). Let σ be a strat-
egy for MAX and S be a set of switchable vertices. Let σ′

be the strategy obtained when all vertices of S are switched.
Then

Valσ′ > Valσ.

Let us recall the Hoffman-Karp algorithm:

1. Let σ0 be any strategy for MAX and τ0 be a best
response to σ0

2. while (σt, τt) is not optimal:

(a) let σt+1 be obtained from σt by switching one (or
more) switchable vertex

(b) let τt+1 be a best response to σt+1

The Hoffman-Karp algorithm computes a finite sequence
(σt)0≤t≤T of strategies for the MAX player such that

∀0 ≤ t ≤ T − 1, Valσt+1 > Valσt .

If any MAX vertex x in a strongly connected MAX-acyclic
SSG has more than one sink neighbour, say s1, s2, · · · sk,
then these can be replaced by a single sink neighbour s′

whose value is

Val(s′) := max
i=1..k

Val(si).

Hence, we can suppose that all MAX vertices in a strongly
connected MAX-acyclic SSG have degree two. For such a
reduced game, we shall say that a MAX vertex x is open for
a strategy σ if σ(x) is the sink neighbour of x and that x is
closed otherwise.

Lemma 1.5. Let G be a strongly connected, MAX-acyclic
SSG, where all MAX vertices have degree 2. Then the Hoffman-
Karp algorithm, starting from any strategy σ0, halts in at
most 2nM steps. Moreover, starting from the strategy where
every MAX vertex is open, the algorithm halts in at most
nM steps. All in all, the computation is polynomial in the
size of the game.

Proof. We just observe that if a MAX vertex x is closed
at time t , then it remains so until the end of the compu-
tation. More precisely, is s := σt−1(x) is a sink vertex, and
y := σt(x) is not, then since x has been switched we must
have

Valσt(y) > Valσt(s).

For all subsequent times t′ > t, since strategies are improv-
ing we will have

Valσt′ (y) ≥ Valσt(y) > Valσt(s) = Valσt′ (s) = Val(s),

so that x will never be switchable again.
Thus starting from any strategy, if a MAX vertex is closed

it cannot be opened and closed again, and if it is open it can
only be closed once.

Each step of the Hoffman-Karp algorithm requires to com-
pute a best-response for the MIN player. A best-response
to any strategy can be simply computed with a linear pro-
gram with as many variables as vertices in the SSG, hence in
polynomial time. We will denote this complexity by O(nη);
it is well known that we can have η ≤ 4, for instance with
Karmarkar’s algorithm.

Theorem 2. A strongly connected MAX-acyclic SSG can
be solved in time O(nMn

η).

Before ending this part, let us note that in the case where
the game is also MIN-acyclic, one can compute directly a

best response to a MAX strategy σ without linear program-
ming: starting with a MIN strategy τ0 where all MIN ver-
tices are open, close all MIN vertices x such that their neigh-
bour has a value strictly less than their sink. One obtains a
strategy τ1 such that

Valσ,τ1 < Valσ,τ0 ,

and the same process can be repeated. By a similar argu-
ment than in the previous proof, a closed MIN vertex will
never be opened again, hence the number of steps is at most
the number of MIN vertices, and each step only necessitates
to compute the values, i.e. to solve a linear system (see
Lemma 1.1).

Corollary 2.1. A strongly connected MAX and MIN-
acyclic SSG can be solved in time O(nMnmn

ω), where ω is
the exponent of matrix multiplication.

3. SSG WITH FEW NON-ACYCLIC VER-
TICES

Work on this section has begun with Yannis Juglaret dur-
ing his Master internship at PRiSM laboratory. Preliminary
results about SSGs with one simple cycle in his report [13].
We shall here obtain fixed-parameter tractable (FPT) algo-
rithms in terms of parameters quantifying how far a graph
is from being MAX-acyclic and MIN-acyclic, in the sense of
section 2. These parameters are:

kp =
∑

x∈VPOS

(|{y : (x, y) ∈ A and is in a cycle}| − 1)

and

ka =
∑

x∈VAV E

(|{y : (x, y) ∈ A and is in a cycle}| − 1).

