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Enumeration problems

I Enumeration problems: list all solutions rather than
deciding whether there is one or finding one.

I Motivations: database queries, counting, optimization,
building libraries, datamining.

I Complexity measures: total time and delay between solutions.

Perfect matchings?
Solution space:

Begin

End



A concrete example: enumerating integers

Problem: generate all integers in [0, 2n − 1] or all subsets of [n].

Solution: Add one repeatedly: 0000, 0001, 0010, . . .

Complexity: The delay, going from a number to the next, is in
O(n) in the worst case:

01111 + 1 = 10000

However, the average time per integer generated is constant:∑
i2−i ≤ 2
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Faster enumeration using Gray code

A Gray Code is an ordering of the integers in [0, 2n − 1] such that
two consecutive elements differ by exactly one bit.

Reflected Gray Code: recursive construction.

There is a constant time algorithm to find the next element in the
Gray code:
I the number of one is even: flip the last bit
I the number of one is odd: flip the bit to the left of the

rightmost 1
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Framework

An enumeration problem A is a function which associates to each
input x a set of solutions A(x).

An enumeration algorithm must generate every element of A(x)
one after the other without repetition.

The computation model for enumeration is a RAM with uniform
cost measure and an OUPTPUT instruction. Support efficient
data structures.

Complexity measures:

I total time
I delay
I space

Parameters:

I input size
I output size
I single solution size
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Generating unions

Closure by union: given a collection of sets, generate all unions of
these sets.
Instance: a set S = {s1, . . . sm} with si ⊆ {1, . . . , n}.
Problem: list all distinct unions of elements in S.

Use a saturation algorithm:
I begin with a polynomial number of simple solutions: the sets
si

I for each k-uple of already generated solutions apply a rule to
produce a new solution: produce s ∪ s′ for each pair (s, s′) of
solutions

I stop when no new solutions are found
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Unions in polynomial delay

A better algorithm to compute the closure by union.
1. Recursive strategy, branch on elements: partition solutions

into those containing element 1 or not.
Bruteforce, backtrack search, binary partition.

2. The algorithm should not explore a branch without solutions.
Similar to branch and bound, flashlight search.

3. Solve the extension problem: given A,B ⊆ {1, . . . , n} is
there solution A′ such that A ⊆ A′ and A′ ∩B = ∅?

4. Easy to solve in O(mn): compute

A′ =
⋃

s∈S,s∩B=∅
s

Delay equal depth of the recursive tree time cost of solving
extension: O(mn2).
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Partial solution tree
{12, 134, 23, 14}

1 | 1

2 | 1

23 | 1

23

1 | 212

123

1234 123 124 12 134 14

12 | 3 13 | 2 1 | 23



Polynomial delay methods

Flashlight search can be improved by:
I Reducing the complexity of the extension problem or the

depth of the tree
I Proper choice of the element used for branching
I Amortizing the complexity of solving the extension problem

over a branch
I Amortizing the complexity over all leaves

Other methods:
1. Solutions organized in a tree (models of a 2− CNF ).
2. Solutions organized in a connected graph, with small or

enumerable neighboroods. Reverse search (maximal cliques).
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What is a really efficient enumeration
algorithm ?

I DelayP: equivalent to P for enumeration
I SDelayP: polynomial delay in the size of a solution +

preprocessing
I CD: constant delay + preprocessing

I Additional condition: space polynomial in the input or a single
solution

I Polynomial time sampling

A typical example: listing all paths in a DAG by a DFS.
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Enumerating the models of a DNF

I A term is a conjunction of literals over n variables.
I A DNF formula is a disjunction of m terms.
I Enum·DNF is the problem of enumerating satisfying

assignments (= models) of a DNF.

Why is this problem interesting?

I Extremely simple: solution of terms in constant delay. Union
of regular sets of solutions while dealing with repetitions.

I DNF enumeration is connected to knowledge representation,
minimal transversal enumeration, subset membership queries,
CQ + SO variables, DNF model counting, PAC-learning . . .
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Representation of a DNF

A DNF formula D is characterized by the following parameters:
1. n the number of variables
2. m the number of terms
3. ||D|| the sum of the sizes of the terms, ||D|| ≤ nm
4. s the number of its models

Data structure for DNF: the Trie

A trie or prefix tree is a tree labeled by letters. It represents the set
of words associated to its paths from the root.

A DNF formula or a set of models can be represented by a trie. It
supports insertion, lookup and deletion in time O(n).
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Terms and union of terms

Theorem
The models of a term can be generated with constant delay.

Use Gray code and an array to store the indices of the free
variables.

Simplest algorithm: for each term, generate all its models and
deal with repetitions using a set data structure.

The cost for lookup and insertion depends on the data structure:
I Array (sorted or not): O(ns)
I Binary search tree: O(n log(s))
I Hash table: expected O(n)
I Trie: O(n)
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Flashlight for DNF

Application of the flashlight method: depth of the tree n,
extension problem in O(mn): delay in O(mn2).

