
Enumerating models of a DNF: sublinear
algorithms

Florent Capelli and Yann Strozecki

Séminaire LIMOS

Enumeration problems

I Enumeration problems: list all solutions rather than
deciding whether there is one or finding one.

I Motivations: database queries, counting, optimization,
building libraries, datamining.

I Complexity measures: total time and delay between solutions.

Perfect matchings?
Solution space:

Begin

End

A concrete example: enumerating integers

Problem: generate all integers in [0, 2n − 1] or all subsets of [n].

Solution: Add one repeatedly: 0000, 0001, 0010, . . .

Complexity: The delay, going from a number to the next, is in
O(n) in the worst case:

01111 + 1 = 10000

However, the average time per integer generated is constant:∑
i2−i ≤ 2

A concrete example: enumerating integers

Problem: generate all integers in [0, 2n − 1] or all subsets of [n].

Solution: Add one repeatedly: 0000, 0001, 0010, . . .

Complexity: The delay, going from a number to the next, is in
O(n) in the worst case:

01111 + 1 = 10000

However, the average time per integer generated is constant:∑
i2−i ≤ 2

A concrete example: enumerating integers

Problem: generate all integers in [0, 2n − 1] or all subsets of [n].

Solution: Add one repeatedly: 0000, 0001, 0010, . . .

Complexity: The delay, going from a number to the next, is in
O(n) in the worst case:

01111 + 1 = 10000

However, the average time per integer generated is constant:∑
i2−i ≤ 2

Faster enumeration using Gray code

A Gray Code is an ordering of the integers in [0, 2n − 1] such that
two consecutive elements differ by exactly one bit.

Reflected Gray Code: recursive construction.

There is a constant time algorithm to find the next element in the
Gray code:
I the number of one is even: flip the last bit
I the number of one is odd: flip the bit to the left of the

rightmost 1

Faster enumeration using Gray code

A Gray Code is an ordering of the integers in [0, 2n − 1] such that
two consecutive elements differ by exactly one bit.

Reflected Gray Code: recursive construction.
∅

There is a constant time algorithm to find the next element in the
Gray code:
I the number of one is even: flip the last bit
I the number of one is odd: flip the bit to the left of the

rightmost 1

Faster enumeration using Gray code

A Gray Code is an ordering of the integers in [0, 2n − 1] such that
two consecutive elements differ by exactly one bit.

Reflected Gray Code: recursive construction.
I 0
I 1

There is a constant time algorithm to find the next element in the
Gray code:
I the number of one is even: flip the last bit
I the number of one is odd: flip the bit to the left of the

rightmost 1

Faster enumeration using Gray code

A Gray Code is an ordering of the integers in [0, 2n − 1] such that
two consecutive elements differ by exactly one bit.

Reflected Gray Code: recursive construction.
I 0 0
I 0 1
I 1 1
I 1 0

There is a constant time algorithm to find the next element in the
Gray code:
I the number of one is even: flip the last bit
I the number of one is odd: flip the bit to the left of the

rightmost 1

Faster enumeration using Gray code

A Gray Code is an ordering of the integers in [0, 2n − 1] such that
two consecutive elements differ by exactly one bit.

Reflected Gray Code: recursive construction.
I 0 0
I 0 1
I 1 1
I 1 0

There is a constant time algorithm to find the next element in the
Gray code:
I the number of one is even: flip the last bit
I the number of one is odd: flip the bit to the left of the

rightmost 1

Framework

An enumeration problem A is a function which associates to each
input x a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

The computation model for enumeration is a RAM with uniform
cost measure and an OUPTPUT instruction. Support efficient
data structures.

Complexity measures:

I total time
I delay
I space

Parameters:

I input size
I output size
I single solution size

Framework

An enumeration problem A is a function which associates to each
input x a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

The computation model for enumeration is a RAM with uniform
cost measure and an OUPTPUT instruction. Support efficient
data structures.

Complexity measures:

I total time
I delay
I space

Parameters:

I input size
I output size
I single solution size

Generating unions

Closure by union: given a collection of sets, generate all unions of
these sets.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: list all distinct unions of elements in S.

Use a saturation algorithm:
I begin with a polynomial number of simple solutions: the sets
si

I for each k-uple of already generated solutions apply a rule to
produce a new solution: produce s ∪ s′ for each pair (s, s′) of
solutions

I stop when no new solutions are found

Generating unions

Closure by union: given a collection of sets, generate all unions of
these sets.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: list all distinct unions of elements in S.