We say that an SSG is POS-acyclic (for positional acyclic)
when it is both MAX and MIN-acyclic. Clearly, parameter
kp counts the number of edges violating this condition in the
game. Similarly, we say that the game is AVE-acyclic when
average vertices have at most one outgoing arc in a cycle.
We call fork vertices, those vertices that have at least two
outgoing arcs in a cycle. Since averages vertices have only
two nodes, ka is the number of fork average vertices.

Note that:

1. When kp = 0 (respectively ka = 0), the game is POS-
acyclic (resp. AVE-acyclic).

2. When ka = kp = 0, the strongly connected compo-
nents of the game are cycles. We study these games,
which we all almost acyclic, in detail in subsection 3.1.

3. Finally, the number of simple cycles of the SSG is al-
ways less than kp + ka, therefore getting an FTP al-
gorithm in kp and ka immediately gives an FTP algo-
rithm in the number of cycles.

We obtain:

Theorem 3. There is an algorithm which solves the value
problem for SSGs in time O(nf(kp, ka)), with f(kp, ka) =
ka!4ka2kp .

As a corollary, by remark 3 above we have:

Theorem 4. There is an algorithm which solves the value
problem for SSGs with k simple cycles in time O(ng(k)) with
g(k) = (k − 1)!4k−1.

Note that in both case, when parameters are fixed, the
dependance in n is linear.

Before going further, let us explain how one could easily
build on the previous part and obtain a FPT algorithm in
parameter kp, but with a much worse dependance in n.

When kp > 0, one can fix partially a strategy on posi-
tional fork vertices, hence obtaining a POS-acyclic subgame
that can be solved in polynomial time according to Corol-
lary 2.1, using the Hoffman-Karp algorithm. Combining this
with a bruteforce approach looking exhaustively through all
possible local choices at positional fork vertices, we readily
obtain a polynomial algorithm for the value problem when
kp is fixed:

Theorem 5. There is an algorithm to solve the value
problem of an SSG in time O(nMnmn

ω2kp).

We shall conserve this brute-force approach In the fol-
lowing, we give an algorithm that reduces the polynomial
complexity to a linear complexity when ka is fixed. From
now on, up to applying the same bruteforce procedure, we
assume kp = 0 (all fork vertices are average vertices). We
also consider the case of a strongly connected SSG, since
otherwise the problem can be solved for each strongly con-
nected component as done in Section 2. We begin with the
baseline ka = 0 and extend the algorithm to general values
of ka. Before this, we provide some preliminary lemmas and
definitions that will be used in the rest of the section.

A partial strategy is a strategy defined on a subset of ver-
tices controlled by the player. Let σ be such a partial strat-
egy for player MAX, we denote by G[σ] the subgame of G
where the set of strategies of MAX is reduced to the ones
that coincide with σ on its support. According to equa-
tion (1), the value of an SSG is the highest expected value
that MAX can guarantee, then it decreases with the set of
actions of MAX:

Lemma 5.1. Let G be an SSG with value v, σ a partial
strategy of MAX, and G[σ] the subgame induced by σ with
value v′. Then v ≥ v′.

In strongly connected POS-acyclic games, positional ver-
tices have at least one outgoing arc to a sink. Recall that,
in case the strategy chooses a sink, we say that it is open at
this vertex (the strategy is said open if it is open at a ver-
tex), and closed otherwise. We can then compare the value
of an SSG with that of the subgame generated by any open
strategy.

Lemma 5.2. Let x be a MAX vertex of an SSG G with a
sink neighbour, and σ the partial strategy open at x. If it is
optimal to open x in G, then it is optimal to open it in G[σ].

Proof. Since it is optimal to open x in G, the value of
its neighbour sink is at least that of any neighbour vertex,
say y. But, in view of Lemma 5.1, the value of y in G[σ]
is smaller than in G, and then it is again optimal to play a
strategy open at x in the subgame.

