
Deterministic Scheduling of Periodic Messages for
Cloud RAN

Dominique Barth1, Maël Guiraud1,2, Brice Leclerc2, Olivier Marcé2, and Yann Strozecki1

1David Laboratory, UVSQ
2Nokia Bell Labs France

Abstract—A recent trend in mobile networks is to centralize in
distant data-centers the processing units which were attached to
antennas until now. The main challenge is to guarantee that the
latency of the periodic messages sent from the antennas to their
processing units and back, fulfills protocol time constraints. We
show that traditional statistical multiplexing does not allow such
a low latency, due to collisions and buffering at nodes. Hence, we
propose in this article to use a deterministic scheme for sending
periodic messages without collisions in the network thus saving
the latency incurred by buffering.

We give several algorithms to compute such schemes for a
common topology where one link is shared by all antennas. We
show that there is always a solution when the routes are short or
the load is small. When the parameters are unconstrained, and
some buffering is allowed in the processing units, we propose an
algorithm (PMLS) adapted from a classical scheduling method.
The experimental results show that even under full load, most
of the time PMLS finds a deterministic sending scheme with no
latency.

I. INTRODUCTION

Next generations of mobile network architectures evolve
toward centralized radio network architectures called C-RAN
for Cloud Radio Access Network, to reduce energy consump-
tion costs [1] and more generally the total cost of ownership.
The main challenge for this type of architecture is to reach a
latency compatible with transport protocols [2]. The latency
is measured between the sending of a message by a Remote
Radio Head (RRH) and the receptions of the answer, computed
by real-time virtualized network functions of a BaseBand
Unit (BBU) in the cloud. For example, LTE standards require
to process functions like HARQ (Hybrid Automatic Repeat
reQuest) in 3ms [3]. In 5G, some services need end-to-end
latency as low as 1ms [4], [5]. The specificity of the C-
RAN context is not only the latency constraint, but also the
periodicity of the data transfer in the frontaul network between
RRHs and BBUs: frames need to be emitted and received each
millisecond [3]. Our aim is to operate a C-RAN on a low-
cost shared switched network. The question we address is the
following: is it possible to schedule messages such that there
are no collisions to avoid latency caused by queuing delays?
Eliminating this source of latency leaves us with more time
budget for latency due to the physical length of the routes in
the network, and thus allows for wider deployment areas.

Let us expose briefly our model: the network topology is

modeled by a directed weighted graph and a set of paths
(routes) from source nodes (RRHs) to target nodes (BBUs).
Time is discretized and a unit of time or slot corresponds to
the time needed to transmit a minimal unit of data over the
network. Since statistical multiplexing does not ensure a good
latency we want to avoid any buffering in internal nodes of
the graph. We take advantage of the deterministic nature of the
messages we must manage i.e. the dates of arrival of messages
are known beforehand. In fact, following LTE standard [3], we
assume that the arrivals of all the packets are periodic with
the same period. We propose to design a periodic process to
send the messages through the network without collisions. By
periodic process we mean that the network at times t and t+P ,
where P is the period, is in the exact same state.

We assume that the routes of the messages are already fixed,
and there are no buffering allowed inside the network. Hence
we only have two sets of values that we can set when building
a periodic sending process, called a periodic assignment: the
time at which each packet is sent by an RRH in each period
and the waiting time in the BBU before the answer is sent
back to the RRH. When building a periodic assignment, we
must take into account the periodicity which makes many
scheduling methods unusable. Not only a message must not
collide with the other messages sent by the others BBU/RRH
in the same period, but also in the previous and following
periods. The latency, that is the time between the emission
of a message and the complete return of its answer must be
minimized. This means that the only buffering we are allowed
– the waiting time before sending back the answer– must be
small, in particular when the route is long. Note that the model
is technology agnostic, i.e. it is compatible with an optical
network with a fixed packet size.