Use a saturation algorithm:
I begin with a polynomial number of simple solutions: the sets
si

I for each k-uple of already generated solutions apply a rule to
produce a new solution: produce s ∪ s′ for each pair (s, s′) of
solutions

I stop when no new solutions are found

Unions in polynomial delay

A better algorithm to compute the closure by union.
1. Recursive strategy, branch on elements: partition solutions

into those containing element 1 or not.
Bruteforce, backtrack search, binary partition.

2. The algorithm should not explore a branch without solutions.
Similar to branch and bound, flashlight search.

3. Solve the extension problem: given A,B ⊆ {1, . . . , n} is
there solution A′ such that A ⊆ A′ and A′ ∩B = ∅?

4. Easy to solve in O(mn): compute

A′ =
⋃

s∈S,s∩B=∅
s

Delay equal depth of the recursive tree time cost of solving
extension: O(mn2).

Unions in polynomial delay

A better algorithm to compute the closure by union.
1. Recursive strategy, branch on elements: partition solutions

into those containing element 1 or not.
Bruteforce, backtrack search, binary partition.

2. The algorithm should not explore a branch without solutions.
Similar to branch and bound, flashlight search.

3. Solve the extension problem: given A,B ⊆ {1, . . . , n} is
there solution A′ such that A ⊆ A′ and A′ ∩B = ∅?

4. Easy to solve in O(mn): compute

A′ =
⋃

s∈S,s∩B=∅
s

Delay equal depth of the recursive tree time cost of solving
extension: O(mn2).

Unions in polynomial delay

A better algorithm to compute the closure by union.
1. Recursive strategy, branch on elements: partition solutions

into those containing element 1 or not.
Bruteforce, backtrack search, binary partition.

2. The algorithm should not explore a branch without solutions.
Similar to branch and bound, flashlight search.

3. Solve the extension problem: given A,B ⊆ {1, . . . , n} is
there solution A′ such that A ⊆ A′ and A′ ∩B = ∅?

4. Easy to solve in O(mn): compute

A′ =
⋃

s∈S,s∩B=∅
s

Delay equal depth of the recursive tree time cost of solving
extension: O(mn2).

Unions in polynomial delay

A better algorithm to compute the closure by union.
1. Recursive strategy, branch on elements: partition solutions

into those containing element 1 or not.
Bruteforce, backtrack search, binary partition.

2. The algorithm should not explore a branch without solutions.
Similar to branch and bound, flashlight search.

3. Solve the extension problem: given A,B ⊆ {1, . . . , n} is
there solution A′ such that A ⊆ A′ and A′ ∩B = ∅?

4. Easy to solve in O(mn): compute

A′ =
⋃

s∈S,s∩B=∅
s

Delay equal depth of the recursive tree time cost of solving
extension: O(mn2).

Partial solution tree
{12, 134, 23, 14}

1 | 1

2 | 1

23 | 1

23

1 | 212

123

1234 123 124 12 134 14

12 | 3 13 | 2 1 | 23

Polynomial delay methods

Flashlight search can be improved by:
I Reducing the complexity of the extension problem or the

depth of the tree
I Proper choice of the element used for branching
I Amortizing the complexity of solving the extension problem

over a branch
I Amortizing the complexity over all leaves

Other methods:
1. Solutions organized in a tree (models of a 2− CNF).
2. Solutions organized in a connected graph, with small or

enumerable neighboroods. Reverse search (maximal cliques).

Polynomial delay methods

Flashlight search can be improved by:
I Reducing the complexity of the extension problem or the

depth of the tree
I Proper choice of the element used for branching
I Amortizing the complexity of solving the extension problem

over a branch
I Amortizing the complexity over all leaves

Other methods:
1. Solutions organized in a tree (models of a 2− CNF).
2. Solutions organized in a connected graph, with small or

enumerable neighboroods. Reverse search (maximal cliques).

What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration
I SDelayP: polynomial delay in the size of a solution +

preprocessing
I CD: constant delay + preprocessing

I Additional condition: space polynomial in the input or a single
solution

I Polynomial time sampling

A typical example: listing all paths in a DAG by a DFS.