Better data structure (similar to the one for monotone CNF
[Uno]):
I A counter for the number of satisfiable terms in D: cD
I For each term T a counter of falsified variables: cT
I For each literal, the list of terms where it appears

In a branch, each literal of a term is visited once at most: delay
O(||D||).
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Lower Bound Conjectures

We have a linear delay algorithm. Can we get rid of m in the
delay?

DNF Enumeration Conjecture
Enum·DNF /∈ SDelayP.

Strong DNF Enumeration Conjecture
There is no algorithm solving Enum·DNF in delay o(m)p(n)
where m is the number of terms, n the number of variables and p
a polynomial.

Stronger conjectures can be made by restricting to subclasses of
DNF and to average delay. We refute some of them in this
presentation.
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DNF with small terms

Definition
A term T is a k-term if |T | ≤ k.
A DNF is a k-DNF if all its terms are k-terms.

Solutions aplenty: A k-term has 2n−k models.

A compact representation of subproblems: if D is represented
by the trie T (D), one can compute T (D[x→ 0]) and
T (D[x→ 1]) in time O(||D||).

All removed terms are stored to be able to insert them back later.
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Branching along a term

Let T = x1 ∧ x2 · · · ∧ xk be a term of D. The models of D can be
partitionned into k + 1 disjoint subsets, models of:
I D ∧ x̄1
I D ∧ x1 ∧ x̄2
I . . .
I D ∧ x1 ∧ x2 ∧ · · · ∧ x̄k
I D ∧ x1 ∧ x2 · · · ∧ xk

The models of D ∧ x1 ∧ x2 · · · ∧ xk are the models of
x1 ∧ x2 · · · ∧ xk an can be enumerated in constant delay.
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Enumeration for k-DNF

Theorem
The models of a k-DNF with n variables can be enumerated with
precomputation in O(n) and O(k3/222k) delay.

Sketch of the algorithm:
I Flashligth algorithm, branch along a term of the current

formula.
I When a variable is fixed, compute the trie of the reduced

formula.
I Interleave enumeration of models of a term T and branching

along T .
I Balance the cost of maintaining a trie and the number of

solutions given by a model, worst case n = 2k.



The number of models of a DNF

For k-DNF, having so many solutions helps.
Similar property for the general case?

Lemma
Let γ = log3(2). A DNF formula with m non empty distinct terms
has at least mγ models.

Proof sketch:
Induction on the number of variables. Cut the formula in three
parts: terms with x1, x̄1, whithout x1 or x̄1. Evaluate how the
three subformulas contribute models to the original formula and
apply inequalities.
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Average delay of the flashlight search

Same idea as for k-DNF, amortize the cost of branching.

Theorem
The models of a DNF can be enumerated with average delay
O(n2m1−γ) and polynomial space.

Proof sketch:
Flashlight search, reduction of the trie when fixing a variable.
Branching cost O(mn), but can be amortized over mγ models.
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Improving the average delay
How to reduce the depth of the tree of partial solutions?

Theorem
The models of a DNF can be enumerated with average delay
O(nm1−γ) and polynomial space.

Proof sketch:
Differentiate between fast branching (the size of one subformula
decreases by a factor 1/2) and slow branching. A different way of
counting the complexity of branching and amortizing it is used in
the two cases.

Above algorithm and the one for k-DNF can be combined.

Theorem
There is an algorithm with average delay O(23k/2) to enumerate
the models of a k-DNF.
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Monotone DNF

Problems of generating ideals in a boolean lattice given by an
antichain.
I Remove redundant terms (terms included in other) in time
O(m2).

I Each term has one proper model (the minimal one).
I For each term, enumerate its models in lexicographic order

and store them in a set.
I When a redundant solution is found do not explore further.
I At most O(n) consecutive redundant solutions before seeing a

fresh one.

Open question: Can the preprocessing be improved? Can the
delay be improved? Can the space be made polynomial?
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Average delay for Monotone DNF

The algorithm for general DNF is adapted using two ideas.
I Each term has a minimal model not shared with the other

terms. For an instance with m terms, at least m models.
I Terms of small size have many solutions: a formula with a

small term cost "nothing" in the flashlight. If all terms are
large represent them by their complementary.

Theorem
There is an algorithm to enumerate the models of a monotone
DNF with polynomial space and average delay O(mn).
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Results [Capelli, S. 2019]

Class Delay Space
DNF O(||D||) O(||D||)
(?) DNF O(nm1−γ) average delay O(||D||)
(?) k-DNF k3/222k O(||D||)
(?) Monotone DNF O(n2), m2 preprocessing O(sn)
(?) Monotone DNF O(log(mn)) average delay O(mn)

Table: Overview of the results. In this table, D is a DNF, n its number of
variables and m its number of terms. New contributions are annotated
with (?).



Thanks!
Questions?