Our main contributions are the following. In Sec. II we
propose a model of the network and the periodic sending of
messages along its routes and we introduce the star routed
network. We formalize the problem of finding a periodic
assignment for sending messages without buffering (PAZL) or
with buffering in the processing unit only (PALL). In Sec. III,
we propose several polynomial time algorithms to solve PAZL
when the length of the routes, the number of routes or the load
is small and evaluate their efficiency experimentally. Finally in
Sec. IV, we introduce two algorithms to solve PALL and our
experimentations show that the deterministic communication

schemes we design vastly outperform traditional statistical
multiplexing with regard to latency.

Related works

Statistical multiplexing even with a large bandwidth does
not comply with the latency requirements of C-RAN. There-
fore, the current solution [6], [7] is to use dedicated circuits
for the fronthaul. Each end-point (RRH on one side, BBU
on the other side) is connected through direct fiber or full
optical switches. This architecture is very expensive and hardly
scales in the case of a mobile network composed of about
10,000 base stations. The deterministic approach we propose
has gained some traction recently: Deterministic Networking is
under standardization in IEEE 802.1 TSN group [8], as well at
IETF DetNet working group [9]. Several patents on concepts
and mechanisms for DetNet have been already published, see
for example [10], [11].

The algorithmic problems we study are similar to several op-
timization problems: such as the allocation of frequencies [12],
designing train schedules [13] with small latency or the two
flow shop scheduling problem [14]. However, the periodicity
of our problems makes them significantly different and not
reducible to these classical models.

II. MODEL AND PROBLEMS

A long version of this paper [15] contains details on the
models, hardness results, several additional algorithms, the
proofs of all propositions and more experiments.

A. Network modeling

The network is modeled as a directed graph G = (V,A).
Each arc (u,v) in A is labeled by an integer weight Ω(u,v)
which represents the time taken by a message to go from u to
v using this arc. A route r in G is a directed path, that is, a
sequence of adjacent vertices u0, . . . , ul, with (ui,ui+1) ∈ A.
The latency of a vertex ui in a path r = (u0, . . . ,ul) is defined
by λ(ui,r) =

∑
0≤j<i

Ω(uj , uj+1). We also define λ(u0,r) = 0.

The length of the route r is defined by λ(r) = λ(ul,r). We
denote by R a set of routes, the pair (G,R) is called a routed
network and represents our telecommunication network. The
first vertex of a route models an antenna (RRH) and the last
one a data-center (BBU) which processes the messages sent
by the antenna.

In the context of cloud-RAN applications, we need to send
a message from an RRH u to a BBU v and then we must send
the answer from v back to u. We say that a routed network
(G,R) is symmetric if the set of routes is partitioned into the
sets F of forward routes and B of backward routes. There
is a bijection ρ between F and B such that for any forward
route r ∈ F with first vertex u and last vertex v, the backward
route ρ(r) ∈ B has first vertex v and last vertex u.

B. Messages dynamic

Time is discretized, hence the unit of all time values is a
slot, the time needed to transmit a minimal unit of data over
the network. The weight of an arc is also expressed in slots,
it is the time needed by a message to go through this arc. In
the process we study, a message is sent on each route at each
period, denoted by P . Let r = (u0, . . . ,ul) be a route, if a
message is sent at time m from u0 the first vertex of r then
it will arrive at vertex ui in r at time m+ λ(ui,r). Since the
process is periodic, if the message from r goes through an arc
at time t ∈ [0,P − 1], then it goes through the same arc at
time t+ kP for all positive integers k. Therefore, every time
value can be computed modulo P and we say that the first
time slot at which a message sent at time m on r reaches a
vertex ui in r is t(ui,r) = m+ λ(ui,r) mod P .

A message usually cannot be transported in a single time
slot. We denote by τ the number of consecutive slots necessary
to transmit a message. In this paper, we assume that τ is the
same for all routes. Indeed, the data flow sent by an RRH
to its BBU is the same, regardless of the route. Let us call
[t(u,r)]P,τ the set of time slots used by route r at vertex u in
a period P , that is [t(u,r)]P,τ = {t(u,r) + i mod P | 0 ≤
i < τ}. Let r1 and r2 be two routes, on which messages are
sent at time m1 and m2 in their first vertex. We say that the
two routes have a collision if they share an arc (u,v) and
[t(u,r1)]P,τ ∩ [t(u,r2)]P,τ 6= ∅.