This lemma will allow to reduce an almost acyclic SSG
(resp. an SSG with parameter ka > 0) to an acyclic SSG

(resp. an SSG with parameter ka−1). Indeed, if the optimal
MAX strategy is open at vertex x, then the optimal strategy
of the subgame open at any MAX vertex will be open at
x. A solution to find x once the subgame is solved (and
then to reduce the parameter ka) consists in testing all the
open MAX vertices. But it may be the case that all MAX
vertices are open which would not yield a FPT algorithm.
In Lemma 5.3 (resp. Lemma 6.1), we give a restriction on
the set of MAX vertices that has to be tested when ka = 0
(resp. ka > 0) which provides a FPT algorithm.

3.1 Almost acyclic SSGs
We consider an SSG with ka = 0. Together with the

hypothesis that it is POS-acyclic and strongly connected,
its graph, once sinks are removed, consists of a single cycle.
A naive algorithm to compute the value of such SSG consists
in looking for, if it exists, a vertex that is open in the optimal
strategy, and then solve the acyclic subgame:

1. For each positional vertex x:

(a) compute the values of the acyclic SSGG[σ], where
σ is the partial strategy open at x,

(b) if the local optimality condition is satisfied for x
in G, return the values.

2. If optimal strategies have not been found, return the
value when all vertices are closed.

This naive algorithm uses the routine that computes the
value of an SSG with only one cycle. When the strategies are
closed, the values can be computed in linear time as for an
acyclic game. Indeed, let x be an average vertex (if none, the
game can be solved in linear time) and s1 . . . s` be the values
of the average neighbour sinks in the order given by a walk
on the cycle starting from x. Then the value of x satisfies the
equation Val(x) = 1

2
s1 + 1

2
(1

2
s2 + 1

2
(· · ·+ 1

2
(1

2
s`+ 1

2
Val(x)))),

so that

Val(x) =
2`

2` − 1

∑̀
i=1

2−isi, (3)

which can be computed in time linear in the size of the cycle.
The value of the other vertices can be computed by walking
backward from x, again in linear time. Finally, since solving
an acyclic SSG is linear, the complexity of the algorithm is
O(n2) which is still better than the complexity O(nMnmn

ω)
obtained with the Hoffman-Karp algorithm (see Theorem 5).

Remark that this algorithm can readily be extended to a
SSG with k cycles with a complexity O(nk+1). Hence it is
not an FPT algorithm for the number of cycles. However,
we can improve on this naive algorithm by noting that the
optimal strategy belongs to one of the following subclasses
of strategies:

(i) strategies closed everywhere,

(ii) strategies open at least at one MAX vertex,

(iii) strategies open at least at one MIN vertex.

The trick of the algorithm is that, knowing which of the
three classes the optimal strategy belongs to, the game can
be solved in linear time. Indeed:

(i) If the optimal strategy is closed at every vertex, the
value can be computed in linear time as shown before.

(ii) If the optimal strategy is open at a MAX vertex (the
MIN case is similar), then it suffices to solve in lin-
ear time the acyclic game G[σ] where σ is any partial
strategy open at a MAX vertex, and then use the fol-
lowing Lemma to find an open vertex in the optimal
strategy of the initial game.

Lemma 5.3. Let G be a strongly connected almost-acyclic
SSG. Assume that the optimal strategy is open at a MAX
vertex. For any partial strategy σ open at a MAX vertex
x, let x = x0, x1 . . . x` = x be the sequence of open MAX
vertices for the optimal strategy of G[σ] listed in the cycle
order. Then it is optimal to open x1.

Proof. Let x̄ be a MAX vertex that is open when solving
G. From Lemma 5.2, there is an index i such that xi = x̄
(in particular there exists an open MAX vertex when solving
G[σ]). If ` = 1 then x0 = x̄ so that the optimal strategies
of G[σ] and G coincide. Otherwise, if i = 1, the result is
immediate. At last, if i > 1, xi has the same value in G
and G[σ] (the value of its sink), and so has the vertex just
before if it is different from x0. Going backward from xi in
the cycle, all the vertices until x0 (not included) have the
same value in G and G[σ]. In particular, if i > 1, this is the
case for x1 whose value is then the value of its sink. So it is
optimal to open x1 in G as well.