What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration
I SDelayP: polynomial delay in the size of a solution +

preprocessing
I CD: constant delay + preprocessing
I Additional condition: space polynomial in the input or a single

solution
I Polynomial time sampling

A typical example: listing all paths in a DAG by a DFS.

What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration
I SDelayP: polynomial delay in the size of a solution +

preprocessing
I CD: constant delay + preprocessing
I Additional condition: space polynomial in the input or a single

solution
I Polynomial time sampling

A typical example: listing all paths in a DAG by a DFS.

Enumerating the models of a DNF

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments (= models) of a DNF.

Why is this problem interesting?

I Extremely simple: solution of terms in constant delay. Union
of regular sets of solutions while dealing with repetitions.

I DNF enumeration is connected to knowledge representation,
minimal transversal enumeration, subset membership queries,
CQ + SO variables, DNF model counting, PAC-learning . . .

Enumerating the models of a DNF

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments (= models) of a DNF.

Why is this problem interesting?

I Extremely simple: solution of terms in constant delay. Union
of regular sets of solutions while dealing with repetitions.

I DNF enumeration is connected to knowledge representation,
minimal transversal enumeration, subset membership queries,
CQ + SO variables, DNF model counting, PAC-learning . . .

Representation of a DNF

A DNF formula D is characterized by the following parameters:
1. n the number of variables
2. m the number of terms
3. ||D|| the sum of the sizes of the terms, ||D|| ≤ nm
4. s the number of its models

Data structure for DNF: the Trie

A trie or prefix tree is a tree labeled by letters. It represents the set
of words associated to its paths from the root.

A DNF formula or a set of models can be represented by a trie. It
supports insertion, lookup and deletion in time O(n).

Representation of a DNF

A DNF formula D is characterized by the following parameters:
1. n the number of variables
2. m the number of terms
3. ||D|| the sum of the sizes of the terms, ||D|| ≤ nm
4. s the number of its models

Data structure for DNF: the Trie

A trie or prefix tree is a tree labeled by letters. It represents the set
of words associated to its paths from the root.

A DNF formula or a set of models can be represented by a trie. It
supports insertion, lookup and deletion in time O(n).

Terms and union of terms

Theorem
The models of a term can be generated with constant delay.

Use Gray code and an array to store the indices of the free
variables.

Simplest algorithm: for each term, generate all its models and
deal with repetitions using a set data structure.

The cost for lookup and insertion depends on the data structure:
I Array (sorted or not): O(ns)
I Binary search tree: O(n log(s))
I Hash table: expected O(n)
I Trie: O(n)

Terms and union of terms

Theorem
The models of a term can be generated with constant delay.

Use Gray code and an array to store the indices of the free
variables.

Simplest algorithm: for each term, generate all its models and
deal with repetitions using a set data structure.

The cost for lookup and insertion depends on the data structure:
I Array (sorted or not): O(ns)
I Binary search tree: O(n log(s))
I Hash table: expected O(n)
I Trie: O(n)

Terms and union of terms

Theorem
The models of a term can be generated with constant delay.

Use Gray code and an array to store the indices of the free
variables.

Simplest algorithm: for each term, generate all its models and
deal with repetitions using a set data structure.

The cost for lookup and insertion depends on the data structure:
I Array (sorted or not): O(ns)
I Binary search tree: O(n log(s))
I Hash table: expected O(n)
I Trie: O(n)

Flashlight for DNF

Application of the flashlight method: depth of the tree n,
extension problem in O(mn): delay in O(mn2).

Better data structure (similar to the one for monotone CNF
[Uno]):
I A counter for the number of satisfiable terms in D: cD
I For each term T a counter of falsified variables: cT
I For each literal, the list of terms where it appears

In a branch, each literal of a term is visited once at most: delay
O(||D||).

Flashlight for DNF

Application of the flashlight method: depth of the tree n,
extension problem in O(mn): delay in O(mn2).

Better data structure (similar to the one for monotone CNF
[Uno]):
I A counter for the number of satisfiable terms in D: cD
I For each term T a counter of falsified variables: cT
I For each literal, the list of terms where it appears

In a branch, each literal of a term is visited once at most: delay
O(||D||).

Lower Bound Conjectures

We have a linear delay algorithm. Can we get rid of m in the
delay?

DNF Enumeration Conjecture
Enum·DNF /∈ SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm solving Enum·DNF in delay o(m)p(n)
where m is the number of terms, n the number of variables and p
a polynomial.