A (P,τ)-periodic assignment of a routed network (G,R)
is a function that associates to each route r ∈ R its offset
mr that is the time at which a message is emitted at the first
vertex of the route r. In a (P,τ)-periodic assignment, no pair
of routes has a collision.

Let us give an interpretation of a (P,τ)-periodic assignment
of (G,R) a symmetric routed network, so that it represents the
sending of a message and of its answer. First a message is sent
at u, through the route r ∈ F , at time mr. This message is
received by v, i.e., the last vertex of r at time t(v,r). The
answer is then sent back to u on the route ρ(r) in the same
period at time mρ(r) if mρ(r) > t(v,r), otherwise at time
mρ(r) in the next period. The time between the arrival of the
message and the time it is sent back is called the waiting
time and is defined by wr = mρ(r)− t(v,r) if mρ(r) > t(v,r)
and wr = mρ(r) +P − t(v,r) otherwise. Fig. 1 illustrates this
process in an RRH and its corresponding BBU.

The process time for a message sent on the route r is equal
to PT (r) = λ(r) +wr + λ(r). Each route must respect some
time limit that we call a deadline. To represent these deadlines,
we use a deadline function d, which maps to each route r an
integer such that PT (r) must be less than d(r). We can now
define the problem we solve in this article.

Periodic Assignment for Low Latency (PALL)

Input: A symmetric routed network (G,R), the integers P , τ
and a deadline function d.

τ Slots
Period P

Messages sent each period

RRH

ReplyReplyBBU

Reception of the messages at t(v, r)

Waiting time wr

mρ(r)

mr

Fig. 1. The process defined by a (P,τ)-periodic assignment

Question: does there exist a (P,τ)-periodic assignment m of
(G,R) such that for all r ∈ R, PT (r) ≤ d(r)?

It turns out that the problem PALL is NP-hard to solve
and even to approximate for general routed networks (see
the long version [15]). We also consider a simpler version of
PALL, that we call Periodic Assignment for Zero Latency
or PAZL: we ask for a (P,τ)-periodic assignment with all
waiting times equal to 0. We introduce PAZL because it is
simpler to study and we are able to prove theoretical results
and find better algorithms for this variant than for PALL. As we
experimentally show in Sec. III-B, this problem can often be
solved positively albeit less often than PALL. Finally, a solution
to PAZL is simpler to implement in real telecommunication
networks, since we do not need buffering at all.

C. The star routed network

Let us define a family of simple routed networks modeling
a Point-to-Multipoint fronthaul (PtMP), which has been de-
signed for C-RAN [7]. The graph G has two sets of vertices,
S = {s0,...,sn−1} and T = {t0,...,tn−1} of cardinality n
and two special nodes: the central source node cs and the
central target node ct. There is an arc between cs and ct and
for all i, there is an arc between si and cs and between ti
and ct. All the symmetric arcs are also in the graph with
the same weights which modelizes a full-duplex network. The
forward routes are the directed paths ri = (si,cs,ct,ti) and
the backward routes are ρ(ri) = (ti,ct,cs,si). The symmetric
routed networks (G, {ri,ρ(ri)}i<n) is called a star routed
network and is represented in Fig. II-C. While it seems very
simple, every network in which all routes share an arc can
be reduced to it. This topology is realistic, since often all
the BBUs are located in the same data-center. The network
interface of the data-center is modeled by the vertex ct and
the BBUs inside it are represented by the vertices t0, . . . ,tn−1.
In the following we will consider the problems PALL and PAZL
on star routed networks only. In this context, we can assume
w.l.o.g. that the weights are zero on (cs,ct) and for all i on
(si,cs) (see [15]).

s2

s1

s0

t2

t1

t0

cs ct

Ω(s
1 c

s)

Ω(...)

Ω(..
.)