All in all, a linear algorithm that solves a strongly con-
nected almost-acyclic SSG G is:

1. Compute the values of the strategies closed everywhere.
If optimal, return the values.

2. Else compute the optimal strategies of G[σ1] where σ1

is a partial strategy open at a MAX vertex x; let y be
the first open MAX vertex after x; compute the values
of G[σ2] where σ2 is the partial strategy open at y; if
the local optimality condition is satisfied for y in G,
return the values.

3. Else apply the same procedure to any MIN vertex.

Theorem 6. There is an algorithm to solve the value
problem of a strongly connected almost-acyclic SSG in time
O(n) with n the number of vertices.

3.2 Fixed number of non acyclic average ver-
tices

Again, we assume that the SSG is strongly connected and
POS-acyclic. The algorithm for almost-acyclic games can
be generalized as follow.

Firstly, it is possible to compute the values of the strate-
gies closed everywhere in polynomial time in ka and check if
this strategy is optimal. Indeed the value of each fork vertex
can be expressed as an affine function of the value of all fork
vertices in the spirit of Eq. (3). Then the linear system of
size ka can be solved in polynomial time, and the value of
the remaining vertices computed by going backward from
each fork vertex. This shows that computing the values of a
game once strategies are fixed is polynomial in the number
of fork average vertices, which improves the complexity of
Lemma 1.1.

Otherwise, the following Lemma allows to find a positional
vertex that is open for the optimal strategy. We say that a
vertex x is the last (resp. first) vertex in a set S before (resp.

max1 . . . maxk

s1 . . . sk

a1 a2. . .

Figure 1: Illustration of Lemma 6.1: a1 and a2 are average
fork vertices. Vertices on the top are MAX vertices,
labelled from 1 to k, that lead to sinks. maxk is the
last MAX vertex before a fork vertex. Assume it is
optimal to open at least one MAX vertex. Then, the
first open MAX vertex (wrt to the labelling) of the
optimal strategy of the subgame open at maxk is open
as well in the optimal strategy of the initial game.

after) another vertex y if there is a unique simple path from
x to y (resp. y to x) that does not contain any vertex in S,
x and y being excluded.

Lemma 6.1. Let G be a strongly connected SSG with a set
A = {a1, . . . , a`} of fork average vertices and no positional
fork vertices. Assume that the optimal strategy of G is open
at a MAX vertex. Let σ be a partial strategy open at any
vertex that is the last MAX vertex before a vertex in A. Let
S[σ] be the set of open MAX vertices when solving G[σ].
Then, there exists x ∈ S[σ] that satisfies

• it is optimal to open x in G,

• x is the first vertex in S[σ] after a vertex in A.

Proof. Let x̄ be a MAX vertex that is open when solving
G, and i be such that ai is the last vertex in A before x̄. By
Lemma 5.2, x̄ is open in G[σ] and since σ is not open at a
MAX vertex between ai and x̄, all the vertices between the
successor of ai and x̄ have the same value in G[σ] and G,
and then the optimal strategy of G[σ] at these vertices is
optimal for G. This property holds in particular for the first
vertex in S[σ] after ai in the path leading to x̄.

The Lemma is illustrated on Figure 1.
Finally, if the optimal strategy is open at some MAX ver-

tex, then the following algorithm can be run to compute the
values of G:

1. Let x be the last MAX vertex before some fork vertex,
and σ1 the partial strategy open at x. G[σ1] is an SSG
that has ka − 1 fork vertices (recall that G is strongly
connected). When solved, it provides a set S[σ1] of
open MAX vertices. There are at most ka + ka − 1
vertices that are the first in S[σ1] after a fork vertex.
Then, from Lemma 6.1, it is optimal to open at least
one of them in G.