Stronger conjectures can be made by restricting to subclasses of
DNF and to average delay. We refute some of them in this
presentation.

Lower Bound Conjectures

We have a linear delay algorithm. Can we get rid of m in the
delay?

DNF Enumeration Conjecture
Enum·DNF /∈ SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm solving Enum·DNF in delay o(m)p(n)
where m is the number of terms, n the number of variables and p
a polynomial.

Stronger conjectures can be made by restricting to subclasses of
DNF and to average delay. We refute some of them in this
presentation.

Lower Bound Conjectures

We have a linear delay algorithm. Can we get rid of m in the
delay?

DNF Enumeration Conjecture
Enum·DNF /∈ SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm solving Enum·DNF in delay o(m)p(n)
where m is the number of terms, n the number of variables and p
a polynomial.

Stronger conjectures can be made by restricting to subclasses of
DNF and to average delay. We refute some of them in this
presentation.

DNF with small terms

Definition
A term T is a k-term if |T | ≤ k.
A DNF is a k-DNF if all its terms are k-terms.

Solutions aplenty: A k-term has 2n−k models.

A compact representation of subproblems: if D is represented
by the trie T (D), one can compute T (D[x→ 0]) and
T (D[x→ 1]) in time O(||D||).

All removed terms are stored to be able to insert them back later.

DNF with small terms

Definition
A term T is a k-term if |T | ≤ k.
A DNF is a k-DNF if all its terms are k-terms.

Solutions aplenty: A k-term has 2n−k models.

A compact representation of subproblems: if D is represented
by the trie T (D), one can compute T (D[x→ 0]) and
T (D[x→ 1]) in time O(||D||).

All removed terms are stored to be able to insert them back later.

Branching along a term

Let T = x1 ∧ x2 · · · ∧ xk be a term of D. The models of D can be
partitionned into k + 1 disjoint subsets, models of:
I D ∧ x̄1
I D ∧ x1 ∧ x̄2
I . . .
I D ∧ x1 ∧ x2 ∧ · · · ∧ x̄k
I D ∧ x1 ∧ x2 · · · ∧ xk

The models of D ∧ x1 ∧ x2 · · · ∧ xk are the models of
x1 ∧ x2 · · · ∧ xk an can be enumerated in constant delay.

Branching along a term

Let T = x1 ∧ x2 · · · ∧ xk be a term of D. The models of D can be
partitionned into k + 1 disjoint subsets, models of:
I D ∧ x̄1
I D ∧ x1 ∧ x̄2
I . . .
I D ∧ x1 ∧ x2 ∧ · · · ∧ x̄k
I D ∧ x1 ∧ x2 · · · ∧ xk

The models of D ∧ x1 ∧ x2 · · · ∧ xk are the models of
x1 ∧ x2 · · · ∧ xk an can be enumerated in constant delay.

Enumeration for k-DNF

Theorem
The models of a k-DNF with n variables can be enumerated with
precomputation in O(n) and O(k3/222k) delay.

Sketch of the algorithm:
I Flashligth algorithm, branch along a term of the current

formula.
I When a variable is fixed, compute the trie of the reduced

formula.
I Interleave enumeration of models of a term T and branching

along T .
I Balance the cost of maintaining a trie and the number of

solutions given by a model, worst case n = 2k.

The number of models of a DNF

For k-DNF, having so many solutions helps.
Similar property for the general case?

Lemma
Let γ = log3(2). A DNF formula with m non empty distinct terms
has at least mγ models.

Proof sketch:
Induction on the number of variables. Cut the formula in three
parts: terms with x1, x̄1, whithout x1 or x̄1. Evaluate how the
three subformulas contribute models to the original formula and
apply inequalities.

The number of models of a DNF

For k-DNF, having so many solutions helps.
Similar property for the general case?

Lemma
Let γ = log3(2). A DNF formula with m non empty distinct terms
has at least mγ models.

Proof sketch:
Induction on the number of variables. Cut the formula in three
parts: terms with x1, x̄1, whithout x1 or x̄1. Evaluate how the
three subformulas contribute models to the original formula and
apply inequalities.

Average delay of the flashlight search

Same idea as for k-DNF, amortize the cost of branching.

Theorem
The models of a DNF can be enumerated with average delay
O(n2m1−γ) and polynomial space.