Ω(..
.)

Ω(...)

Ω(...)

Fig. 2. A star routed network

III. THE STAR ROUTED NETWORK: NO WAITING TIME

In this section, we deal with the problem PAZL on star
routed networks. We want an assignment with waiting times
zero, that is, d(r) = 2λ(r). For a route r, choosing the offset
mr also sets the offset of the route ρ(r) to mρ(r) = mr+λ(r)
mod P .

A. Three algorithms to solve PAZL

We first present a simple policy, which works when the
period is large with regard to the lengths of the routes. The
messages are sent in order from the shortest route to the
longest route, without any gap between two messages of the
forward routes. In other words, we assume that the route ri are
sorted by increasing λ(ri) and we set mri the offset of ri to
iτ . We call this algorithm Shortest-Longest. By construction,
there are no collisions in the forward period and if the period is
long enough, in the backward period the order of the messages
are the same as in the forward period thus no collision can
occur.

Proposition 1. Let (G,R) be a star routed network, and let
nτ + 2(λ(rn−1) − λ(r0)) ≤ P . There is a (P,τ)-periodic
assignment of (G,R) with waiting times 0 given by Shortest-
Longest in time O(n log(n)).

We define the load of a star routed network as nτ
P , it is the

proportion of time slots used by messages on the central arc
in a period. Therefore if the load is larger than 1 there cannot
be an assignment. We propose a Greedy algorithm to build a
(P,τ)-periodic assignment. We consider a period and cut it into
consecutive intervals of size τ that we call macro-slots. The
algorithm works by choosing an offset for each forward route
in the following way: try all offsets which put the message in
a yet not used macro-slot in the period. Since this choice also
sets the offset of the corresponding backward route, choose
the first one which does not create a collision. This algorithm
always finds an assignment when the load is sufficiently large,
since it guarantees that enough macro-slots are free.

Proposition 2. There is a (P,τ)-periodic assignment of a star
routed network with waiting times 0 if the load is less than
1/3 and it can be found in time O(n2).

Finally, there is an algorithm which finds an assignment
when it exists, in fixed parameter tractable time (FPT) with
parameter n the number of routes, that is the algorithm is
exponential in n only and linear in the other parameters. This
is justified since n is small in practice (from 10 to 20) and the
other parameters such as P , τ or the weights are large. We call
this algorithm Exhaustive Search of Compact Assignments.
The algorithm is based on a canonical form for assignments
with waiting time zero. We call such an assignment compact
which roughly means that no message can be sent a slot before
in a forward route without collisions. The number of compact
assignments is bounded by n!, hence we enumerate them in
reasonable time when n is small. To make it more efficient in
practice, we make cuts in the search tree used to explore all
compact assignments, see [15] for more details.

B. Experimental evaluation

In this section we compare the three presented algorithms
experimentally. The C code used in this experimentations can
be found on the author’s web page [16]. From the C-RAN
context we choose the following parameters: the number of
routes is at most n = 20, τ is equal to 2,500. It corresponds
to slots of 64 bytes, messages of approximately 1 Mbit and
links of bandwidth 10 Gbit/s when P is one millisecond
(19531 slots). First we consider routes which are shorter than
τ : a message cannot be contained completely in a single arc
which is common in our applications. We generate star routed
networks with weights of the arcs (ct,ti) drawn uniformly
between 0 and 700 which corresponds to links of less than
5km between a BBU and an RRH.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14

Av
er

ag
e

m
ax

im
al

 lo
ad

 (%
)

Number of routes

Greedy
Exhaustive Search

Shortest Longest

Fig. 3. Maximal possible load (averaged over 1,000 random instances) for
which an assignment is found

As shown in Fig. 3, for short routes, both Shortest Longest
or the exhaustive search have the same performance and
succeed very often but not always. It is surprising, since
exhaustive search is guaranteed to find a solution when it
exists, while Shortest Longest is only a heuristic. The Greedy
algorithm is less effective but it works when the load is less

than 2/3, twice better than the theoretical lower bound of
1/3. We now look at the performance of the algorithms on
longer routes. The weights of the arcs are drawn between 0
and 20,000.