2. For each y that is the first in S[σ1] after a fork vertex:

(a) compute the values of G[σ2], σ2 being the partial
strategy open at y,

(b) if local optimality condition is satisfied for y in G,
return the values.

This algorithm computes at most 2ka SSGs with ka − 1
average fork vertices. In the worst case, the same algorithm
must be run for the MIN vertices. Using theorem 6 for the
case kp = ka = 0, we obtain Theorem 3 and its corollary.

4. FEEDBACK VERTEX SET
A feedback vertex set is a set of vertices in a directed

graph such that removing them yields a DAG. Computing
a minimal vertex set is an NP-hard problem [9], but it can
be solved with a FPT algorithm [5]. Assume the size of the
minimal vertex set is fixed, we prove in this section that we
can find the optimal strategies in polynomial time. Remark
that, to prove such a theorem, we cannot use the result on
bounded number of cycles since a DAG plus one vertex may
have an exponential number of cycles. Moreover a DAG plus
one vertex may have a large number of positional vertices
with several arcs in a cycle, thus we cannot use the algorithm
to solve MAX-acyclic plus a few non acyclic MAX vertices.

The method we present works by transforming k nodes
into sinks and could thus be used for other classes of SSGs.
For instance, it could solve in polynomial time the value
problem for games which are MAX-acyclic if we remove k
nodes.

4.1 The dichotomy method
We assume from now on that all SSGs are stopping. In

this subsection, we explain how to solve an SSG by solving
it several times but with one vertex less.

First we remark that turning any node into a sink of its
own value in the original game does not change any value.

Lemma 6.2. Let G be an SSG and x one of its vertex. Let
G′ be the same SSG as G except that x has been turned into
a sink vertex of value ValG(x). For all vertices y, ValG(y) =
ValG′(y).

Proof. The optimality condition of Theorem 1 are ex-
actly the same in G and G′. Since the game is stopping,
there is one and only one solution to these equations and
thus the values of the vertices are identical in both games.

The values in an SSG are monotone with regards to the
values of the sinks, as proved in the next lemma.

Lemma 6.3. Let G be an SSG and s one of its sink vertex.
Let G′ be the same SSG as G except that the value of s has
been increased. For all vertices x, ValG(x) ≤ ValG′(x).

Proof. Let fix a pair of strategy (σ, τ) and a vertex x.
We have:

Val(σ,τ),G(x) =
∑

y∈VSINK

P (x y) ValG(y)

Val(σ,τ),G(x) ≤
∑

y∈VSINK

P (x y) ValG′(y) = Val(σ,τ),G′(x)

because ValG(x) = ValG′(x) except when x = s, ValG(s) ≤
ValG′(s). Since the inequality is true for every pair of strate-
gies and every vertex, the lemma is proved.

Let x be an arbitrary vertex of G and let G[v] be the same
SSG, except that x becomes a SINK vertex of value v. We
define the function f by:

 if x is a MAX vertex, f(v) = max{ValG[v](y) : (x, y) ∈ A}
if x is a MIN vertex, f(v) = min{ValG[v](y) : (x, y) ∈ A}
if x is an AVE vertex, f(v) = 1

2
ValG[v](x

1) + ValG[v](x
2)

Lemma 6.4. There is a unique v0 such that f(v0) = v0

which is v0 = ValG(x). Moreover, for all v > v0, f(v0) < v0

and for all v < v0, f(v0) > v0.

Proof. The local optimality conditions given in Theo-
rem 1 are the same in G and G[v] except the equation
f(ValG(x)) = ValG(x). Therefore, when f(v0) = v0, the
values of G[v] satisfy all the local optimality conditions of
G. Thus v0 is the value of s in G. Since the game is stopping
there is at most one such value.

Conversely, let v0 be the value of s in G. By Lemma 6.2,
the values in G[v0] are the same as in G for all vertices.
Therefore the local optimality conditions in G contains the
equation f(v0) = v0.