Proof sketch:
Flashlight search, reduction of the trie when fixing a variable.
Branching cost O(mn), but can be amortized over mγ models.

Average delay of the flashlight search

Same idea as for k-DNF, amortize the cost of branching.

Theorem
The models of a DNF can be enumerated with average delay
O(n2m1−γ) and polynomial space.

Proof sketch:
Flashlight search, reduction of the trie when fixing a variable.
Branching cost O(mn), but can be amortized over mγ models.

Improving the average delay
How to reduce the depth of the tree of partial solutions?

Theorem
The models of a DNF can be enumerated with average delay
O(nm1−γ) and polynomial space.

Proof sketch:
Differentiate between fast branching (the size of one subformula
decreases by a factor 1/2) and slow branching. A different way of
counting the complexity of branching and amortizing it is used in
the two cases.

Above algorithm and the one for k-DNF can be combined.

Theorem
There is an algorithm with average delay O(23k/2) to enumerate
the models of a k-DNF.

Improving the average delay
How to reduce the depth of the tree of partial solutions?

Theorem
The models of a DNF can be enumerated with average delay
O(nm1−γ) and polynomial space.

Proof sketch:
Differentiate between fast branching (the size of one subformula
decreases by a factor 1/2) and slow branching. A different way of
counting the complexity of branching and amortizing it is used in
the two cases.

Above algorithm and the one for k-DNF can be combined.

Theorem
There is an algorithm with average delay O(23k/2) to enumerate
the models of a k-DNF.

Improving the average delay
How to reduce the depth of the tree of partial solutions?

Theorem
The models of a DNF can be enumerated with average delay
O(nm1−γ) and polynomial space.

Proof sketch:
Differentiate between fast branching (the size of one subformula
decreases by a factor 1/2) and slow branching. A different way of
counting the complexity of branching and amortizing it is used in
the two cases.

Above algorithm and the one for k-DNF can be combined.

Theorem
There is an algorithm with average delay O(23k/2) to enumerate
the models of a k-DNF.

Monotone DNF

Problems of generating ideals in a boolean lattice given by an
antichain.
I Remove redundant terms (terms included in other) in time
O(m2).

I Each term has one proper model (the minimal one).
I For each term, enumerate its models in lexicographic order

and store them in a set.
I When a redundant solution is found do not explore further.
I At most O(n) consecutive redundant solutions before seeing a

fresh one.

Open question: Can the preprocessing be improved? Can the
delay be improved? Can the space be made polynomial?

Monotone DNF

Problems of generating ideals in a boolean lattice given by an
antichain.
I Remove redundant terms (terms included in other) in time
O(m2).

I Each term has one proper model (the minimal one).
I For each term, enumerate its models in lexicographic order

and store them in a set.
I When a redundant solution is found do not explore further.
I At most O(n) consecutive redundant solutions before seeing a

fresh one.

Open question: Can the preprocessing be improved? Can the
delay be improved? Can the space be made polynomial?

Average delay for Monotone DNF

The algorithm for general DNF is adapted using two ideas.
I Each term has a minimal model not shared with the other

terms. For an instance with m terms, at least m models.
I Terms of small size have many solutions: a formula with a

small term cost "nothing" in the flashlight. If all terms are
large represent them by their complementary.

Theorem
There is an algorithm to enumerate the models of a monotone
DNF with polynomial space and average delay O(mn).

Average delay for Monotone DNF

The algorithm for general DNF is adapted using two ideas.
I Each term has a minimal model not shared with the other

terms. For an instance with m terms, at least m models.
I Terms of small size have many solutions: a formula with a

small term cost "nothing" in the flashlight. If all terms are
large represent them by their complementary.

Theorem
There is an algorithm to enumerate the models of a monotone
DNF with polynomial space and average delay O(mn).

Results [Capelli, S. 2019]

Class Delay Space
DNF O(||D||) O(||D||)
(?) DNF O(nm1−γ) average delay O(||D||)
(?) k-DNF k3/222k O(||D||)
(?) Monotone DNF O(n2), m2 preprocessing O(sn)
(?) Monotone DNF O(log(mn)) average delay O(mn)

Table: Overview of the results. In this table, D is a DNF, n its number of
variables and m its number of terms. New contributions are annotated
with (?).

Thanks!
Questions?