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100

Su
ce

ss
(%

)

Load (%)

Shortest Longest
Greedy

Exhaustive Search

Fig. 4. Average success rate of the three algorithms computed from 1,000
random instances with 8 routes

As shown in Fig. 4, on long routes, the performances of
Shortest-Longest are abysmal since the difference between the
length of the routes is large. When the load is larger than 50%,
the exhaustive search finds more solutions than the greedy
algorithms which justifies its use. However, for load larger
than 80% there are many instances for which there are no
solutions to PAZL. It means that with long routes and high
load, looking for an assignment without waiting time is far too
restrictive. That is why we propose algorithms for the general
PALL problem in our next section.

IV. SOLVING PALL ON STAR ROUTED NETWORKS

In this section, we consider the more general PALL problem
on star routed networks. The messages are allowed to wait in
the target vertices (BBUs) to yield more possible assignments.
Hence, we allow the process time of a route to be greater than
twice the weights of the route, but it is bounded by its deadline.

A. Two algorithms to solve PALL

As for PAZL, it is possible to design an FPT algorithm for
PALL [15]. However, it is complicated and its running time is
too large even for small n, thus we do not describe it here or
test it against the two other algorithms we present.

In the two following algorithms, we assume that the offsets
of the forward routes are already fixed by some mechanism,
hence they fix only the offsets of the backward routes.

The first algorithm we propose to solve PALL is a greedy
algorithm which sets the offset mρ(ri) of the backward routes.
It prioritizes the routes with the earliest deadline to best satisfy
the constraint on the process time. We call it Greedy Deadline
(GD). We say that a backward route ρ(ri) is eligible at time
t if the message of the route ρ(ri) arrives at ct before time t
with wi = 0. For each time t, amongst all eligible routes at
t, we choose r with the smallest deadline and fix its offset to
mr = t− λ(r).

We must improve this algorithm since it does not take into
account the periodicity. Say that t0 = t(ct,r) such that r is
the first backward route selected by the algorithm. Then if
all backward routes r are such that t(ct,r) is smaller than
t0 + P − τ , by construction, there are no collisions on the
central arc. However, if a route r has a larger t(ct,r), since
we must consider everything modulo P , it may collide with
another backward route. Therefore we must adapt the greedy
algorithm of the previous paragraph by finding s ≥ t the first
time for which there is an eligible route with its offset not
fixed and such that there are no collisions if a message go
through the central arc at time s.

The problem PALL (with offsets of forward routes already
fixed) is very similar to the following scheduling problem:
Given a set of jobs with release times and deadlines, schedule
all jobs on a single processor, that is choose the time at which
they are computed, so that no two jobs are scheduled at the
same time. When the running time is the same on all jobs, this
problem can be solved in polynomial time [17]. We use the
polynomial time scheduling algorithm to solve PALL and we
make some adjustments to take the periodicity into account:
we run it once for each forward route r and we fix mr so
that the waiting time for this route is zero and we change
the deadline of each route r′ to be less than mr + P . To
improve the chance of finding a solution, we change the value
of mr′ and d(r′) by adding the same multiple of P to both of
them so that mr′ is in [mr,mr +P]. This transformation does
not change the original problem but avoid the instance to be
rejected by the scheduling algorithm for trivial reason. For the
same reasons, when mr′ is in [mr+P−τ,mr+P], we set mr′

to mr and d(r′) to d(r′)−P . The algorithm we obtain, when
it succeeds always finds a correct periodic assignment and we
call it Periodic Minimal Latency Scheduling (PMLS). In all
our experiments, its misses a solution to the problem of finding
offsets for backward routes when there is one on 0.1% of the
instances, which makes it almost optimal in practice.