We have seen that f(v) = v is true for exactly one value
of v. Since the function f is increasing by Lemma 6.3 and
because f(0) ≥ 0 and f(1) ≤ 1, we have for all v > v0,
f(v0) < v0 and for all v < v0, f(v0) > v0.

The previous lemma allows to determine the value of x in
G by a dichotomic search by the following algorithm. We
begin with min = 0 and max = 1, and [min,max] will be
the interval which contains the value of x.

1. While max−min ≤ 6−na do:

(a) v = (min+max)/2

(b) Compute the values of G[v]

(c) If f(v) > v then min = v

(d) If f(v) < v then max = v

2. Return the unique rational in [min,max] of denomi-

nator less than
√

6
−na

Theorem 7. Let G be an SSG with n vertices and x one
of its vertex. Denote by C(n) the complexity to solve G[v],
then we can compute the values of G in time O(nC(n)).
In particular an SSG which can be turned into a DAG by
removing one vertex can be solved in time O(n2).

Proof. Let v0 be the value of x in G, which exists since
the game is stopping. By Lemma 6.4 it is clear that the pre-
vious algorithm is such that v0 is in the interval [min,max]
at any time. Moreover, by Lemma 1.1 we know that v0 = a

b

where b ≤
√

6
na

. At the end of the algorithm, max−min ≤
6−na therefore there is at most one rational of denominator
less than

√
6
na

in this interval. It can be found exactly with
O(na) arithmetic operations by doing a binary search in the
Stern-Brocot tree (see for instance [11]).

One last call to G[v0] gives us all the exact values of G.
Since the algorithm stops when max−min ≤ 6−na , we have
at most O(na) calls to the algorithm solving G[v]. All in all
the complexity is O(naC(n) + na) that is O(naC(n)).

In the case where G[v] is an acyclic graph, we can solve it
in linear time which gives us the stated complexity.

4.2 Feedback Vertex Set of Fixed Size
Let G be an SSG such that X is one of its minimal vertex

feedback set. Let k = |X|. The game is assumed to be stop-
ping. Since the classical transformation [6] into a stopping
game does not change the size of a minimal vertex feedback
set, it will not change the polynomiality of the described
algorithm. However the transformation produces an SSG
which is quadratically larger, thus a good way to improve
the algorithm we present would be to relax the stopping
assumption.

In this subsection we will consider games whose sinks have
dyadic values, since they come from the dichotomy of the last
subsection. The gcd of the values of the sinks will thus be
the maximum of the denominators. The idea to solve G is to
get rid of X, one vertex at a time by the previous technique.
The only thing we have to be careful about is the precision
up to which we have to do the dichotomy, since each step
adds a new sink whose value has a larger denominator.

Theorem 8. There is an algorithm which solves any stop-
ping SSG in time O(nk+1) where n is the number of vertices
and k the size of the minimal feedback vertex set.

Proof. First recall that we can find a minimal vertex
with an FPT algorithm. You can also check every set of size
k and test in linear time whether it is a feedback vertex set.
Thus the complexity of finding such a set, that we denote
by X = {x1, . . . , xk}, is at worst O(nk+1). Let denote by
Gi the game G where x1 to xi has been turned into sinks
of some values. If we want to make these values explicit we
write Gi[v1, . . . , vi] where v1 to vi are the values of the sinks.

We now use the algorithm of Theorem 7 recursively, that
is we apply it to reduce the problem of solving Gi[v1, . . . , vi]
to the problem of solving Gi+1[v1, . . . , vi, vi+1] for several
values of vi+1. Since Gk is acyclic, it can be solved in linear
time. Therefore the only thing we have to evaluate is the
number of calls to this last step. To do that we have to
explain how precise should be the dichotomy to solve Gi,
which will give us the number of calls to solve Gi in function
of the number of calls to solve Gi+1.

We prove by induction on i that the algorithm, to solve
Gi, makes log(pi) calls to solve Gi+1, where the value vi+1 is

a dyadic number of numerator bounded by pi = 6(2i+1−1)na .
Theorem 7 proves the case i = 0. Assume the property is
proved for i− 1, we prove it for i. By induction hypothesis,
all the denominators of v1, . . . , vi are power of two and their
gcd is bounded by pi. By Lemma 1.1, the value of xi is a
rational of the form a

b
where b ≤ pi

√
6
na

. We have to do the

dichotomy up to the square of pi
√

6
na

to recover the exact
value of xi in the game Gi(v1, . . . , vi−1). Thus the bound
on the denominator of vi+1 is pi+1 = p2

i 6
na . That is pi+1 =

62(2i+1−1)na6na = 6(2i+2−1)na , which proves the induction
hypothesis. Since we do a dichotomy up to a precision pi+1,
the number of calls is clearly log(pi+1).

In conclusion, the number of calls to Gk is

k−1∏
i=0

log(6(2i+1−1)na) ≤ 2k
2

log(6)knka.

Since solving a game Gk can be done in linear time the total
complexity is in O(nk+1).

5. REFERENCES

[1] Daniel Andersson, Kristoffer Arnsfelt Hansen,
Peter Bro Miltersen, and Troels Bjerre Sørensen.
Deterministic graphical games revisited. In Logic and
Theory of Algorithms, pages 1–10. Springer, 2008.

[2] Daniel Andersson and Peter Bro Miltersen. The
complexity of solving stochastic games on graphs. In
Algorithms and Computation, pages 112–121.
Springer, 2009.

[3] Dietmar Berwanger, Anuj Dawar, Paul Hunter,
Stephan Kreutzer, and Jan Obdržálek. The dag-width
of directed graphs. Journal of Combinatorial Theory,
Series B, 102(4):900–923, 2012.

[4] Krishnendu Chatterjee and Nathanaël Fijalkow. A
reduction from parity games to simple stochastic
games. In GandALF, pages 74–86, 2011.

[5] Jianer Chen, Yang Liu, Songjian Lu, Barry O’sullivan,
and Igor Razgon. A fixed-parameter algorithm for the
directed feedback vertex set problem. Journal of the
ACM (JACM), 55(5):21, 2008.

[6] Anne Condon. The complexity of stochastic games.
Information and Computation, 96(2):203–224, 1992.

[7] Anne Condon. On algorithms for simple stochastic
games. Advances in computational complexity theory,
13:51–73, 1993.

[8] Oliver Friedmann. An exponential lower bound for the
parity game strategy improvement algorithm as we
know it. In Logic In Computer Science, 2009.
LICS’09. 24th Annual IEEE Symposium on, pages
145–156. IEEE, 2009.

[9] Michael R Gary and David S Johnson. Computers and
intractability: A guide to the theory of
np-completeness, 1979.

[10] Hugo Gimbert and Florian Horn. Simple stochastic
games with few random vertices are easy to solve. In
Foundations of Software Science and Computational
Structures, pages 5–19. Springer, 2008.

[11] Knuth Graham and Donald E Knuth. Patashnik,
concrete mathematics. In A Foundation for Computer
Science, 1989.

[12] Alan J Hoffman and Richard M Karp. On
nonterminating stochastic games. Management
Science, 12(5):359–370, 1966.

[13] Yannis Juglaret. Étude des simples stochastic games.

[14] Walter Ludwig. A subexponential randomized
algorithm for the simple stochastic game problem.
Information and computation, 117(1):151–155, 1995.

[15] Jan Obdržálek. Clique-width and parity games. In
Computer Science Logic, pages 54–68. Springer, 2007.

[16] Lloyd S Shapley. Stochastic games. Proceedings of the
National Academy of Sciences of the United States of
America, 39(10):1095, 1953.

[17] Colin Stirling. Bisimulation, modal logic and model
checking games. Logic Journal of IGPL, 7(1):103–124,
1999.

[18] Rahul Tripathi, Elena Valkanova, and VS Anil Kumar.
On strategy improvement algorithms for simple
stochastic games. Journal of Discrete Algorithms,
9(3):263–278, 2011.