B. Experimental evaluation

We set the number of routes to 8 to make comparisons
with the results of Section III-B easier. We draw uniformly the
weights of the arcs between 0 and 20,000. We consider load
of 95%, since for small load solving PAZL is enough as shown
in Section III-B. To simplify the experiments, we use the same
deadline for all routes. We define the margin as the difference
between the deadline and twice the longest route. The margin
represents the latency imposed by the communication process
without taking into account the physical length of the network
which cannot be changed.

To set the offsets of the forward routes, we draw random
orders on these routes, so that their messages goes through
the central arc in this order. If we have n routes and draw the
order given by the permutation σ then we set mi = σ(i)τ . In
the experiments, we draw 1000 random orders and consider
that the algorithm fixing the offsets of the backward routes

 50

 60

 70

 80

 90

 100

 0 500 1000 1500 2000 2500 3000

Su
cc

es
s

R
at

e

Margin

GD
PMLS

Fig. 5. Success rate of GD and PMLS, over 10,000 instances, 95% load

succeeds when it succeeds for one of the random orders. We
also looked at the behavior of several other orders for the
routes: ordered from the shortest to the longest route, from
the longest to the shortest route, from the shortest to the
longest arc (ct,ti),or from the longest to the shortest (ct,ti).
After some simulations, it clearly appeared that drawing some
random orders is gives by far some better results on the success
rate of our algorithms.

Fig. 5 shows that PMLS is better than GD since it finds
a solution in more than 99% of the experiments, even with a
margin 0. Therefore, for the worst possible constraints on load
and margin, there are a few instances for which we do not find
a solution. With a margin of 600, which corresponds to about
0.03ms of additional delay with the chosen parameters, we
always find a solution. The success rate of these algorithms
depends on the number of random orders drawn to fix the
offsets of forward routes. It turns out that PMLS needs much
less random orders than GD to work well, which makes it
even better than GD.

C. Comparison to statistical multiplexing

We now compare the performances of our algorithms to find
periodic assignments against the actual way to manage the
messages in a network: statistical multiplexing with a FIFO
buffer in each node of the network to resolve collisions. The
time at which the messages are sent in the network is not
computed as in our approach, thus we fix the offsets of each
route to some random value. Even if this policy seems to work
in practice when the network is not too loaded, it does not
give any guarantee on the latency. Remark that the process
is not periodic, therefore we must measure the process time
of each route over several periods if we want to compute its
maximum. We choose to simulate it for 1,000 periods and we
have observed that the process time usually stabilizes after 10
periods. The margin is defined as the maximum process time,
computed as explained, minus twice the size of the longest
route.

In Fig. 6, we represent the probability of success for
statistical multiplexing and PMLS for different margin. The
success rates are computed from 10,000 star routed networks

 0

 20

 40

 60

 80

 100

 0 2000 4000 6000 8000 10000 12000

Su
cc

es
s(

%
)

Margin

Statistical multiplexing - 95% of load
Statistical multiplexing - 40% of load

PMLS - 95% of load

Fig. 6. Probability of success of statistical multiplexing and PMLS

for each margin, drawn with the same parameters as before.
We represent the distribution under high and light load for
statistical multiplexing and under high load only for PMLS
since under light load the algorithm always succeed.

The experiment clearly shows that statistical multiplexing
does not ensure a minimal latency. The latency is extremely
high when the load is high, with a margin of about 10,000
for the worst 10% which corresponds to half the period, that
is 0.5ms. Even when the network is lightly loaded, 20% of
the instances have a margin of more than 2,000. On the other
hand, PMLS finds an assignment with margin 0 in a highly
loaded network for 99% of the instances!

For each 1,000 slots of latency we save from the periodic
process, we are able to lengthen the routes of 10km, which
has a huge economical impact. We feel that it strongly justifies
the use of a deterministic sending scheme for latency critical
applications such as our C-RAN motivating problem.

V. CONCLUSION

In this paper, we proposed two deterministic methods to
establish a low latency periodic communication between BBUs
and RRHs in a star shaped fronthaul network. The first method
uses no buffering and has no latency overhead. It works when
the routes are short (Longest-Shortest policy) or when the load
is less than 80% (Exhaustive search of compact assignments).
When the load is higher, buffering is allowed in the BBUs and
we propose the algorithm PMLS which finds a deterministic
communication scheme with almost no additional latency.
Our deterministic approach is vastly superior to the classical
statistical multiplexing. This emphasizes that deterministic
sources of traffic are always best dealt with in a deterministic
manner.

We plan to generalize our study of the PALL problem to
other common fronthaul topologies, such as caterpillar, trees
or cycles. The cycles in particular are different since their
forward and backward routes are not symmetric. We would
like to design an FPT algorithm for PALL which is as efficient
as the one for PAZL and prove that both problems are NP-hard.

Acknowledgments: The authors thank Christian Cadéré
and David Auger for the friendly discussions they had on the
subject and their insightful remarks. This work is partially
supported by the french ANR project N-GREEN.

REFERENCES

[1] C. Mobile, “C-RAN: the road towards green RAN,” White Paper, ver,
vol. 2, 2011.

[2] T.-S. N. T. G. of IEEE 802.1, “Time-sensitive networks for fronthaul,”
July 2016. IEEE P802.1/D0.4.

[3] Y. Bouguen, E. Hardouin, A. Maloberti, and F.-X. Wolff, LTE et les
réseaux 4G. Editions Eyrolles, 2012.

[4] 3GPP, 3rd Generation Partnership Project; Technical Specification
Group Services and System Aspects; Service requirements for the 5G
system;. Stage 1 (Release 16).

[5] F. Boccardi, R. W. Heath, A. Lozano, T. L. Marzetta, and P. Popovski,
“Five disruptive technology directions for 5G,” IEEE Communications
Magazine, vol. 52, no. 2, pp. 74–80, 2014.

[6] A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should
know about fronthaul,” Journal of Lightwave Technology, vol. 33, no. 5,
pp. 1077–1083, 2015.

[7] Z. Tayq, L. A. Neto, B. Le Guyader, A. De Lannoy, M. Chouaref,
C. Aupetit-Berthelemot, M. N. Anjanappa, S. Nguyen, K. Chowdhury,
and P. Chanclou, “Real time demonstration of the transport of ethernet
fronthaul based on vran in optical access networks,” in Optical Fiber
Communications Conference and Exhibition (OFC), 2017, pp. 1–3,
IEEE, 2017.

[8] N. Finn and P. Thubert, “Deterministic Networking Architecture,”
Internet-Draft draft-finn-detnet-architecture-08, Internet Engineering
Task Force, 2016. Work in Progress.

[9] “Time-sensitive networking task group.” http://www.ieee802.org/1/
pages/tsn.html. Accessed: 2016-09-22.

[10] W. Howe, “Time-scheduled and time-reservation packet switching,”
Mar. 17 2005. US Patent App. 10/947,487.

[11] B. Leclerc and O. Marcé, “Transmission of coherent data flow
within packet-switched network,” June 15 2016. EP Patent App.
EP20,140,307,006.

[12] R. Borndörfer, A. Eisenblätter, M. Grötschel, and A. Martin, “Frequency
assignment in cellular phone networks,” Annals of Operations Research,
vol. 76, pp. 73–93, 1998.

[13] C. Strotmann, Railway scheduling problems and their decomposition.
PhD thesis, PhD thesis, Universität Osnabrück, 2007.

[14] W. Yu, H. Hoogeveen, and J. K. Lenstra, “Minimizing makespan in a
two-machine flow shop with delays and unit-time operations is np-hard,”
Journal of Scheduling, vol. 7, no. 5, pp. 333–348, 2004.

[15] D. Barth, M. Guiraud, and Y. Strozecki, “Deterministic scheduling of
periodic messages for cloud ran,” arXiv, 2017.

[16] “Yann strozecki’s web page.” http://www.prism.uvsq.fr/∼ystr/
textesmaths.html. Accessed: 2018-01-19.

[17] B. Simons, “A fast algorithm for single processor scheduling,” in
Foundations of Computer Science, 1978., 19th Annual Symposium on,
pp. 246–252, IEEE, 1978.

